
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

A reliable algorithm for computing the topological degree
of a mapping in R2

K.H. Ko a,*, T. Sakkalis b, N.M. Patrikalakis c

a Department of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong,

Buk-gu, Gwangju 500-712, Republic of Korea
b Mathematics Laboratory, Agriculture University of Athens, Athens 118 55, Greece

c Department of Mechanical Engineering, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

In this paper, we present a method to reliably compute the topological degree of a mapping in the plane, over a simple
closed polygon. The method is based on Henrici’s argument principle, and computes the degree using the winding number
concept in range arithmetic. The algorithm is then applied to the root computation of a univariate polynomial. The pro-
posed algorithms are demonstrated with examples.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Gauss map; Topological degree; Principle of argument; Interval arithmetic; Affine arithmetic; Univariate polynomials

1. Introduction

Let pðx; yÞ and qðx; yÞ be real continuous functions. We consider the vector field F as follows:

F : R2 ! R2; Fðx; yÞ ¼ ðpðx; yÞ; qðx; yÞÞ: ð1Þ
A zero z0 of F is a tuple ðx0; y0Þ of real numbers such that Fðx0; y0Þ ¼ ð0; 0Þ. In this paper we will also regard a
pair of real numbers (x,y) as a complex number z and write z ¼ ðx; yÞ ¼ xþ iy.

Let A be a rectangle in the xy plane defined by a1 6 x 6 b1 and a2 6 y 6 b2. Assume that no zero of F lies
on the boundary oA. In that case, we will call such an A compatible with F.

If F and A are as above, we may define the Gauss map G as follows:

G : oA! S1; G ¼ F

jFj ; ð2Þ

where S1 is the unit circle. Since jFj 6¼ 0 on oA, G is continuous.

0096-3003/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2007.07.002

* Corresponding author.
E-mail address: khko@gist.ac.kr (K.H. Ko).

Available online at www.sciencedirect.com

Applied Mathematics and Computation 196 (2008) 666–678

www.elsevier.com/locate/amc

Author's personal copy

Assume that both oA and S1 carry the counterclockwise orientation. Then, the degree d of G is an integer
that indicates how many times oA is wrapped around S1 by G, see Fig. 1; for the precise definition see [1]. The
value d is also called the topological degree of G, and of F, over oA. In the above definition, A can be replaced
with any simple closed polygon in R2, where A is homeomorphic to a unit disk. Furthermore, it is well known
that the concept of the topological degree can be generalized for a continuous map F over any simple polytope
P 2 Rn. In the sequel, unless otherwise stated, for purposes of computation, F will be a polynomial map and A

will be a planar domain homeomorphic to the unit disk whose boundary oA is a simple closed curve.
Several different approaches for degree computation have been proposed in the literature. Stenger [2] pro-

posed an algorithm to compute the topological degree of a differentiable mapping F defined on a connected
n-dimensional polyhedron, P, in Rn using the sign change of the Jacobian of F along the boundary of P. Sten-
ger’s approach is also discussed in Kearfott [3], where an improvement in the computational aspect was made.
Stynes [4] simplified the computation process of Stenger’s formula [2] by replacing determinant evaluations
with a scanning procedure of associated matrices. Stenger’s method can compute the correct degree under
the assumption that the boundary of P is sufficiently refined. The latter, however, limits the applicability of
Stenger’s method to various problems. Concerning this issue, Stynes [5] discussed the construction of such suf-
ficient refinements of a polygon for Stenger’s degree computation method and proposed a class of algorithms
for sufficient refinements. However, his approach is based, still, on the knowledge of moduli of continuity and
only in the case where such moduli can be estimated, such sufficient refinements can be constructed.

Boult and Sikorski [6] discussed the computation of the topological degree of the class F of Lipschitz func-
tions with constant K, with f : C ! R2, where C is the unit square, the infinity norm of f is larger than zero
and K=4b P 1. Here b is the minimum of the infinite norm of f on the boundary of C. They showed that
m� ¼ 4bK=4bc is a lower bound necessary to compute the degree of f 2 F and it provides a sufficient refine-
ment of oC such that the Stenger’s degree computation method [2] yields a correct degree value. The determi-
nation of K or b is critical for the robustness of their algorithm for the degree computation. Since the constant
K with which the Lipschitz condition is satisfied and/or a lower bound for the infinity norm of the map on the
boundary oC may not be available a priori in actual computation, their algorithm may not work robustly as is
demonstrated by the examples in their paper showing that their algorithm may fail to compute the correct
degree value of f depending on K and b. Mourrain et al. [7] discussed the problem of constructing sufficient
refinements in the topological degree computation and presented a procedure for computing with certainty the
degree using Stenger’s method, with emphasis on the 2D case. The main focus of their approach is also placed
on a method of how to guarantee sufficient refinements for the degree computation based on Stenger’s
method. Their method, however, requires isolation of the roots of a univariate polynomial, which is the critical

|

0,y0)

F1

S1

x

y

X

Y

(0,0)

(0,0)

q(x,y)

)

F

G = F / ||F||
a1 b1

a2

b2

F1 1| / | F|

z=(x

p(x,y

Fig. 1. An illustration of the topological degree of the Gauss map.

