Tracing Surface Intersections with Validated ODE System Solver

H. Mukundan, K. H. Ko, T. Maekawa, T. Sakkalis, N. M. Patrikalakis

June 2004

ACM Solid Modeling Conference 2004

Introduction Background

Intersection of two *parametric surfaces*, $P(\sigma, t) = Q(u, v)$ defined in *parametric spaces* $0 \le \sigma, t \le 1$ and $0 \le u, v \le 1$ can have *multiple*

An *intersection curve segment* is represented by a continuous trajectory in *parametric space*.

GRANDINE T. A., KLEIN F. W.: A new approach to the surface intersection problem. Computer Aided Geometric Design 14, 2 (1997), 111–134.

Problem Formulation Vector IVP for ODE

- *Transversal* as well as *tangential* intersections can be formulated as a system of *ordinary differential equations* (ODEs) in *parametric space*.
- Given a *starting point (initial condition)* belonging to an *intersection curve segment*, we can integrate the system of ODEs.
- The system of ODEs with the *starting point* represents an initial value problem (IVP).
 - Written in vector notation as:

$$\begin{bmatrix} \frac{d\sigma}{ds} \\ \frac{dt}{ds} \\ \frac{du}{ds} \\ \frac{dv}{ds} \\ \frac{dv}{ds} \end{bmatrix} = \begin{bmatrix} f_1(\sigma, t, u, v) \\ f_2(\sigma, t, u, v) \\ f_3(\sigma, t, u, v) \\ f_4(\sigma, t, u, v) \end{bmatrix}$$

$$\frac{d\mathbf{y}}{ds} = \mathbf{f}(\mathbf{y}), \quad \mathbf{y}(\mathbf{0}) = \mathbf{y}_0$$

Error Bounds in Parametric Space Validated Interval Scheme (Application to SSI)

- For strict bounds for IVPs in *parametric space*, we employ a validated interval scheme* for ODEs.
- We represent the surfaces as *interval surfaces*.
 - Interval surfaces have interval coefficients and are written as:

 $[P](\sigma, t)$ and [Q](u, v)

We obtain a *vector interval ODE system* :

$$\left[\frac{d\sigma}{ds}\frac{dt}{ds}\frac{du}{ds}\frac{dv}{ds}\right]^{T} = \frac{dy}{ds} = f([y(s)])$$

The error in *starting point* is bounded by an *initial interval*.

• With an *interval initial condition* :

$$[\mathbf{y}_0] = [[\boldsymbol{\sigma}_0] \ [t_0] \ [\boldsymbol{u}_0] \ [\boldsymbol{v}_0]]^T$$

*NEDIALKOV N. S.: Computing the Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation. PhD thesis, University of Toronto, Toronto, Canada, 1999.

Error Bounds in Parametric Space Validated Interval Scheme (Overview)

- One *step* of a *validated interval scheme** is done in *two* phases:
 - Phase I Algorithm

(Verifying the existence and uniqueness)

- A step size $h_j = s_{j+1} s_j$
- An *a priori enclosure* $[\tilde{y}_i]$ such that:

 $\mathcal{Y}(s) \in [\tilde{\mathcal{Y}}_{j}], \quad \forall s \in [s_{j}, s_{j+1}]$

Phase II Algorithm

Slide No. 5

(Computing an interval valued function)

• Using
$$[\tilde{\mathcal{Y}}_{j}]$$
 compute a *tighter bound* $[\mathcal{Y}_{j+1}]$ at \mathcal{S}_{j+1}

*NEDIALKOV N. S.: *Computing the Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation. PhD thesis, University of Toronto, Toronto, Canada, 1999.*

Validated Error Bounds in 3D Flow Chart Description

σ

 $P(\sigma, t)$

1 0

u

Q(u,v)

Slide No. 6

Q(u,v)

σ

Results & Examples

Error Bounds in 3D Model Space (Transversal and Tangential)

Results & Examples Preventing Straying or Looping

Validated ODE solver can correctly trace the *intersection curve segment* even through closely spaced features, where standard methods fail.

Slide No. 8

Conclusions Merits

- We realize *validated error bounds* in *3D model space* which enclose the *true curve of intersection*.
- The scheme can prevent the phenomenon of *straying or looping*.
- The scheme can accommodate the errors in:
 - initial condition
 - rounding during digital computation
- Method can accommodate perturbation in the surfaces itself.
- *Validated error bounds* for surface intersection is essential in *interval boundary representation* for consistent *solid models**.

*SAKKALIS T., SHEN G., PATRIKALAKIS N. M.: Topological and geometric properties of interval solid models. Graphical Models 63, 3 (2001), 163–175.