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MotivationMotivation

• Difficulties in handling roots with high 
multiplicity
- Performance deterioration
- Lack of robustness in numerical computation
- Round-off errors during floating point arithmetic

• Limited research on root multiplicity of a 
system of equations
- Heuristic approaches are needed for practical 

purposes.
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ObjectivesObjectives

• Develop practical algorithms to isolate and 
compute roots and their multiplicities.

• Improve the Interval Projected Polyhedron 
(IPP) algorithms.
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Multiplicity of RootsMultiplicity of Roots

• Univariate Case
- A root a of f(x)=0 has multiplicity k if

• Bivariate Case
- Define

- Suppose that z0 is the only common point of Vf and Vg lying 
above x0. Consider h(x)=Resy(f,g), the resultant of f,g with 
respect to y. Then the multiplicity of z0=(x0,y0) as a root of 
the system is the multiplicity of x0 as a zero of h(x).
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Degree of the Gauss MapDegree of the Gauss Map
• Let p(x,y), q(x,y) be polynomials with rational coefficients 

without common factors, of degrees n1 and n2, and let F=(p, q).

• Let A be a rectangle in the plane defined by 
so  that no zero of F lies its 

boundary       , and          does not vanish at its vertices.
• Gauss map                                        where  S1 is the unit 

circle.
• G is continuous  (                          ).
• and S1 carry the counterclockwise orientation.

• Degree d of G : an integer indicating how many times         is 
wrapped around S1 by G.
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Illustration of the Gauss MapIllustration of the Gauss Map
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• Preliminaries
– R(x) : a rational function q(x)/p(x), where p, q are polynomials.
– [a,b] : a closed interval, a < b. R does not become infinite at the 

end points.

• Definition of the Cauchy index
By the Cauchy index,         of R over [a,b], we mean                  

where denotes the number of points in (a,b) at which

R(x) jumps from , respectively, as x is 

moving from a to b. Notice that          from the definition.
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• Preliminaries
– A : a rectangle defined by [ 1,    2] x [ 3,    4] which encloses a 

zero.
– F = (p,q) does not vanish on the boundary of A, 
– is not zero at each vertex of A.
– Let

Then, we set (for counterclockwise traversal of        )

• Proposition*
IAF is an even integer and the multiplicity
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•T. Sakkalis, “The Euclidean Algorithm and the Degree of the Gauss Map”, 

SIAM J. Computing. Vol. 19, No. 3, 1990.
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• p(x) = (x-1/2)5 = 0
• A root of p(x),  [ ] = [0.49,0.51].
• P(z); (z = x+iy)

• Create

• Calculate the Cauchy index
– Roots of f(x,    3) = 0
– Calculation of 

• Roots No. 2, 3, and 4 are selected since they lie within the interval [    ].

01.0,01.0,51.0,49.0   , 4321 =−===×= aaaa01] [-0.01,0.1]  [0.49,0.5A 

[0.530776834861365, 0.530776835861365]5
[0.507265424645288, 0.507265426808589]4
[0.499999997363532, 0.500000001889623]3
[0.49273457408967, 0.492734576204823]2
[0.46922316412099, 0.46922316512099]1

Roots of f(x,a3) = 0 in [0,1] (from the IPP)No.
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Illustrative Example for Multiplicity Illustrative Example for Multiplicity 
Computation Using the Cauchy IndexComputation Using the Cauchy Index
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• Similarly,

• Calculate 

• The multiplicity m of the root is
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Illustrative Example (Continued)Illustrative Example (Continued)
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• Use the map F directly.

Direct Computation MethodDirect Computation Method
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• Univariate polynomial in complex variable z. 
(Substitute x with a complex variable z = x+iy)

• Input :
– initial domain : 
– a complex polynomial : p(z)
– tolerance, number of sample points

• Output
– real and complex roots, multiplicities

• Algorithm
– Quadtree decomposition 
– Direct degree computation method : complex interval 

arithmetic.
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Bisection Algorithm for Solving Bisection Algorithm for Solving 
UnivariateUnivariate Polynomial EquationsPolynomial Equations
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ExamplesExamples

• Wilkinson polynomial • Complicated Polynomial (degree 22)
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Solving a Solving a BivariateBivariate Polynomial Polynomial 
SystemSystem

• Change of Coordinates
- CR : f and g are regular in y.
- CU : whenever two points (x0,y0) and (x1,y1) satisfy f=g=0, 

then y0=y1.
• Solving a Bivariate Polynomial System

- Let f,g satisfy CR and CU and let h(x)=Resy(f,g). Then the 
roots of the system f=g=0 are in a one to one 
correspondence with the roots of h(x). Moreover, zi=(xi,yi) is 
a real root if and only if xi is a real root of h(x).

- Let h(x)=Resy(f,g) and  l(y)=Resx(f,g) and aij=[ti,ti+1]x[sj,sj+1]
where in each subinterval [ti,ti+1] or [sj,sj+1] there exist 
precisely one root of h(x) and l(y), respectively. If aij
encloses a real root of f=g=0, then the following must be 
true ]),[],,([]),[],,([0 1111 ++++ ×∈ jjiijjii ssttgssttf
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Solving a Solving a BivariateBivariate Polynomial  Polynomial  
System : ExampleSystem : Example
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ConclusionsConclusions

• Study of the topological degree and multiple roots 
of univariate and bivariate polynomial systems in 
the context of geometric modeling.

• Development of practical algorithms for isolating 
and computing multiple roots of univariate and 
bivariate polynomial systems.

• Basis for further research needed in addressing 
the general problem of single and multiple roots of 
nonlinear polynomial systems in n variables.


