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Introduction

« Polynomials are used in various branches of computational
science.

 They can be found in mathematics, computer science,
engineering and many other fields.

 There are two basic reasons for that:
— Most functions can be approximated by polynomial functions, and
— They are rather easy to use in a computer code.

 Thus, they serve as good substitutes for functions that are difficult
to deal with.
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 In this talk we will discuss some of their applications in
Computer Aided Geometric Design and Geometric
Modeling.

* In particular, we will discuss:

Polynomial systems and their solutions
Elements of elimination theory

— Polynomial maps

— Some Problems of this Area.
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A Strange Example

* Asanindication of the difference in moving from one dimension to the
next, even for ssimple functions—like polynomials—let us consider the
following:

Example 1. Every polynomial functiony = p(x) withp(x) > 0, " xI R has
at least one (real) critical point.

Qi =y U

@Xw}g P(X) §

Example 2. The polynomial
(X y) = (X°y- x- D)* +x°

has the property that, for every (x,y) T R2, p(x,y) > O,
but the function p(x,y) does not have any (real) critical point.

€ 1lim p(x y) Doesnot exist.Y
Bx.y)®¥ P(x.y) t
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y=p (x)
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Polynomial Systems

Polynomials are popular in curve and surface
representation.

Thus, many critical problems in CAGD, such as
surface interrogation, are reduced to finding the zero
set of a system of polynomial equations

f(x)=0

where T =(f-. 1) and each f. is a polynomial of M
independent variables X = (X,--+,X_).
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Polynomial Systems

Several root-finding methods for polynomial systems have been
used in practice.

These can be categorized as:
— Algebraic and hybrid methods,
— Homotopy methods, and
— Subdivision methods.

Among those types, the subdivision methods have been widely
used in practice.

The Interval Projected Polyhedral (IPP) algorithm is one example,
and it has successfully been applied to various problems.
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Motivation

« Difficulties in handling roots with high

multiplicity
. - Performance deterioration

- Lack of robustness in numerical computation
- Round-off errors during floating point arithmetic

I  Limited research on root multiplicity of a
system of equations

- Heuristic approaches are needed for practical
purposes.
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Objectives

 Develop practical algorithms to isolate and
compute roots and their multiplicities.

 Improve the Interval Projected Polyhedron
(IPP) algorithms.
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Multiplicity of Roots

e Univariate Case
- A root a of f(x)=0 has multiplicity k if

. f@=f(@)=---=f%"@=0, and f™(@)?*0

e Bivariate Case

I P =) ClE(xy) =0}
V., ={(x 1)1 Clg(xy)=0}

- Suppose that z, is the only common point of V; and V lying
above x,. Consider h(x)=Res,(f,g), the resultant of f,g with
respect to y. Then the multiplicity of z,=(x,,y,) as a root of

I the system is the multiplicity of x, as a zero of h(x).
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Degree of the Gauss Map

Let p(Xx,y), q(X,y) be polynomials with rational coefficients
without common factors, of degrees n, and n,, and let F=(p, q).

Let A be arectangle in the plane defined by & £x£a,, a,£y£a,,

a<a, a,<a,, al Q,i=1234 so thatno zero of F lies its
boundary 9A, and P’(does not vanish at its vertices.

« Gaussmap G:JA® S, G=F/|F|, where S! isthe unit
circle.

« Gis continuous ( [F|* 0 on A ).
* 9A and S! carry the counterclockwise orientation.

Degree d of G : an integer indicating how many times YA is
wrapped around St by G.
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lllustration of the Gauss Map
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The Cauchy Index

 Preliminaries
— R(x) : a rational function q(x)/p(x), where p, g are polynomials.

— [a,b] : a closed interval, a < b. R does not become infinite at the
end points.

o Definition of the Cauchy index
By the Cauchy index, I;’R of R over [a,b], we mean |’R=N’- N;
where N’ (N.) denotes the number of points in (a,b) at which
R(X) jumps from - ¥ to+¥ (+¥ to - ¥), respectively, as X is

moving from a to b. Notice that 1’R=-12R from the definition.

Slide No. 14



The Cauchy Index (continued)

Preliminaries

— A arectangle defined by [a,, a,] X[ a;, a,] which encloses a
zero.

— F = (p,q) does not vanish on the boundary of A, YA
— P’Q is not zero at each vertex of A.