K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678 667

Author's personal copy

step to ensure the correctness of the degree computation. That in itself is, in general, a difficult problem and is
not practical in real situations.

Another crucial assumption that Stenger’s method makes is that the Jacobian of the map F is non-zero at a
zero of F. This, however, can easily be violated if a root has multiplicity greater than one.

The topological degree, on the other hand, can be calculated without considering sufficient refinements of
the boundary and computing the Jacobian of a mapping, which are the basic ingredients of Stenger’s method.
Sakkalis [1] proposed an algorithm to compute the degree of the Gauss map based on the Cauchy index and
the Euclidean algorithm. The degree d of F given in Eq. (1), is computed by

d ¼ � 1

2
IAF ; ð3Þ

where IAF is the sum of Cauchy indices along oA under the map F. He discussed a relation between the Cau-
chy index, the topological degree and the root counting inside a domain of an analytical function, and pro-
vided a solid mathematical procedure for the topological degree computation. The algorithm, however, may
not be appropriate for practical purposes since it requires another algorithm to compute roots of Sturm se-
quences of polynomials along the boundary oA for the Cauchy index computation, and that itself is not
robust.

Another popular way to compute the topological degree is developed based on the concept of the winding
number. Especially, this approach, which is conceptually and computationally simple, has been widely used in
computing the poles of a complex polynomial [8].

We denote by

Dz2½a;b� argðFðzÞÞ ð4Þ

the amount of change of the argument of F as z moves from a to b continuously along a simple curve with end
points a and b. Assume that we have a domain A and a sequence of discretization points c1; . . . ; cKðc1 ¼ cKþ1Þ
on the curve oA. Then the degree of the Gauss map, d, is obtained as follows [1,9]:

d ¼ 1

2p
Dz2½c1;cKþ1� arg FðzÞð Þ: ð5Þ

Using the discretization points on oA, we have

d ¼ 1

2p

XK

k¼1

Dz2½ck ;ckþ1� argðFðzÞÞ: ð6Þ

Since argðFðzÞÞ is continuous over the interval ½ck; ckþ1�, Eq. (6) can be rewritten as

d ¼ 1

2p

XK

k¼1

arg
Fðckþ1Þ
FðckÞ

� �
ð7Þ

under the following condition [10,11,8,12,9]:

j½argðFðzÞÞ�jz2½ck ;ckþ1� 6 p: ð8Þ

The robustness of computing (7) is guaranteed under condition (8) since there should exist a unique value of
Fðckþ1Þ
FðckÞ with the condition. Based on the argument principle, Henrici [8] provided a numerical algorithm to effi-

ciently compute the winding number without using exact arithmetic.
Condition (8), however, is not easily satisfied in general [8,12,9]. Without the condition being satisfied, Hen-

rici’s algorithm gives only a strictly lower bound of the winding number [12]. There have been many efforts to
devise an algorithm to verify the validity of this condition. Ying and Katz [9] proposed a method to verify
condition (8). They choose a linear function P(z) of the complex variable z, given a complex continuous func-
tion f(z) over the linear interval ½z1; z2� and define RðzÞ � f ðzÞ � P ðzÞ. If min jP ðzÞj > max jRðzÞj; z 2 ½z1; z2�, then
(8) is guaranteed. However, their approach requires the computation of an upper bound for jf 00j along the line
segment ½z1; z2�, which involves computing the second derivatives and estimating the upper bound. Davies [11]
discussed a way to avoid the direct reference to the derivative of a function to compute the winding number

668 K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678

Author's personal copy

but failed to address the failsafe way to determine the sufficient number of function evaluations, which is
equivalent to failure in satisfying (8). Carpentier and Dos Santos [10] proposed two empirical tests:

arg
FðzkÞ

Fðzkþ1Þ

� �����
���� < 3p

4
; ð9Þ

1

6:1
< arg

FðzkÞ
Fðzkþ1Þ

� �����
���� < 6:1; ð10Þ

that control the discretization density along the boundary oA. But the choice of the constants is based on
experiments and we can find a case where condition (8) does not hold.

In this paper, we propose a method of adaptive discretization of the boundary of a domain to generally
guarantee condition (8). For this, we exploit the self-validation of range arithmetic to satisfy (8). We, then,
develop an algorithm to reliably compute the degree of the Gauss map using a discretized method based
on the concept of argument principle with Eq. (7). This degree computation approach is not affected by
the nature of the Jacobian inside the domain, and requires no derivative computation.

In Section 2, we briefly review interval and affine arithmetic and its extension to complex arithmetic. In Sec-
tion 3, we propose an adaptive discretization method for condition (8) and develop a degree computation
algorithm using the proposed method. In Section 4, the proposed algorithm is tested with various numerical
examples to demonstrate its robustness and performance. Then in Section 5 the proposed degree computation
algorithm is applied to root computation of a univariate polynomial. Open problems and future developments
are discussed in Section 6.

