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Abstract Recent developments in shape-based model-
ing and data acquisition have brought three-dimensional
models to the forefront of computer graphics and vi-
sualization research. New data acquisition methods are
producing large numbers of models in a variety of fields.
Three-dimensional registration (alignment) is key to
the useful application of such models in areas from
automated surface inspection to cancer detection and
surgery.

The algorithms developed in this research accom-
plish automatic registration of three-dimensional vox-
elized models. We employ features in a wavelet trans-
form domain to accomplish registration. The features
are extracted in a multi-resolutional format, thus de-
lineating features at various scales for robust and rapid
matching. Registration is achieved by using a voting
scheme to select peaks in sets of rotation quaternions,
then separately identifying translation. The method is
robust to occlusion, clutter and noise. The efficacy of
the algorithm is demonstrated through examples from
solid modeling and medical imaging applications.
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1 Introduction

Three-dimensional models are key components in many
disciplines of computational research. Registration of
these models is imperative in applications ranging from
cancer detection to manufacturing and inspection. Data
collection and storage techniques have advanced to the
point that researchers today generate overwhelmingly
large sets of data.

A current area of very active research involves regis-
tration of 3D medical images obtained through methods
such as MRI or Computed Tomography (CT), which
produce voxelized three-dimensional models. Advances
in speed and accuracy of such matching, especially given
the large size of the data sets, could lead to further ad-
vances in areas such as computer-aided surgery, cancer
detection, disease diagnosis, and prosthesis fitting.

Two main approaches to 3D object registration ex-
ist: registration using geometric features and registra-
tion using voxel comparison. In general, registration us-
ing geometric features is faster but less accurate, while
registration using voxel comparison is very accurate but
requires an initial positioning as the methods tend to
settle into local minima. In addition, most geometric
feature methods are not designed for use on voxelized
data. We present a fast, automatic, rigid-registration
method using wavelet features. This method is designed
specifically for voxelized data and provides an excellent
initial positioning for further non-rigid registration us-
ing a voxel comparison method.

While specifically developed with the medical imag-
ing application in mind, the methods developed in this
work are equally applicable to voxelized models in areas
such as manufacturing, in which inspection procedures
may include CT scanning. Indeed, any voxelized model
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or even a polyhedral model which has been voxelized
can be addressed using these methods.

This algorithm has been previously introduced in
[1]; this paper elaborates on the details of the algorithm
and provides more examples that demonstrate robust-
ness despite noise, clutter and occlusion, and that in-
clude real-world applications.

This paper is organized as follows. Section 2 reviews
recent research in 3D object registration. Section 3 in-
troduces basic wavelet theory, describes recent research
in wavelets, and describes the dual-tree complex wave-
let transform. The object matching algorithms devel-
oped by this research are described in Section 4. The
algorithms are applied to several solid modeling and
biomedical examples in Section 5. Section 6 draws con-
clusions and makes recommendations for future work.

2 Review of Previous Work

Three-dimensional object registration is a very active
area of research. Two major methodologies used in reg-
istration of volumetric models include registration using
geometric features and registration using voxel compar-
ison. Registration using geometric features is generally
fast and accurate but is not usually designed to operate
on voxelized models. Registration using voxel compar-
ison is much slower but more accurate, and requires
an initial positioning to avoid settling into an incor-
rect local minimum. Our method is a geometric feature
method which is designed to operate on voxelized mod-
els, and is fast and accurate enough to act as a prepro-
cessing step for voxel comparison methods.

Registration using geometric features. These methods
use geometric features such as points, curvatures, ridges,
or segments to align objects. The gold standard of these
methods is the Iterative Closest Point (ICP) algorithm
presented by Besl and McKay [2], which compares each
point in the sample to the closest point in the model
and finds a registration by minimizing the average Eu-
clidean distance between points. Numerous modifica-
tions to this method incorporate factors such as local
shape [3], outliers and occlusion [4], and partial match-
ing [5].

Registration methods in general expand on this idea
by extracting and matching like features. Many of these
methods find a coarse registration which is then re-
fined using ICP. Some examples of geometric features
used in matching include surface curvature [6], geodesic
rings [7], iso-curvature lines [8], curvature maxima [9],
umbilics [10], height function critical points [11], or a
combination of features [12, 13].

Our research builds upon work by members of the
MIT Ocean Engineering Design Laboratory who devel-
oped a procedure for shape-based matching using shape
intrinsic fingerprints of 3D models in NURBS represen-
tation [10]. However, the algorithms and methods de-
veloped in [10] depend upon the NURBS format of the
data and cannot be applied to polyhedral or voxelized
models, which do not have the mathematical represen-
tation required for the classification of umbilics.

