Nonlinear Polynomial Systems: Multiple Roots and their Multiplicities

K. H. Ko, T. Sakkalis, N. M. Patrikalakis

Massachusetts Institute of Technology

Motivation Motivation

- **Difficulties in handling roots with high multiplicity**
	- **Performance deterioration**
	- -**Lack of robustness in numerical computation**
	- -**Round-off errors during floating point arithmetic**
- **Limited research on root multiplicity of a system of equations**
	- - **Heuristic approaches are needed for practical purposes.**

Objectives Objectives

- **Develop practical algorithms to isolate and compute roots and their multiplicities.**
- **Improve the Interval Projected Polyhedron (IPP) algorithms.**

Multiplicity of Roots Multiplicity of Roots

- **Univariate Case**
	- **A root a of** *f(x)=0* **has multiplicity** *k* **if**

$$
f(a) = f'(a) = \dots = f^{(k-1)}(a) = 0
$$
, and $f^{(k)}(a) \neq 0$

- **Bivariate Case**
	- **Define**

$$
V_f = \{(x, y) \in \mathbb{C} \mid f(x, y) = 0\}
$$

$$
V_g = \{(x, y) \in \mathbb{C} \mid g(x, y) = 0\}
$$

- Suppose that $\mathsf{z}_\textit{0}$ is the only common point of $\mathsf{V}_\textit{f}$ and $\mathsf{V}_\textit{g}$ lying **above** *x0***. Consider** *h(x)=Res ^y(f,g)***, the resultant of** *f,g* **with** respect to *y***. Then the multiplicity of** \boldsymbol{z}_o **=(x** $_o$ **,y** $_o$ **) as a root of the system is the multiplicity of** *x0* **as a zero of** *h(x)***.**

Degree of the Gauss Map Degree of the Gauss Map

- **Let** *p(x,y), q(x,y)* **be polynomials with rational coefficients without common factors, of degrees** *n 1 and n ²***, and let** *F=(p, q).*
- Let *A* be a rectangle in the plane defined by $a_{\scriptscriptstyle{1}} \le x \le a_{\scriptscriptstyle{2}} , \,\, a_{\scriptscriptstyle{3}} \le y \le a_{\scriptscriptstyle{4}} ,$
	- $a_1 < a_2, a_3 < a_4, a_i \in \mathbf{Q}, i = 1,2,3,4$ so that no zero of $\boldsymbol{\mathsf{F}}$ lies its boundary ∂A , and $\ p\cdot q$ does not vanish at its vertices.
		- Gauss map $G: \partial A \rightarrow S^1$, $G = F \sqrt{\|F\|}$, where S^1 is the unit circle.
		- G is continuous ($\|F\| \neq 0$ *on* ∂A).
		- ∂A and $\mathsf{S}^\mathcal{I}$ carry the counterclockwise orientation.
- • **Degree** *d* **of** *G* **: an integer indicating how many times is** ∂*A* **wrapped around** *S 1* **by** *G***.**

Illustration of the Gauss Map Illustration of the Gauss Map

The Cauchy Index The Cauchy Index

• **Preliminaries**

- *R(x)* : a rational function *q(x)/p(x),* where *p, q* are polynomials.
- [*a,b*] : a closed interval, *a < b*. *R* does not become infinite at the end points.

• **Definition of the** *Cauchy index*

By the *Cauchy index,* $I^{\sigma}_{a}R$ *of R* over [*a,b*], we mean where $\; N_{-}^{+} (N_{+}^{-}) \;$ denotes the number of points in (a,b) at which $R(\mathsf{x})$ jumps from $-\infty$ $to +\infty$ ($+\infty$ $to -\infty$), respectively, as x is moving from a to b. Notice that $I_a^v R = -I_b^u R$ from the definition. *b a*−
+ $I_a^b R = N_+^+ - N_1^+$ *b a*+ $N^+_-(N)$ − ∞) *a bb a*= −

The Cauchy Index (continued) The Cauchy Index (continued)