2. Range arithmetic

Range arithmetic is an arithmetic system which is used for self-validated computation. The result of range
arithmetic is an enclosure of the exact value considering uncertainties and errors during evaluation. Examples
of range arithmetic include interval arithmetic [13] and affine arithmetic [14]. Both keep track of intervals of
ideal values, but the difference between those two arithmetic systems lies in how to control the size of intervals
during evaluation.

2.1. Interval arithmetic

An interval, ½f�, is a set of real numbers defined as follows [13]:

½f� ¼ ½a; b� ¼ fxja 6 x 6 b; a; b 2 R; a 6 bg: ð11Þ

Interval arithmetic operations are defined by [13,15]:

½a; b� � ½c; d� ¼ fx � yjx 2 ½a; b� and y 2 ½c; d�g; ð12Þ
where � is one of the basic arithmetic operations for real numbers such as +, �, · and /. Each arithmetic oper-
ation is defined by using the formulae with the endpoints of each interval:

½a; b� þ ½c; d� ¼ ½aþ c; bþ d�;
½a; b� � ½c; d� ¼ ½a� d; b� c�;
½a; b� � ½c; d� ¼ ½minðac; ad; bc; bdÞ;maxðac; ad; bc; bdÞ�;
½a; b�=½c; d� ¼ ½minða=c; a=d; b=c; b=dÞ;maxða=c; a=d; b=c; b=dÞ�;

ð13Þ

where the division operation is not defined when 0 2 ½c; d�.
The mathematical definitions of an interval and associated arithmetic assume that real numbers defining

intervals are represented with infinite precision. However, when interval arithmetic is implemented on digital
computers using floating point arithmetic following the definition of ANSI/IEEE STD 754-1985, Standard for
Binary Floating Point Arithmetic [16], achieving infinite precision is not possible, leading to violation of the
inclusion property of interval arithmetic. As a solution to this problem, it is proposed that the IEEE standard

K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678 669

Author's personal copy

rounding scheme should be controlled carefully during interval operations to generate strict enclosure of an
exact result. This rounding scheme is called the rounded interval arithmetic [17,13,15].

Rounded interval arithmetic (RIA) performs rounding operations for floating point values conservatively
at each arithmetic operation, ensuring the inclusion property. For more details, see [17,18,15].

2.2. Affine arithmetic

Interval arithmetic is simple to implement and its performance can compete with floating point arithmetic
but its significant drawback is overestimation of an interval during evaluation. Such overestimation cannot be
controlled within the interval arithmetic framework, resulting in range explosion [14]. As a solution to this
problem affine arithmetic is developed, which maintains information of both enclosures and their correlations,
providing a mechanism for tighter bounds during evaluation [14].

Affine arithmetic is represented as a first-degree polynomial [14]:

x̂ ¼ x0 þ x1�1 þ x2�2 þ � � � þ xn�n; ð14Þ

where x0 is the central value of the affine form x̂, �i an independent component of the total uncertainty of the
quantity x with �1 6 �i 6 1 and xi the magnitude of that component.

A value in affine form can be easily converted to an interval and vise versa. Thus, the final result in affine
arithmetic is represented as an interval, which can be readily used for various applications.

2.3. Complex range arithmetic

Complex arithmetic can benefit from the concept of range arithmetic, which leads to a special arithmetic
system, called the complex range arithmetic. A complex range value consists of real and imaginary parts each
of which is an enclosure. Depending on the arithmetic systems used for the real and imaginary parts, we have
complex interval arithmetic and complex affine arithmetic, respectively.

Complex interval arithmetic is analyzed in [19]. Given two real range values, ½f� and ½g�, the set

C ¼ faþ ibja 2 ½f�; b 2 ½g�g ð15Þ

is defined as the complex interval, which forms a rectangle in the complex domain whose sides are parallel to
the real and imaginary coordinate axes. A complex interval can also be represented as a circle in the complex
domain [19]. Suppose we have two complex intervals, IA ¼ ½f1� þ i½f2� and IB ¼ ½g1� þ i½g2�. Then, the basic
complex interval arithmetic operations are defined as follows [19]:

IAþ IB ¼ ½f1� þ ½g1� þ ið½f2� þ ½g2�Þ;
IA� IB ¼ ½f1� � ½g1� þ ið½f2� � ½g2�Þ;
IA� IB ¼ ½f1�½g1� � ½f2�½g2� þ ið½f1�½g2� þ ½f2�½g1�Þ;

IA=IB ¼ ½f1�½g1� þ ½f2�½g2�
½g1�

2 þ ½g2�
2
þ i
½f2�½g1� þ ½f1�½g2�
½g1�

2 þ ½g2�
2

; 0 62 ½g1�
2 þ ½g2�

2
:

ð16Þ

On the other hand, a complex affine value consists of real and imaginary parts in affine form and the complex
affine arithmetic system is defined using affine arithmetic. Each complex affine value can be converted to com-
plex intervals. Therefore, the resulting complex affine value is a rectangle in coordinate axes as in complex
interval arithmetic.