— Let
R = a@.y) R = a(a,,y) R = a(x,8;) R, = a(x,a,)

P&, y) (@, ) p(x.8;) p(x,a,)
Then, we set (for counterclockwise traversal of A)
| \F :Iij1+ I:;R2+ I§12R3+I§‘;R4.

I,F is an even integer and the multiplicity d= EI -
=- S I4F.
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© lllustrative Example for Multiplicity

Computation Using the Cauchy Index

e p(x)=(x-1/2)>=0
 Arootof p(x), [a]=[0.49,0.51].
o P(2); (z = x+iy)
e p(2) = (x+iy- 2)° = £ (X, Y) +ig(x,Y)
Create 2
A =[0.49,05 1] ~ [-0.01,0.01], a =0.49, a, =051, a, =-0.01, a, =0.01
e Calculate the Cauchy index
— Roots of f(x, a3) =0
— Calculation of No.

|2R,=-3

o

Roots of f(x,a,) =0 in [0,1] (from the IPP)
[0.46922316412099, 0.46922316512099]
[0.49273457408967, 0.492734576204823]
[0.499999997363532, 0.500000001889623]
[0.507265424645288, 0.507265426808589]
[0.530776834861365, 0.530776835861365]

(G2 EENu (CURN O | o

I  Roots No. 2, 3, and 4 are selected since they lie within the interval [a ].
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lllustrative Example (Continued)

e Similarly, IR, =-2 IR, =3 IR =2

« Calculate 1,F=1°R+I*R+I*R+IR, =-10

 The multiplicity m of the rootis d=- %IAF =5

Note
- I’R=-17R
- Counterclockwise orientation of YA is assumed.
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Direct Computation Method
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Direct Computation Method
F:R°® R? F(xy)=(f(x,y),9(x,Y). G:JA® S G=F/HFH,

+ IR3 (f(x,a3)=0)
- IR2 (f(a2,y)=0)
+ IR4 (f(x,a4)=0)
IR1 (f(al,y)=0)

N =
Ig(x,y)

Slide No. 19



Bisection Algorithm for Solving
Univariate Polynomial Equations

« Univariate polynomial in complex variable z.
(Substitute x with a complex variable z = x+iy)

p(z)=a,2"+a, 2"+ +a 7 +a,=0

-- Input : 4

— initial domain : S=[a,b]" [a,,b,] b,
— a complex polynomial : p(z) -
— tolerance, number of sample points | s, Hi s,

. « Output a, ==

— real and complex roots, multiplicities s, !
e Algorithm -
— Quadtree decomposition %

— Direct degree computation method : complex interval
I arithmetic. Slide No. 20




Examples

* Wilkinson polynomial | « Complicated Polynomial (degree 22)

p(®) =11 (t— %)

1=1

_\'].;., RJ'.;'_t']}r-'_’_v']H' R TI IHL_I:H — p(t) = (t2 +{ +1)2(t _ 1)4
2 0.1,0. _:1;{1;:]__”””1:;E:.i_[uu 3 2 3

| D L0 1L 50103 5 (t+2 +t+1)3(t- 2)(t- 4)*
1

[0.15,0.15]+i[-5.947e-10,5.947e-10

10.2,0.2[4+1]-5.947e-10,5.947e-10

(@)
S’

t

Multiplicity Roots
3 -5.956e-10,5.956e-10]+i[1.1]
[1,1]+i[-5.956e-10,5.956e-10]
[4,4]+1[-5.939¢-10,5.939e-10]
[-0.5,-0.5]41]0.866.0.866)]
-1,-1]+i[-5.956e-10,5.956e- 10]
[-0.5,-0.5]+i[-0.866.,-0.866]

[0,.25,0.25]+i[-5.898e-10,5.898e-10
[0.3,0.3]+i[-5.792e-10,5.792e-10
0.35,0.35]+1[-5.792e-10,5.792e-10
0.4,0.4]+i[-5.792e-10,5.792¢-10
[0.45,0.45]+i[-5.792e-10,5.792e-10

|[|H:.|fu1 | :_|_.'1,,- 15e-10.5.T45e-10

1
1
1
1
1
1
1
1
1
11 1 [0.55,0.55]+i[-5.745e-10,5.745e-10
1
1
1
1
1
1
1
1
1

10.6,0.6|+i[-5.745e-10,5.745e-10

= WD | W DD | | C

13 [0.65,0.65] +i[-5.745e-10,5.745¢-10 [-5.956e-10,5.956e-10]+i[-1.-1]