• **Preliminaries**

- $-$ A : a rectangle defined by [a ₁, a ₂] x [a ₃, a ₄] which encloses a zero*.*
- $F = (p,q)$ does not vanish on the boundary of A, ∂A .
- is not zero at each vertex of *A*. *p* [⋅]*q*
- Let (x, a_4) [.] (x, a_4) $(x, a_{3})^{\prime}$ (x, a_3) (a_2, y) [,] (a_2, y) (a_1, y) [,] (a_1, y) 4 $\frac{3}{3}$, $R_4 = \frac{9}{x}$, $a_4 = \frac{9}{x}$ $\frac{q_2, y_1}{q_2, y_2}, R_3 = \frac{q(x, a_3)}{p(x, a_3)}$ $\frac{P_1(y)}{P_1(y)}$, $R_2 = \frac{q(a_2)}{p(a_2)}$ $R_1 = \frac{q(x_1, y_1)}{p(a_1, y)}, R_2 = \frac{q(x_2, y_1)}{p(a_2, y)}, R_3 = \frac{q(x, a_3)}{p(x, a_3)}, R_4 = \frac{q(x, a_3)}{p(x, a_3)}$ $\frac{q(x, a_3)}{p(x, a_3)}$, $R_4 = \frac{q(x, a_3)}{p(x, a_3)}$ $\frac{q(a_2, y)}{p(a_2, y)}$, $R_3 = \frac{q(x, a)}{p(x, a)}$ *q a y* $\frac{p(a_1, y)}{p(a_1, y)}$, R *q a y* $R_1 = \frac{T^{(1)}, T^{(2)}}{T^2}, R_2 = \frac{T^{(2)}, T^{(2)}}{T^2}, R_3 = \frac{T^{(1)}, T^{(2)}, T^{(2)}}{T^2}, R_4 =$

Then, we set (for counterclockwise traversal of $\;\partial\!A\;$)

$$
I_A F = I_{a_4}^{a_3} R_1 + I_{a_3}^{a_4} R_2 + I_{a_1}^{a_2} R_3 + I_{a_2}^{a_1} R_4.
$$

• **Proposition** *•**T. Sakkalis, "***The Euclidean Algorithm and the Degree of the Gauss Map***", SIAM J. Computing. Vol. 19, No. 3, 1990.**

 $J_{\!A}\!F$ is an even integer and the multiplicity

$$
d = -\frac{1}{2}I_A F.
$$

Illustrative Example for Multiplicity Illustrative Example for Multiplicity Computation Using the Cauchy Index Computation Using the Cauchy Index

- $p(x) = (x-1/2)^5 = 0$
- •A root of $p(x)$, $[a] = [0.49, 0.51]$.
- •*P(z); (z = x+iy)*

$$
p(z) = (x + iy - \frac{1}{2})^5 = f(x, y) + ig(x, y)
$$

•**Create**

 $A = [0.49, 0.5] \times [-0.01, 0.01], \quad a_1 = 0.49, \ a_2 = 0.51, \ a_3 = -0.01, \ a_4 = 0.01$

- • Calculate the Cauchy index
	- –Roots of $f(x, a_3) = 0$
	- Calculation of

$$
I_{a_1}^{a_2} R_3 = -3
$$

•Roots No. 2, 3, and 4 are selected since they lie within the interval [$\it a$].

Illustrative Example (Continued) Illustrative Example (Continued)

- Similarly, $I_{a_3}^{a_4}R_2 = -2, I_{a_2}^{a_1}R_4 = 3, I_{a_4}^{a_3}R_1 = 2$ 1 24 $I_{a_3}^{a_4}R_2 = -2$, $I_{a_2}^{a_1}R_4 = 3$, $I_{a_4}^{a_3}R_1 =$ *a aa aa a*
- Calculate $I_A F = I_{a_4}^{a_3} R_1 + I_{a_3}^{a_4} R_2 + I_{a_1}^{a_2} R_3 + I_{a_2}^{a_1} R_4 = -10$ 2 14 33 $I_A F = I_{a_4}^{a_3} R_1 + I_{a_3}^{a_4} R_2 + I_{a_1}^{a_2} R_3 + I_{a_2}^{a_1} R_4 = -1$ *a aa aa a* Δ ^{*A*} $F = I_a^a$

• The multiplicity *m* of the root is $d=-\frac{1}{2}I_{A}F=5$ $d = -\frac{1}{2}I_{A}F =$