In this paper, we focus on the rectangular representation method since it is an intuitive extension of range
arithmetic and easy to implement in algorithms proposed in this paper.

3. Computation of topological degree

In this section, we present our basic theoretical results, as well as the main algorithms for the degree com-
putation. One of the key ingredients of our method is the argument principle by Henrici [8].

670 K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678

Author's personal copy

3.1. Adaptive discretization for degree computation

3.1.1. Theoretical background

Suppose that we have a map F ¼ ðp; qÞ and a rectangle A compatible with it. Let ck ¼ ðxk; ykÞ and
ckþ1 ¼ ðxkþ1; ykþ1Þ be two points on oA. Let ck be the part of oA that connects ck and ckþ1. Assume that ck car-
ries the counterclockwise orientation and is parametrized by (normalized) arc length t ð0 6 t 6 1Þ with
ckð0Þ ¼ ck and ckð1Þ ¼ ckþ1. Let Fp

ck
and Fq

ck
be the images of ck under the maps pðx; yÞ and qðx; yÞ. Since p

and q are continuous and ck is connected and compact, Fp
ck

and Fq
ck

are intervals, say Fp
ck
¼ ½ap

ck
; bp

ck
� and

Fq
ck
¼ ½aq

ck
; bq

ck
�. Then we have our first result:

Theorem 1. If ð0; 0Þ 62 I ¼ ½ap
ck
; bp

ck
� � ½aq

ck
; bq

ck
�, then

jDz2½ck ;ckþ1� argðFðzÞÞj < p: ð17Þ

Proof. If ð0; 0Þ 62 I, the rectangle I has to lie across at most two consecutive quadrants in the pq domain.
This implies that the angle between any two vectors Fðc0kÞ and Fðc0kþ1Þ in I with c0k; c

0
kþ1 2 ½ck; ckþ1� should

be less than p. h

3.1.2. Algorithm

For a rectangle A compatible with F we can choose ck and ckþ1 such that the condition of Theorem 1 is
always satisfied. Based on this, we propose an algorithm for computing the topological degree as follows:

(1) Let c1; . . . ; cKþ1 ¼ c1 be a sequence of points on oA, arranged counterclockwise. Take two consecutive
points ck and ck+1 and form the curve ck.

(2) Find the sets Fp
ck

and Fq
ck

, and construct I ¼ ½ap
ck
; bp

ck
� � ½aq

ck
; bq

ck
�.

(3) Check if ð0; 0Þ 2 I.
3.1. If true, update ckþ1 ckðxÞwhere 0 < x < 1 and form a new curve ckðtÞwith 0 6 t 6 1. Then go to 2.
3.2. Otherwise, go to 4.

(4) Compute sum ¼ sumþ Dz2½ck ;ckþ1� argðFðzÞÞ.
(5) k ¼ k þ 1.
(6) If k ¼ K þ 1, compute d ¼ sum

2p and terminate. If not, go to 1.

Theorem 2. The above algorithm computes the topological degree of a map correctly.

Proof. For every pair of consecutive points ck and ck+1 with k ¼ 1; . . . ;K, if ð0; 0Þ 62 I, then by Theorem 1
and the argument principle, the algorithm computes the correct degree. If ð0; 0Þ 2 I, then since ck is not a
zero, we can always find a new point in the neighborhood of ck, which makes ð0; 0Þ 62 I at line 3.1. Therefore,
the algorithm computes the correct degree. h

3.2. Implementation and analysis

For implementation of the algorithm, range arithmetic can be used instead of computing the exact bounds
directly since the exact enclosure computation during arithmetic operations is inefficient and may not be pos-
sible. However, range arithmetic in general produces more conservative enclosure than the theoretical one due
to its inclusion property mentioned in Section 2. Therefore, there may exist more cases where line 3 of the
algorithm in Section 3.1.2 becomes true, resulting in denser sampling of the boundary.

As it is pointed out in Section 2.2, the size of an interval can increase rapidly if interval arithmetic is used to
evaluate a high degree polynomial. Such overestimation enlarges the size of the rectangle for the test of con-
dition (8), leading to rapid increase of the number of samples. Affine arithmetic, however, can control the size
of the range during evaluation and maintain a low number of samples for degree computation.

K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678 671

Author's personal copy

The number of sampling points also depends on the characteristic of the map F and the reduction ratio x.
In general, if a zero of a map is close to the boundary of a rectangle A, then the number of discretization points
for oA increases. This increase is also coupled with the reduction ratio. If the reduction ratio is not small
enough, then, the number of evaluations of the map may increase.