Registration using voxel comparison. These methods in-
volve the alignment and comparison of objects based
on voxel representations such as intensity, color, illu-
mination and reflectance. The primary method used is
mutual information, which is a statistical measure of
the amount of information in data; examples include
[14, 15, 16]. Modifications include hardware acceler-
ation [17], cumulative distribution [18] and gradient-
based terms [19]. Many other voxel comparison meth-
ods exist, including cross-correlation, Fourier domain
based cross-correlation, minimization of variance of grey
values, histogram clustering, minimization of intensity
differences, and maximization of zero crossings, as de-
scribed in the review by Maintz and Viergever [20]. All
share the advantage of using all available information
throughout the registration process instead of selecting
discrete features, but share the disadvantage of consid-
erable computational costs. In addition, most methods
require initial positioning information as they tend to
settle into local minima.

3 Theoretical Background

3.1 Review of the Wavelet Transform

The wavelet transform [21, 22, 23, 24] decomposes an
image according to scale while maintaining localized
information in a multiresolution format, thus making it
a useful tool for global and partial matching of objects.
The wavelet transform is the convolution of a wavelet
function, ψ(t), with a signal, x(t) [21]:

T (a, b) =
∫ ∞

−∞
x(t)ψ∗a,b(t)dt (1)

at various locations, b, and scales, a:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
. (2)

The wavelet function, ψ(t), must meet the admissibility
conditions of zero mean (no DC component), finite en-
ergy (localized), and finite admissibility coefficient (in-
verse transform exists). The Discrete Wavelet Trans-
form (DWT) allows numerical implementation of equa-
tion (1) with an efficient algorithm of complexity O(n),
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where n is the number of data points in the signal [21].
The most common form of the DWT is discretized on
a dyadic scale [21] where the size of the steps between
locations, (n2m), is directly linked to the scale, (2m).
Thus, equation (1) becomes:

Tm,n =
1√
2m

∫ ∞

−∞
x(t)ψ∗

(
t− n2m

2m

)
dt. (3)

Dyadic discrete wavelets have associated scaling func-
tions, φ, of the same form as the wavelets:

φm,n(t) =
1√
2m

φ

(
t− n2m

2m

)
, (4)

but which have a mean equal to 1, instead of zero. The
convolution of the scaling function with the signal pro-
duces a smoothed, or averaged, version of the signal,
represented by approximation coefficients, Sm,n:

Sm,n =
∫ ∞

−∞
x(t)φm,n(t)dt. (5)

The wavelet coefficients, Tm,n, from equation (3),
are also known as detail coefficients, since they provide
the detail required to obtain the original signal from
the smoothed signal. The original signal can be recon-
structed from the approximation coefficients at a scale
m0 plus all detail coefficients from m0 back to the orig-
inal signal.

Higher-dimensional DWTs can be formed by tak-
ing tensor products of the one-dimensional DWT; these
are termed separable wavelets. It is also possible to
construct non-separable wavelets which are designed in
multiple dimensions and use non-rectangular grids [25].

3.2 Translation and Rotation Invariance

The discrete wavelet transform can vary greatly with
both translation and rotation. A small change in the
location of an object can result in a large change in the
corresponding wavelet coefficient values. By the nature
of the object registration problem, the objects are lo-
cated in different places, thus rendering the DWT coef-
ficients nearly useless as features unless the translation
and rotation variance is overcome.

Shift or translation variance is caused by the down-
sampling of data at each level of wavelet decomposition,
with the result that the data points to which the wavelet
is applied are different when the signal is shifted, un-
less it is shifted only by a multiple of the coarsest scale
used in the transform. Thus the wavelet coefficients for
signals that differ only by translation can vary signifi-
cantly.

Rotation variance in tensor product wavelets is due
to the strong coupling of the wavelets with the orien-
tation of the axes, highlighting features aligned with

the axes and at diagonals. Therefore, as an object is
rotated, its features will align with different axes and
be highlighted in a different sub-band of the transform.
Since discrete non-separable wavelets are not symmet-
ric, even non-separable wavelets vary with rotation

Much recent research has been conducted in an at-
tempt to develop invariant versions of the discrete wave-
let transform [26, 27, 28, 29, 30]. Many of the solutions
produce extremely redundant representations, or solve
either shift or rotational invariance but not both.

3.3 Dual-Tree Complex Wavelet Transform

Kingsbury [31, 32, 33] proposed the dual-tree complex
wavelet transform (DTCWT) which achieves approxi-
mate shift invariance by omitting the downsampling at
the first level and interleaving samples at lower levels.
At the first level of decomposition, this method pro-
duces two parallel trees which use opposite samples
from the signal. Below the first level, the samples of
the two trees are interleaved by using q-shift filters de-
signed to have a group delay of one quarter sample; the
reverse filter has a group delay of three-quarters sam-
ple, thus producing a half-sample difference between
the two trees. The q-shift wavelet allows perfect recon-
struction using orthonormal wavelets such that the re-
construction wavelets are the exact reverse of the anal-
ysis wavelets. Details of the design of the q-shift filter
can be found in [32, 33]. Kingsbury stores the outputs
of the two trees as the real and imaginary parts of com-
plex wavelet coefficients; thus, the method is labeled
the dual-tree complex wavelet transform.