Note

$$
- I_a^b R = -I_b^a R.
$$

. *Counterclockwise orientatio n of A is assumed* − ∂

Direct Computation Method Direct Computation Method

Nonlinear Polynomial Systems: Multiple Roots and their Multiplicities

Direct Computation Method Direct Computation Method

 $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x, y) = (f(x, y), g(x, y))$. $G: \partial A \to S^1$, $G = F / ||F||$,

Bisection Algorithm for Solving Bisection Algorithm for Solving Univariate Univariate Polynomial Equations Polynomial Equations

 S_1

 S_{4}

 S_2 || S

 \rm{a}_{2}

 $\mathrm{b}_2^{}$

 S_3

 $a₁$

• **Univariate polynomial in complex variable** *z. (Substitute x with a complex variable z = x+iy)*

 $(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z^1 + a_0 = 0$ $=a_nz^n+a_{n-1}z^{n-1}+\cdots+a_1z^1+a_0=$ $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z^1 + a_0$ *n nn* n^2 $+$ a_{n-1} $+$ \cdots

- • **Input :**
	- initial domain: $S\!=\![a_{\!\scriptscriptstyle 1}, b_{\!\scriptscriptstyle 1}]\times[n_{\!\scriptscriptstyle 2}, b_{\!\scriptscriptstyle 2}]$
	- **Links of the Common** a complex polynomial : *p(z)*
	- **Links of the Common** tolerance, number of sample points
- **Output**
	- **Links of the Common** real and complex roots, multiplicities $|_1$ + $|_0$ + $|_0$
- **Algorithm**
	- –Quadtree decomposition
	- *Nonlinear Polynomial Systems: Multiple Roots and their Multiplicities* –Direct degree computation method : complex interval arithmetic.

Examples Examples

• Wilkinson polynomial

 $\mathcal{L}(\mathbf{I})$

• Complicated Polynomial (degree 22)

$$
p(t) = (t2 + t + 1)2 (t-1)4
$$

$$
(t3 + t2 + t + 1)3 (t-2)(t-4)4
$$

Solving a Bivariate Polynomial *System*

- **Change of Coordinates**
	- **CR :** *f* **and** *g* **are regular in** *y.*
	- -- CU : whenever two points (x_o, y_o) and (x_1, y_1) satisfy *f=g=0*, then $y^{}_{\scriptscriptstyle 0}$ =y₁.
- **Solving a Bivariate Polynomial System**
	- **Let f,g satisfy CR and CU and let** *h(x)=Res ^y(f,g)***. Then the roots of the system** *f=g=0* **are in a one to one** correspondence with the roots of *h(x)*. Moreover, z_i =(x_i , y_i) is **a real root if and only if** *xi* **is a real root of** *h(x)***.**
	- Let *h(x)=Res_y(f,g) and I(y)=Res_x(f,g) and* a_{ij} *=[t_i,t_{i+1}]x[s_j,s_{j+1}]* where in each subinterval $[t_i, t_{i+1}]$ or $[s_i, s_{i+1}]$ there exist **precisely one root of** *h(x)* **and** *l(y), respectively***. If** *aij* **encloses a real root of** *f=g=0***, then the following must be true**

 $0 \in f([t_i, t_{i+1}], [s_i, s_{i+1}]) \times g([t_i, t_{i+1}], [s_i, s_{i+1}])$

Solving a Bivariate Polynomial *System : Example System : Example*

$$
(x,y) = x3 - 3x2 + 5x - 4 + y3-3y2 + 5y - 2xy = 0,(x,y) = 2x3 - 2x2 + x - 4 - 4x2y + 2xy+9y + 3xy2 - 8y2 + y3 = 0,
$$

$$
h(x) = 56x9 - 704x8 + 3880x7 - 12304x6
$$

+24744x⁵ - 32736x⁴ + 28504x³
-15760x² + 5024x - 704.

$$
l(y) = -56y^{9} + 608y^{8} - 2824y^{7} + 7312y^{6}
$$

-11496y⁵ + 11136y⁴ - 6328y³
+1744y² - 32y - 64.

Conclusions Conclusions

- **Study of the topological degree and multiple roots of univariate and bivariate polynomial systems in the context of geometric modeling.**
- **Development of practical algorithms for isolating and computing multiple roots of univariate and bivariate polynomial systems.**
- **Basis for further research needed in addressing the general problem of single and multiple roots of nonlinear polynomial systems in** *n* **variables.**