4. Examples

In this section, the proposed degree computation algorithm is tested with various examples. The algorithm
is implemented in interval and affine arithmetic and both versions are compared for each example. They are
implemented using the C++ programming language. For interval and affine arithmetic PROFIL/BIAS [20,21]
and Libaffa libraries [22] are used, respectively. The tests are performed on a linux system with a 3.2 GHz CPU
and 2 GB RAM. All codes are compiled with the g++ v4.0.3 compiler. In the tests, a value of x ¼ 0:5 is used
for the reduction ratio.

4.1. Univariate polynomials

Given a univariate polynomial, we may derive the map F as follows [1]:

Proposition 3. Let f(z) be a complex polynomial in the variable z ¼ xþ iy. Write f ðzÞ ¼ pðx; yÞ þ iqðx; yÞ, where

p; q are the real and imaginary parts of f ðzÞ, and consider F ¼ ðp; qÞ. Then, if A is compatible with F, the

topological degree d of F is equal to the number of roots z (along with their multiplicities) of f ðzÞ that lie inside A.

Then, we compute the topological degree of the map F with respect to the initial domain given as input.

Test 1: The test function is a polynomial of degree 22 as follows:

f ðzÞ ¼ ðz2 þ zþ 1Þ2ðz� 1Þ4ðz3 þ z2 þ zþ 1Þ3ðz� 2Þðz� 4Þ4: ð18Þ

The input domain of ½�5; 5� � ½�5; 5� is provided to the algorithm. The number of discretization
points is 947 for interval arithmetic and 120 for affine arithmetic with computation time of 0.09
and 0.22 s, respectively. The computed degree is 22.

Test 2: In this test we compare the affine and interval arithmetic versions of the degree computation algo-
rithm with Wilkinson’s polynomial of increasing degrees from 10 to 40:

f ðtÞ ¼
Yn

i¼0

t � i
n

� �
; ð19Þ

where n ¼ 10; 15; . . . ; 40. The domain ½�2; 2� � ½�2; 2� is provided as input to the program. The roots
are real and equally distributed on the interval ½0; 1� and the number of the roots is equal to the total
degree of the polynomial. The elapsed time and numbers of discretizations for each degree are sum-
marized in Table 1. Affine arithmetic requires more steps than interval arithmetic in bound compu-
tation. However, the estimation of tight error bounds in affine arithmetic offsets its performance
inferiority in our case because of the less number of evaluations resulted from the tight enclosure,
which is obviously observed in Figs. 2 and 3. Fig. 2 shows how the execution time changes as the
degree of the polynomial increases for interval and affine arithmetic and Fig. 3 shows the relations
between the number of discretization points and the input degrees. Here in both figures, the vertical
axes are given in log scale and the dotted lines are the results of affine arithmetic.

Test 3: An example from [9] is taken for test as follows:

f ðzÞ ¼ 1:0� ðz16 � 1Þ2: ð20Þ

The input domain of ½�2; 2� � ½�2; 2� is provided as input and the computed degree is 32, the compu-
tation time 0.11 and 0.21 s for interval and affine versions and the numbers of discretized points are
2048 and 148, respectively.

672 K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678

Author's personal copy

Table 1
Elapsed times and number of discretization points

Degree Interval Affine

Time Number Time Number

10 0 159 0.04 50
15 0.05 716 0.1 74
20 0.5 3670 0.22 102
25 3.54 17,052 0.4 130
30 25.84 93,599 0.64 156
35 176.68 447,320 0.93 178
40 1388.6 2,505,688 1.38 212

4

3

2

1

0

1

2

3

4

 10 15 20 25 30 35 40
Degree

Fig. 2. Plot of degree vs. time in log scale.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

 10 15 20 25 30 35 40
Degree

Fig. 3. Plot of degree vs. number of discretization points in log scale.

K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678 673

Author's personal copy

4.2. Bivariate polynomials

Test 1: Two examples are taken from [6] as follows:

pðx; yÞ ¼ x2 þ y2 � 0:5; qðx; yÞ ¼ 2xy � 0:5; ð21Þ
pðx; yÞ ¼ x3 � 3xy2; qðx; yÞ ¼ y3 � 3x2y: ð22Þ

The results of the tests are summarized in Table 2. The execution times are negligible and are not included in
Table 2.

From these tests, we verify that affine arithmetic is far superior in relation to interval arithmetic in control-
ling the size of intervals, which results in a smaller number of discretization points in the degree computation.
This reduced number of discretizations compensates the inherent performance penalty of affine arithmetic,
leading to better overall performance in the degree computation. This effect becomes more obvious if a poly-
nomial of high degree is considered.

5. Root computation of a univariate polynomial equation

In this section, we discuss how the proposed topological degree computation algorithm can be used to com-
pute the roots of a univariate polynomial equation.

The main concept of our root computation algorithm is taken from the authors’ previous work [23]. How-
ever, the crucial difference lies in the degree computation method used in the algorithm proposed in Section 3.

5.1. Modification of degree computation algorithm

We add a few lines to the proposed degree computation algorithm to handle the case that the subdivided
input domain may not be compatible with a map of our interest. The modified version is given as follows:

(1) Let c1; . . . ; cKþ1 ¼ c1 be a sequence of points on oA, arranged counterclockwise. Take two consecutive
points ck and ckþ1 and form the curve ck.