This method is much less data intensive than the
continuous wavelet transform: 2d redundant trees are
retained, where d is the dimensionality. In many cases,
the highest resolution details contain mostly noise; if
this level is discarded, then the redundancy is removed.
Of course, this also makes perfect reconstruction im-
possible as well.

The DTCWT, although not completely rotation in-
variant, is much more resistant to rotation than the
DWT. In two dimensions, the DTCWT produces sub-
images strongly oriented in the following six directions:
±15o, ±45o and ±75o [32], as compared to real wavelets
which produce three sub-images: two strongly oriented
horizontally and vertically, and the third including com-
ponents from both diagonals. DTCWTs at higher di-
mensions produce (4d − 2d)/2 directional sub-bands at
each level [32], where d is the dimension.

The low levels of redundancy combined with the
greatly reduced translation and rotation variance make
the Kingsbury DTCWT an excellent candidate for use
in object registration.
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Fig. 1 A q-shift wavelet (top) and scaling function (bottom).
The two symmetric lines are trees a (dotted line) and b (dashed
line); the upper solid line is |a+ jb|.

4 Object Registration

In this section we present an algorithm that employs
the wavelet transform to accomplish automatic, global,
rigid registration of three-dimensional voxelized objects
which have undergone translation and rotation. The
method is successful despite noise, occlusion and clutter
which can be induced in models through such actions
as transformation, voxelization, and the sensing process
itself.

Given two voxelized models, A and B, of the same
size and resolution with cubical voxels, we determine
the rotation and translation such that:

A = RB + T (6)

where R is the orthogonal rotation matrix and T is the
translation vector.

An overview of the algorithm is as follows:

1. Apply a wavelet transform to each object.
2. Select the large magnitude wavelet coefficients in A

and B as feature points.
3. Search within the lists of feature points for matching

triplets of points. For each matching set of triplets,
determine the rotation.

4. Use a voting scheme to select the best rotation.
5. Using the selected rotation, determine the transla-

tion.

The steps of the algorithm and the design choices
developed therein are described in the following sec-
tions.

4.1 Wavelet Transform

A transformation that is invariant to rotation and trans-
lation (or nearly so) is desired for object registration.
If the transformation results vary greatly with rotation
and/or translation of the object, then corresponding
feature points in each model will have completely dif-
ferent signatures and will be useless for registration pur-
poses.

At the same time, a transformation that is com-
putationally simple with minimal data requirements is
desired, especially when working on the very large data
sets that are common today. For example, the Mexican
Hat Wavelet is a symmetric, 2D wavelet which is thus
invariant to rotation; however, it is a continuous wave-
let transform with the corresponding huge data sets and
slow computation, which greatly reduces its utility.

Kingsbury’s DTCWT [32] is nearly invariant to trans-
lation and is much more resistant to rotation than the
discrete wavelet transform (DWT), while maintaining
the O(n) computation of the DWT with only a 2d in-
crease in data size, where d is the dimensionality. The
increase in data size can be eliminated by not retaining
the first-level wavelet coefficients. For these reasons, we
use the DTCWT as the wavelet transform of choice in
this algorithm.

Within the DTCWT family, there are a number
of filters among which we can choose. For the first-
level discrete wavelet filter, we select the nearly sym-
metric filter with the shortest length. For the second-
and greater-level filter, we select the shortest-length q-
shift filter. The short-length filters were selected so that
abrupt changes in the composition of the object would
be identified. Longer filters incorporate voxels over a
greater range, giving weight to areas beyond edges and
thus blurring the distinct change found at a feature.
This adversely affects feature point selection.

4.2 Feature Points

Applying the three-dimensional DTCWT to each model
produces, at each level of resolution, approximation (scal-
ing function) and detail (wavelet) coefficients. There are
several possibilities for sources of feature points, listed
below and shown in Figure 2:

– The original object, with no wavelet transform ap-
plied.

– The scaling function coefficients at some specific
level of resolution.

– The wavelet coefficients at one or more levels of res-
olution.

– The gradient of the wavelet coefficients.



5

In the two-dimensional example shown in Figure 2,
the images containing the scaling coefficients and the
gradient of the wavelet coefficients contain large swaths
with identical extreme values; note the large contiguous
areas of black or white. This is especially true in 3D for
surface models with a constant value for the entire in-
terior. Alternatively, the wavelet coefficients exemplify
more discrete extrema because they highlight changes
in intensity. Therefore, the wavelet coefficient extrema
are the best choice for feature points.