14 [0.7.0.7[+i[-5.745¢-10,5.745e- 10 3 5 91 +-11-5 9do- '
,2|41]-5.94e-10,0

15 0.75,0.75]+i|-5.745e-10,5.745e-10 [2.2] 1] 0]

16 0.8,0.8|41|-5.745e-10,5.745e-10

17 0.85,0.85|4+1|-5.745e-10,5.745e-10

18 10.9,0.9|41|-5.745e-10,5.745e-10

]':] |”':]H:|”':]H: | :_|—.h;,lr_-].:-:||'—]|+_.'1,r l:_‘ll'—]”

20) [1,1]+1[-5.747e-10,5.747e-10
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Solving a Bivariate Polynomial
System

« Change of Coordinates
- CR:fand g areregulariny.
- CU : whenever two points (X,,Y,) and (x,,y,) satisfy f=g=0,

- then y,=y,.
 Solving a Bivariate Polynomial System

- Let f,g satisfy CR and CU and let h(x)=Res,(f,g). Then the
roots of the system f=g=0 are in a one to one
correspondence with the roots of h(x). Moreover, z=(x;,y,) IS
areal root if and only if x; Is a real root of h(x).

- Let h(x)=Res(f,g) and I(y)=Res,(f,g) and a=[t,t,,]X[s,S]
where in each subinterval [t,t,,] or [s;,S;,,] there exist
precisely one root of h(x) and I(y), respectively. If a;
encloses areal root of f=g=0, then the following must be

true 0l f ([t| ;ti+1]1[sj 1Sj+l]), g([t, ,ti+1]1[Sj ,Sj+1])
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—  f(x.y)=0
— 2(xy)=0 E

Solving a Bivariate Polynomial

System : Example

= 22 —322+5x—4+¢°
—3y% 4 5y — 22y = 0,

= 2x3—2x2+x—4—4x2y+2xy
+9y + 3xy” — 8y* + ¢’ =0,

h(z) = 562" — 7042° + 38802" — 123042°
19247442° — 327362* + 2850423
— 1576022 + 50242 — T04.

l(y) = —56y9 -+ 608y8 — 2824y7 + 7312y6
—11496y° 4+ 11136y* — 6328y°
+1744y” — 32y — 64.

Root (x.y) d

[0.999999978. 1.00000001]x[0.99999994, 1.00000001] 5
|

[1.99999999. 2.00000003]x[1.99999996, 2.00000003 ] 3

I [1.57142855, 1.57142859]x[-0.142857209,-0.142857134]
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Elimination Theory

. Resultants
 Sylvester Resultant
« Macaulay Resultant
« Sparse Resultant
D-Resultant

. Groebner Bases

lll.  Symbolic System Solving
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Elements of Resultant Theory

e Let: a(t):ant”+.--+a1t+a0
b(t) =b t"+---+bt+D,

e non zero polynomials, with complex coefficients.

The resultant of a,b wrt t (or the t -resultant), Res (a,b) =R is

3, A g
R= an ...... ao
bm ......... bo
bm ......... bo

« Observe that Res, (a,b)T C.
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Properties of the Resultant

Let us see some well known properties of the resultant:

Property 1. There exist polynomials A(t), B(t)T C[t] of degrees
respectively, n¢< m, mé< n so that

a(t) A(t) +b(t)B(t) = Resi(a,b) 1)

Property 2. Res (a,b)=0UP a(t) and b(t) have a common
factor of positive degree.

Property 3. .
Let, a(x, y)=ay" +a, (X)y" " +---+ag(X)

b(x y) =@ b (Y™ T K[Y][X]

with a_or b | C*, and consider p(x)=Res (a,b). If x, is a root of p(y),
then there exists y,| C with the property a(X,, Y,) =b(X,, ¥,) =0
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Cramer’s Rule

e Let f(xy), g(xy) I C[xy] two nonconstant polynomials,
and let be indeterminates.

e Consider
F:C°® C°, F=(f,q)
A(x,u,v) =Res (f - u,g-v),

B(y,u,v) =Res (f - u,g- V)

. with F(0,0) = (0,0).
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Cramer’s Rule

Theorem|[Cramer’s Rule] F has a polynomial inverse if

and only If:
A(X,u,Vv) =ax+ A (u,v),

and
B(y,u,v) =by+B,(u,v), with ab? 0

Moreover, If
G(x y):=2 HXY) BXxy)o

& a ' b
Then G is the inverse of F.
In addition,

degF =degF*
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