(2) Find the sets Fp
ck

and Fq
ck

, and construct I ¼ ½ap
ck
; bp

ck
� � ½aq

ck
; bq

ck
�.

(3) Check if ð0; 0Þ 2 I.
3.1. If true, check jckþ1 � ckj ¼ 0.

3.1.1. If true, ck (and ckþ1Þ is a zero. Report and return.
3.1.2. If not, update ckþ1 ckðxÞ where 0 < x < 1 and form a new curve ckðtÞ with 0 6 t 6 1.

Then go to 2.

3.2. Otherwise, go to 4.

(4) Compute sum ¼ sumþ Dz2½ck ;ckþ1� argðFðzÞÞ.
(5) k ¼ k þ 1.
(6) If k ¼ K þ 1, compute d ¼ sum

2p and return. If not, go to 1.

In this algorithm we only have to discuss lines 3.1 through 3.2. The rest remains the same as the one in
Section 3.1.2.

Theorem 4. From the above algorithm, if ð0; 0Þ 2 I and jckþ1 � ckj ¼ 0; then ck is a zero.

Table 2
Results of degree computation

Equation Domain Degree Evaluations (IA) Evaluations (AA)

(21) ½0; 1�2 0 8 8
(22) ½�1; 1�2 �3 28 12

674 K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678

Author's personal copy

Proof. Suppose that c
ðnÞ
kþ1 is an updated discretized point, cðnÞk ðtÞ the curve formed with ck, and c

ðnÞ
kþ1 and IðnÞ the

I obtained from line 3 after line 3.1.2 is performed n times. If ð0; 0Þ 2 IðnÞ, then a zero may be included in
½ck; c

ðnÞ
kþ1�. If ck is not a zero, then we can always find a point c

ðmÞ
kþ1 ðm > nÞ in the neighborhood of ck such that

ð0; 0Þ 62 IðmÞ. However, if we have ð0; 0Þ 2 IðnÞ for n!1, we get c
ðnÞ
kþ1 ¼ cðn�1Þ

k ðxÞ, which is equivalent to
cð0Þk ðxn�1Þ. Since 0 < x < 1, cð0Þk ðxn�1Þ ! cð0Þk ð0Þ, which is equal to ck. Therefore, c

ðnÞ
kþ1 converges to ck and

IðnÞ to the image of FðckÞ. This implies that ck should be a zero.
In practice, it is required to use a tolerance such that jckþ1 � ckj < k, k > 0 in line 3.1 instead. The tolerance

may be chosen to be a machine tolerance for implementation in floating point arithmetic. h

5.2. Root computation algorithm

Let us consider a rectangle A ¼ ½a1; b1� � ½a2; b2� in R2, where ½ai; bi� is a closed interval in R. Then the root
finding algorithm is described as follows, see also Table 3:

In line 1, the total number of roots in A is computed by the function, degree(A) which computes the topo-
logical degree of a given map F for a region A. If there is no root, then the routine terminates in line 2. Lines 3
and 4 check if the size of A is less than the user defined tolerance, TOL, which needs to be provided by the
user. If so, then A is added to the output list marked as containing roots. If not, the rectangle A is subdivided
into four rectangles A1;A2;A3 and A4 at the mid points of each side of A. The numbers of roots in each Ai

ði ¼ 1; 2; 3; 4Þ are computed in line 7.
Theoretically, the sum of the numbers of roots in Ai ði ¼ 1; 2; 3; 4Þ should be equal to the number of roots in

A. However, it frequently happens that a root lies on the boundary of Ai, which makes Ai not compatible with
a map. In such a case, the degree computation function, degree() reports that a root lies on the boundary. If
this happens, then lines 9 through 22 are performed. In line 10, each rectangle Ai is adjusted such that the size
(width and height) of Ai is increased by a certain amount. In this algorithm we use an amount of TOL � 0:123.
After this adjustment, each new rectangle Ai may overlap with its adjacent rectangle. When such overlap

Table 3
Modified TDB algorithm

Iteration(A)
1: deg ¼ degreeðAÞ;
2: if ðdeg ¼¼ 0Þthen return;
3: size x ¼ jb1 � a1j; size y ¼ jb2 � a2j
4: if ðsize x < TOL AND size y < TOLÞthen Add A to the output list; return;

5: end

6: subdivideðA;A1;A2;A3;A4Þ;
7: deg1 ¼ degreeðA1Þ;deg2 ¼ degreeðA2Þ;deg3 ¼ degreeðA3Þ;deg4 ¼ degreeðA4Þ;
8: total degree ¼ deg1þ deg2þ deg3þ deg4;
9: while(a root lies on the boundary)

10: adjust(A1;A2;A3;A4; TOLÞ;
11: deg1 ¼ degreeðA1Þ;deg2 ¼ degreeðA2Þ; deg3 ¼ degreeðA3Þ;deg4 ¼ degreeðA4Þ;
12: total_degree=deg1+deg2+deg3+deg4;
13: if(numberIteration>NITER)
14: if(a root lies on the boundary) then