This was confirmed through heuristic tests upon
many three-dimensional models at many different ori-
entations. The wavelet coefficients produced the highest
percentage of feature points that matched in location
from one model to another and were thus the most use-
ful for object registration.

The three-dimensional DTCWT produces 28 com-
plex sub-bands of wavelet coefficient information; in-
stead of using 28 separate data sets, we reconstruct one
level of wavelet coefficients, excluding the average coef-
ficients, in order to produce a single set of real wavelet
coefficient data. Details on this process can be found in
[32].

Invariance. Although the DTCWT is nearly invariant
to translation and is much less affected by rotation than
other methods, it is completely invariant to neither ro-
tation nor translation. Therefore, even though many of
the DTCWT wavelet coefficient extrema identify the
same features in each object, not all features are iden-
tified in both objects. This results in a set of feature
points with many outliers.

As an example, we separately apply the DTCWT
and the DWT to a two-dimensional image that has been
translated by 42 pixels in the x and y direction, and
to another that has been rotated by 30 degrees coun-
terclockwise. We then compare the number of corre-
sponding maxima of the wavelet coefficients at the third
level of decomposition; 67-87% of the DTCWT feature
points correspond, while only 47-60% of the DWT fea-
ture points correspond. See Figure 3 for a visual com-
parison and Table 1 for a numerical comparison.

It is unlikely that the feature points correspond by
chance. Table 1 includes the probability of randomly
selected feature points matching by chance given the
size of the objects and the number of feature points
selected in the examples shown in Figure 3.

Wavelet Coefficient Magnitude. A one-to-one correspon-
dence of wavelet coefficients based on coefficient value
cannot be used to pinpoint the location of a feature.
The magnitude of the wavelet coefficient is different at
corresponding points in two objects, and the order of

Fig. 2 A two-dimensional example of the DTCWT. The top fig-
ure is the original image. The three subsequent rows are the av-
erage (scaling function) coefficients, detail (wavelet) coefficients,
and the gradient of the wavelet coefficients, in that order, with
the second-level decomposition on the left and the third-level de-
composition on the right.

Table 1 Comparison of feature point correspondence for DWT
and DTCWT in translation and rotation. Number of correspond-
ing feature points, percent of total feature points, and probability
of matching that number of points by chance are shown for the
third level DWT or DTCWT decomposition of two translated or
rotated versions of the birthday image, shown in Figure 3. Fifteen
total maxima were selected in each image for comparison.

DWT DTCWT

Translation
number 7 10
percent 47 67
probability 1.42x10−8 1.58x10−14

Rotation
number 9 13
percent 60 87
probability 2.28x10−12 2.32x10−22
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Fig. 3 Comparison of DWT and DTCWT extrema in rotation and translation. The center row is the image in the original location.
The top row was translated 42 pixels in the i and j direction prior to application of the transform. The bottom row was rotated 30
degrees counterclockwise prior to application of the transform. The left-hand column is the original image, the center column is the
DWT, and the right-hand column is the DTCWT. The 15 wavelet coefficients with the greatest value (positive only) in each image
are marked. In the top and bottom rows, those feature points that correspond in location to the unrotated or untranslated image are
marked with circles; those that do not correspond in location are marked with triangles.

the points differs when listed by magnitude, i.e., the
feature with the greatest coefficient magnitude may not
coincide with the feature of the greatest coefficient mag-
nitude in the rotated and translated object. However,
both of the features denoted with greatest magnitude
in each object are likely to be represented in a group of
points of large magnitude for each object.

As an example, in Figure 4, the six wavelet coef-
ficients with the largest magnitudes are marked with

colored dots on the level three reconstructed wavelet co-
efficients of two versions of the Lena picture, one trans-
lated from the other. The location and coefficient value
are shown in Table 2. Note that although five of the six
points match in location, only one matching pair holds
the same ranking in each list, and points which seem to
be very close in value do not necessarily correspond in
position.
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Therefore, the values of the wavelet coefficients are
used to screen the image for feature points, but the
particular value at each point is not used for locating
matching points. Instead, a representation is used in
which the top maxima are equally weighted, the bottom
minima are equally weighted, and no other points are
considered.

Fig. 4 The third level DTCWT decomposition of two translated
versions of the Lena image. The six points with highest magnitude
of coefficients are marked with symbols. In order of descending
magnitude, the symbols are: circle, diamond, right-pointing trian-
gle, left-pointing triangle, upward-pointing triangle, and square.
The coefficient magnitudes and correspondences are listed in Ta-
ble 2.

Table 2 Coefficient values of corresponding points in the third
level DTCWT decomposition of two translated versions of the
Lena image shown in Figure 4. The points from the left-hand
image, denoted A, are listed in descending order of magnitude in
the left-hand column. The points that correspond in location in
the right-hand image are listed in the right-hand column. Note
that the order of magnitude is different, and that for the most
part, the magnitudes are quite different.

A B

Coeff. Coeff.
Order Symbol Mag. Order Symbol Mag.

1 circle 224.7 1 circle 206.3
2 diamond 177.3 5 up tri. 164.7
3 right tri. 170.2 2 diamond 180.7
4 left tri 159.8 n/a
5 up tri. 159.7 6 square 159.3
6 square 151.1 3 right tri. 173.1

n/a 4 left tri. 171.2

Quantity of Feature Points. Another consideration is
the proper number of feature points. Selecting too many
points causes the algorithm to run slowly and increases
the number of false positives by increasing the likeli-
hood of random correspondence, while too few points
will not achieve registration.

One upper limit on feature point quantity is intro-
duced by the potential of saturating the object such

that randomly matching feature points cause false pos-
itive rotations. This is discussed more in the discussion
on levels of resolution below.

Another consideration in the upper limit on the
number of feature points is the computational complex-
ity of the algorithm, which depends both upon the size
of the model and the number of feature points. The
computational complexity is the greater of O(n), where
n is the number of voxels in the model, and O

(
m
3

)2,
where m is the number of feature points. This is de-
scribed in more detail in Section 4.6. Choosing 30 fea-
ture points yields

(
30
3

)2
= 16 million as a worst case. In

actuality, a quarter or less of these become viable trian-
gles for testing. Depending upon the number of outliers,
the speed of the registration portion of the algorithm
runs from 18 to 56 seconds. Increasing the number of
feature points greatly slows the algorithm.

The lower limit on the number of feature points
was first determined using the following line of reason-
ing, then was confirmed heuristically. Given m feature
points, the total number of triangles is

(
m
3

)
. Assuming

three quarters of the feature points are outliers (an as-
sumption on the high end), only

(
m/4

3

)
are potentially

matching. Of those, some will be eliminated because
they are collinear or too small; we assume this is 20% (a
number that is not extreme based on heuristics). There
are four sets of feature points: positive and negative
coefficients at both the second and third levels of res-
olution. This calculation yields 4 matching triplets for
10 feature points, 32 matching triplets for 20 points,
180 matching triplets for 30 points, and 384 matching
triplets for 40 points. The many examples that were
run in the process of generating and verifying this al-
gorithm support this line of reasoning. Ten to fifteen
feature points often produced a correct rotation but
occasionally did not. Twenty-five to thirty-five points
reliably produced the correct rotation.

Levels of Resolution. The number of levels of resolution
of the wavelet transform and which levels of resolution
are selected for feature point identification can be varied
as well. It is noted that the number of points from which
feature points are selected reduces by 2d at each level
of resolution, where d is the dimensionality. Therefore,
at some point there are too few data points and the
object becomes saturated with feature points. On the
examples we are running, we reach saturation at the
fourth or fifth level of resolution, so we select our lowest
level of resolution to be three. See Table 3.

Through testing on a number of models, it was also
determined that very few of the successfully matching
triangles were produced by the first level of resolution.
By eliminating the first level wavelet coefficients, we
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Table 3 The saturation level of resolution for various models.
Level indicates the level of resolution (note that levels 1 and 2
have the same number of points and are therefore listed together).
Column n indicates the number of voxels in each level of resolu-
tion. Column p indicates the probability of randomly matching
7 of 20 feature points within 4 voxels. Column f indicates the
percentage of voxels in the entire image that fall within a 4-voxel
ring of 20 feature points, assuming no voxel rings overlap each
other or the edges of the model. Note that each model becomes
saturated at the fourth to fifth level of resolution.

Model Level n p f

Brain 1 and 2 2,457,600 3.52e-09 0.89
MRI 3 307,200 0.0020 7.12

4 38,400 ≈1 56.95

Knee 1 and 2 7,077,888 2.41e-12 0.31
3 884,736 3.24e-06 2.47
4 110,592 0.14 19.78

Gooch 1 and 2 11,534,336 8.10e-14 0.19
3 1,441,792 1.29e-07 1.52
4 180,224 .0273 12.13
5 22,528 ≈1 97.08

Shrek 1 and 2 1,741,916 3.63e-08 1.26
3 217,739 .0116 10.04
4 27,217 ≈1 80.35

save time and memory space in the algorithm with no
penalty in the quality of the registration.

4.3 Feature Point Matching

Beginning with all possible combinations of three fea-
ture points in models A and B, we reduce the number
used by selecting only corresponding triplets with essen-
tially the same distances and angles between the three
points, after first eliminating collinear triplets and very
small triangles.