15: Add S to the output list; return;

16: end

17: adjust(A);
18: subdivideðA;A1;A2;A3;A4Þ;
19: numberIteration = 0;
20: end

21: numberIteration ¼ numberIterationþ 1;
22: end

23: Iteration(A1); Iteration(A2);
Iteration(A3); Iteration(A4);

end

K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678 675

Author's personal copy

occurs, there may be a case where a certain root is counted multiple times if it is located in the overlapping
region. But this does not invalidate the algorithm’s logic since the purpose of lines 9 through 22 is to obtain
regions A1–A4, each of which is compatible with the input map. The total number of roots over all Ai is com-
puted as in lines 11 and 12. This process is repeated until no zero lies on the boundary of Ai.

We introduce another termination condition in line 13 which checks the number of failures of degree com-
putation for an adjusted region. This condition is considered from the practical point of view. Since floating
point arithmetic has limited precision, it cannot properly represent values near a root of high multiplicity. So
in order to handle such a case, if the degree computation routine fails more than NITER times, we stop the
loop and add the current region to the output list without subdivision.

When the iteration stops, each rectangle Ai is provided as an argument to the routine itself recursively.
After all the recursive calls are terminated, the output boxes are post-processed. Due to the adjustment pro-
cess, the algorithm often generates different rectangles which contain the same root. So, all rectangles need to
be checked such that any rectangles which overlap are merged into a single one. Then the algorithm computes
the number of roots inside each merged box and reports the final number of roots in each domain.

5.3. Examples

In this section, we test the proposed root computation algorithm with some of the examples used in Section
4. Tests are performed on a Linux machine with a 3.2 GHz CPU and 2 GB RAM.

Test 1:

f ðzÞ ¼ ðz2 þ zþ 1Þ2ðz� 1Þ4ðz3 þ z2 þ zþ 1Þ3ðz� 2Þðz� 4Þ4 ¼ 0: ð23Þ
The input domain of ½�5; 5� � ½�5; 5� is provided to the algorithm. The time taken to compute the roots of the
polynomial f(z) is 27.71 s for a tolerance for termination of 10�7 using the reduction ratio of 0.5. The com-
puted roots along with their multiplicities are given in Table 4:

Table 4
Roots of Eq. (23)

Roots Multiplicity

[�7.216432323e�08,7.215728886e�08] + i[0.999999939,1.000000014] 3
[0.999999939,1.000000014] + i[�7.21596332e�08,7.216197888e�08] 4
[1.999999955,2.000000029] + i[�7.21596332e�08,7.216197888e�08] 1
[3.999999987,4.000000061] + i[�7.21596332e�08,7.216197888e�08] 4
[�0.5000000429,�0.4999999684] + i[0.8660253868,0.8660254613] 2
[�1.000000014,�0.999999939] + i[�7.21596332e�08,7.216197888e�08] 3
[�0.5000000429,�0.4999999684] + i[�0.8660254613,�0.8660253868] 2
[�7.216432323e�08,7.215728886e�08] + i[�1.000000014,�0.999999939] 3

Table 5
Roots of Eq. (24)

Roots Multiplicity

[0.03333330972,0.03333337694] + i[�4.038214675e�08,2.700090417e�08] 1
[0.06666660814,0.06666667536] + i[�4.038214675e�08,2.700090417e�08] 1
[0.09999997377,0.100000041] + i[�4.038214675e�08,2.700090417e�08] 1
[0.1333332722,0.1333333394] + i[�4.038214675e�08,2.700090417e�08] 1
[0.1666666378,0.166666705] + i[�4.038214675e�08,2.700090417e�08] 1
..
.

[0.8999999424,0.9000000096] + i[�4.038214675e�08,2.700090417e�08] 1
[0.933333308,0.9333333752] + i[�4.038214675e�08,2.700090417e�08] 1
[0.9666666064,0.9666666736] + i[�4.038214675e�08,2.700090417e�08] 1
[0.999999972,1.000000039] + i[�4.038214675e�08,2.700090417e�08] 1

676 K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678

Author's personal copy

Test 2: Wilkinson’s polynomial of degree 30,

f ðtÞ ¼
Y30

i¼0

t � i
30

� �
¼ 0; ð24Þ

is tested with an input domain ½�2:0; 2:0� � ½�2:0; 2:0�. Its roots are real and equally distributed on the interval

½0; 1�. The tolerance for termination is 10�7 with the reduction ratio of 0.5. The time taken to compute the
roots of the equation is 66.43 s. The computed roots along with their multiplicities are given in Table 5.

6. Conclusions

A reliable topological degree computation algorithm is proposed in this paper. Using the inclusion property
of range arithmetic, the proposed method adaptively chooses discretization points along the boundary of a
domain satisfying condition (8) to compute the topological degree of a mapping in 2D space using the argu-
ment principle. Our method does not require any pre-process or estimation of explicit global information such
as derivative computation or root isolation which may not be easily obtained practically, and always generates
a correct topological degree value.