For potentially matching triplets, we calculate a ro-
tation using the closed form solution found by Horn
[34], using unit quaternions. The quaternion representa-
tion has an ambiguity in that q and -q describe the same
rotation; we eliminate this by restricting one quaternion
coefficient, q1, to be greater than zero.

4.4 Voting Scheme

Potentially corresponding triplets that are paired cor-
rectly will generate transformations that are close in
value to one another, differing only by noise and error in
the calculation of the rotation. The outliers, which gen-
erate incorrectly corresponding triplets, will produce
widely varying transformations that are unlikely to cor-
respond. Therefore, calculating rotations for each set of

potentially corresponding triplets generates a set of po-
tential rotations with a cluster at the desired rotation
and noise elsewhere. We use a histogram voting scheme
to locate the cluster and thus the desired rotation. This
voting scheme is based loosely on the ideas found in the
Hough transform [35] and pose clustering [36], but is
tailored to this specific application.

Rotation Representation. The voting scheme could be
based on any of the possible representations of rota-
tion, such as the orthogonal rotation matrix, Euler an-
gles, unit quaternions, or the axis-angle representation.
Using the rotation matrix would require searching for
a peak in 9-space, which is more cumbersome than
other choices. Euler angles suffer from gimbal lock prob-
lems and are therefore not a stable representation upon
which to base the voting scheme. Two solid choices,
both of which would require searching for a peak in
4-space, are quaternions and the axis-angle representa-
tion. The conversion from one format to the other is:

q0 = cos(α/2)

q1 = sin(α/2) cos(βx)

q2 = sin(α/2) cos(βy)

q3 = sin(α/2) cos(βz),

where [q0 q1 q2 q3] are the coefficients of the quaternion,
and α, βx, βy and βz are the rotation angle and direc-
tion cosines of the axis-angle representation. Note that
this conversion is nonlinear; evenly spaced bins in one
representation do not correspond to evenly spaced bins
in the other. Also note that the degrees of freedom in
each representation are reduced by one: β2

x+β2
y+β2

z = 1,
and q20 + q21 + q22 + q23 = 1.

If we use equally spaced histogram bins for voting
based on quaternions, then a bin for a single quaternion
coefficient will correspond to a greater arc length in the
bins near -1 and 1 than in the bins near zero. However,
the bins of the remaining coefficients will correspond
to much shorter arc lengths; if one quaternion value is
close to one, the remaining values must be close to zero
to maintain the unit magnitude requirement. Thus the
overall size of the 4-space bin does not vary greatly.

As an alternative, one could base the voting scheme
on the axis-angle representation. This has the seeming
advantage that equally spaced bins correspond to a lin-
ear division of degrees in real space. However, bins of
equal numbers of degrees at the equator of a sphere are
much larger than those at the poles.

The voting scheme based on quaternions is the most
viable of the alternatives and has the added advantage
that we calculate our rotation in the quaternion format
and therefore require no conversion before voting.
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During the voting process, the quaternion coefficient
bins are equally spaced from -1 to 1 for each coefficient,
except q1 which runs from 0 to 1 to prevent redundancy.
This means that many of the bins will be empty since
only unit quaternions are used.

Histogram Bin Size. A proper bin size is required for
determining the peak. If the bins are too large, then
there may be sufficient outliers in an incorrect bin to
obscure the desired result. In the extreme, a single bin
would be of no assistance at all. Conversely, bins that
are too small may split the correct transformation peak
into separate bins, again obscuring the peak. In this
extreme, each bin would have one or zero items in the
bin and no peak would be found.

Many treatises on correct bin size for a histogram
[37, 38, 39] discuss matching the underlying statistics
of the data. In our application, we have a single large
peak and much surrounding noise as shown in Figure
5. We are interested only in finding the peak and not in
any analysis of items not in the peak; therefore, statis-
tical analysis of non-peak bins is not required, and the
number of samples in non-peak bins is not relevant.

The goal bin size is one that allows us to quickly
identify the peak in the data, and to pinpoint it with
sufficient accuracy for our desired application. Our al-
gorithm achieves global registration of voxelized objects
explicitly enough to provide an initial estimate for fine
registration systems such as ICP or voxel intensity mea-
sures to be successfully applied without settling into lo-
cal minima. We define sufficient accuracy as less than
two degrees error in each Euler angle. Within this de-
fined goal, a bin size that is too small increases compu-
tational time, and a bin size that is too large includes
outliers which can mask the proper result.

We use the quaternion coefficients in our histogram,
while our definition of sufficient accuracy is based on
Euler angles. The nonlinear conversion is as follows:

φ = arcsin
(
−2(q2q4 + q1q3)

)
θ = arctan

(
−2(q3q4 − q1q2)
q21 − q22 − q23 + q24

)
ψ = arctan

(
−2(q2q3 − q1q4)
q21 + q22 − q23 − q24

)
.