The algorithm is implemented in affine arithmetic. This is, in general, more expensive than interval arith-
metic but offers a better range control which, in turn, leads to a tighter enclosure of the exact value during
evaluation. Due to the tighter bound of affine arithmetic, the degree computation algorithm in affine arithme-
tic outperforms the one implemented in interval arithmetic when a map of high degree is considered in the
calculation.

Two issues involved in our algorithm merit further consideration. First, the choice of the reduction ratio in
the algorithm is a critical factor in determining the number of discretization points for the degree computa-
tion. As long as the reduction ratio is less than one, then the degree computation algorithm always yields a
correct degree value. However, the algorithm discretizes differently depending on the ratio, leading to the dif-
ferent number of discretization points. Therefore, the adaptive choice of the reduction value considering the
input mapping can decrease the number of discretizations and we can improve the overall performance of the
algorithm. The second issue relates to the rejection strategy. Our algorithm rejects the case that the origin is
contained even though the real argument difference is less than p for simplicity. However, it is obvious that if
such a case is included in the computation, the performance can be improved. These two topics are recom-
mended for future investigation.

References

[1] T. Sakkalis, The Euclidean algorithm and the degree of the Gauss map, SIAM J. Comput. 19 (3) (1990) 538–543.
[2] F. Stenger, Computing the topological degree of a mapping in Rn, Numer. Math. 25 (1975) 23–38.
[3] R.B. Kearfott, An efficient degree-computation method for a generalized method of bisection, Numer. Math. 32 (1979) 109–127.
[4] M. Stynes, A simplification of Stenger’s topological degree formula, Numer. Math. 33 (1979) 147–156.
[5] M. Stynes, On the construction of sufficient refinements for computation of topological degree, Numer. Math. 37 (1981) 453–462.
[6] T. Boult, K. Sikorski, An optimal complexity algorithm for computing the topological degree in two dimensions, SIAM J. Sci. Stat.

Comput. 10 (4) (1989) 686–698.
[7] B. Mourrain, M.N. Vrahatis, J.C. Yakoubsohn, On the complexity of isolating real roots and computing with certainty the

topological degree, J. Complex. 18 (2002) 612–640.
[8] P. Henrici, Applied and Computational Complex Analysis, John Wiley, New York, 1974.
[9] X. Ying, I.N. Katz, A reliable argument principle algorithm to find the number of zeros of an analytic function in a bounded domain,

Numer. Math. 53 (1988) 143–163.
[10] M.C. Carpentier, A.F. Dos Santos, Solution of equations involving analytic functions, J. Comput. Phys. 45 (1982) 210–220.
[11] B. Davies, Locating the zeros of an analytic function, J. Comput. Phys. 66 (1986) 36–49.
[12] P. Kravanja, M.V. Barel, A derivative-free algorithm for computing zeros of analytic functions, Computing 63 (1999) 69–91.
[13] R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[14] J. Stolfi, L.H. Figueiredo, An introduction to affine arithmetic, TEMA Tend. Mat. Appl. Comput. 4 (3) (2003) 297–312.
[15] N.M. Patrikalakis, T. Maekawa, Shape Interrogation for Computer Aided Design and Manufacturing, Springer-Verlag, Heidelberg,

2002.

K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678 677

Author's personal copy

[16] ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating–Point Arithmetic, IEEE, New York, reprinted in ACM SIGPLAN
Notices, 22(2) (1985) 9–25, February 1987.

[17] S.L. Abrams, W. Cho, C.-Y. Hu, T. Maekawa, N.M. Patrikalakis, E.C. Sherbrooke, X. Ye, Efficient and reliable methods for
rounded-interval arithmetic, Comput. Aided Des. 30 (8) (1998) 657–665.

[18] C.M. Hoffmann, Robustness in geometric computations, J. Comput. Inform. Sci. Eng. 1 (2) (2001) 105–204.
[19] M.S. Petković, L.D. Petković, Complex Interval Arithmetic and Its Applications, Wiley-VCH, Berlin, 1998.
[20] O. Knuppel, Bias-basic interval arithmetic subroutines, Technical Report 93.3, Technical University of Hamburg – Harburg,

Harburg, Germany, 1993.
[21] O. Knuppel, Profil-programmers runtime optimized fast interval library, Technical Report 93.4, Technical University of Hamburg-

Harburg, Harburg, Germany, 1993.
[22] Libaffa – c++ affine arithmetic library for gnu/linux, <http://www.nongnu.org/libaffa/>, 2005.
[23] K.H. Ko, T. Sakkalis, N.M. Patrikalakis, Resolution of multiple roots of nonlinear polynomial systems, International Journal on

Shape Modeling 11 (1) (2005) 121–147.

678 K.H. Ko et al. / Applied Mathematics and Computation 196 (2008) 666–678