A bin size of 0.1 for the quaternion coefficients corre-
sponds to an Euler angle bin size ranging from approx-
imately 2 to 10 degrees, with some ranging up to 15
degrees, depending upon which quaternion coefficient
and where in the range from -1 to 1 the bin occurs.

Histogram Origin. Identifying a peak in data with a
histogram leads to the problem of proper origin place-
ment in order to avoid splitting the peak. If the bin

Fig. 5 A histogram of each coefficient in the rotation quater-
nion voting scheme. A significant peak occurs at the proper ro-
tation with noise elsewhere. Note that this is a one-dimensional
histogram of each coefficient and does not show the interrela-
tion between coefficients; the actual histogram performed is four-
dimensional.

edge occurs exactly upon the peak, the peak will be
split with only half the number of samples appearing
in two adjacent bins, which may obscure the peak from
detection.

Scott [38] developed a method called an averaged
shifted histogram (ASH) which eliminates this problem
by averaging multiple histograms of equal bin widths
but shifted bin locations. The method is statistically
comparable to kernel estimators with much reduced
computational complexity. The method is implemented
by selecting a bin size, h, and a number of histograms
to be averaged, m. Next, a histogram is performed on
the set of data using a small bin size, δ = h/m. Adja-
cent bins are then averaged. In three dimensions, the
histogram value at sample x is [38]:

f̂(x) =
1

h1h2h3

∑
i1

∑
i2

∑
i3

wnk1+i1,k2+i2,k3+i3 ,

where w = (m − |i1|)(m − |i2|)(m − |i3|), ij runs from
1−mj to mj−1, and x is in bin Ik1,k2,k3 which contains
nk1,k2,k3 values.
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Through testing it was verified that the identifica-
tion of the peak is fairly robust to variations in bin size.
Bin width options from 0.001 to 0.2 and numbers of av-
eraged histograms from 1 to 20 were tested; a range of
bin widths from 0.001 to 0.05 with 2 to 10 histograms
averaged produced acceptable results. We selected a bin
width of 0.02 and two averaged histograms.

Locating the Peak Quaternion. By using the averaged
shifted histogram method, we identify a small histogram
bin at the center of the peak. We use the values for the
rotation quaternion from this small bin instead of some
combination of the averaged values in the larger shifted
bin. This has the effect of pinpointing samples in the
center of the peak, thus reducing the variation of the
samples used to determine the final (normalized) rota-
tion quaternion.

4.5 Translation

We then take the top few rotations (those with the
greatest number of votes), and calculate a translation.
We multiply the list of points from model B by the
selected rotation, then determine the single translation
that aligns the greatest number of points from B with
A. Note that the translations determined by lower lev-
els of resolution are half the length of the next higher
level.

4.6 Analysis

Computational Complexity. The complexity of the al-
gorithm depends upon the size of the objects and the
number of feature points. There are three main parts of
the algorithm which make significant contributions to
computational complexity.

The first is the application of the wavelet trans-
form and reconstruction of the wavelet coefficients. Per
Kingsbury [32], the computational complexity of the
DTCWT is O(n), where n is the number of voxels in
the object.

The second major contributor is the screening of all
possible triplets of feature points, which is O

(
m
3

)
.

The third major contributor is the comparison of
the two lists of potentially matching triplets. These
triplets of feature points are pared down by eliminat-
ing collinear points, small triangles, and triplets with-
out matching triplets in the other model. In the worst
case, if no triplets were eliminated and the perimeter
and angles of all triplets in one model matched those of
all triplets in the second model, the complexity of the
algorithm would be O

(
m
3

)2.

Speed. As stated above, the speed of the algorithm de-
pends both upon the size of the object and the number
of feature points selected. Table 4 shows speed of the
algorithm in two sections; the first is the wavelet trans-
form and feature point selection which depends upon
the size of the object. The second is the point match-
ing, voting, and registration which depends upon the
number of feature points. The algorithm is run on a
Core 2 Duo processor. Times are elapsed time.

The first time, which measures the part of the al-
gorithm that is of complexity O(n), is very consistent.
The second time, which measures the part of the al-
gorithm that is of worst case complexity O

(
m
3

)2, varies
greatly depending upon the orientation of the model,
as would be expected. As the rotation and translation
from one model to the other changes, the number of
outliers changes, and thus the number of matching tri-
angles changes.

The algorithm compares favorably with other algo-
rithms of its type. State of the art geometric feature
registration algorithms run in the neighborhood of 70
to 300 seconds. This algorithm runs in the neighbor-
hood of 20 to 150 seconds, depending upon the size of
the object.

One possible use of the algorithm is as an initial
processing step for voxel intensity methods which ac-
complish very fine elastic registration but which require
initial coarse registration in order to avoid incorrect lo-
cal minima. State of the art elastic registration methods
run many minutes up to hours; the speed of this algo-
rithm indicates its suitability for such an application.

5 Examples

In this section we show examples from a variety of
applications. Both non-homogeneous models with con-
tinuously changing intensities throughout such as MRI
scans and homogeneous models with a constant value
in the interior such as voxelized surface models are in-
cluded. We show two examples with artificially added
Gaussian noise, one application of temporal matching,
and one application with occlusion and clutter.

An important note is that the algorithm is not tuned
to specific types of models. All examples were run us-
ing the second and third resolution wavelet coefficients
with 30 feature points selected. The voting scheme is
a four-dimensional averaged shifted histogram with bin
size of 0.02 for each quaternion coefficient and two bins
averaged.
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Table 4 Speed of the wavelet registration algorithm. n is the number of voxels in the object. m is the number of feature points. The
algorithm is divided into two parts. Time 1, with complexity O(n), includes the wavelet transform and feature point selection. Time

2, with complexity O
(

m
3

)2
, includes point matching, voting, and registration. Times are elapsed time.

Model n Time 1 m
(

m
3

)2
Time 2

Knee MRI 7,077,888 14.4 30 16,483,600 18.2
Shrek Solid Model 3,932,160 12.8 30 16,483,600 33.1
Large Brain MRI 25,186,304 108.9 30 16,483,600 42.1

Brain MRI 7,614,464 7.0 15 207,025 1.9
Brain MRI 7,614,464 7.0 20 1,299,600 4.9
Brain MRI 7,614,464 7.0 25 5,290,000 13.6
Brain MRI 7,614,464 7.0 30 16,483,600 56.5
Brain MRI 7,614,464 7.0 35 42,837,025 374.2

5.1 Non-Homogeneous Objects

These objects are fully three dimensional, varying in
intensity throughout the object. Both examples shown
here are Magnetic Resonance Imaging (MRI) data. How-
ever, this description fits many types of data such as
Computed Tomography (CT), Ultrasound (US), and
functional MRI (fMRI).

These examples were formed by taking an object,
then randomly selecting and applying an Euler angle
rotation and rectangular translation to produce a sec-
ond object. These two objects were registered using the
wavelet extrema algorithm and the resulting registra-
tion is compared to the induced rotation and transla-
tion.

Knee MRI. The first example is an MRI scan of Paul
Debevec’s knee, which is available online courtesy of
a torn ligament; see Figure 6. The original object was
rotated by pitch-roll-yaw Euler angles of -20, 4, and 41
degrees, then translated 13, 8 and 11 voxels in the i, j
and k directions respectively.

Registration was performed in a total elapsed time
of 44 seconds; the results are presented in Table 5, show-
ing the transformations with the eight highest votes in
descending order. Rotation angles are the pitch, roll
and yaw Euler angles, θ, φ and ψ, required for registra-
tion as determined by the algorithm. ∆r is a pseudo-
Manhattan distance which is the sum of the magnitude
of the distance between each recommended angle and
the inverse of the induced rotation. Vote is the num-
ber of votes received in the averaged shifted histogram
voting scheme. Similarly, the translation is the number
of voxels in the i, j and k directions required for regis-
tration as determined by the algorithm, and ∆t is the
Manhattan distance between the recommended transla-
tion and the inverse of the induced translation. Results
are rounded to the nearest degree or voxel.

The top eight results are presented. The top result
is the recommended answer; the rest are provided only

for comparison and discussion. Note that the top seven
results are very close to one another. The eighth, which
is far from the desired result, received significantly fewer
votes.

Table 5 Registration results for Knee MRI in descending order
of vote. The correct rotation in pitch-roll-yaw Euler angles is 20,
-4, and -41 degrees, with a translation of -13, -8 and -11 voxels.

Rotation Translation
θ φ ψ

∆r Vote
i j k

∆t

20 -4 -40 1 5582 -12 -9 -10 2
20 -4 -42 1 4513 -12 -9 -10 2
21 -3 -40 3 4012 -12 -8 -10 2
18 -5 -40 3 3082 -13 -8 -10 1
20 -3 -43 2 2859 -12 -9 -10 3
18 -4 -42 3 2743 -13 -9 -10 2
20 -4 -38 3 2609 -12 -4 -11 5
22 5 -31 20 591 -14 3 -2 20

Brain MRI. The second example is an MRI scan of
a brain (from MATLAB); see Figure 7. The original
model was rotated 28, 37 and -34 degrees in a pitch-roll-
yaw Euler angle scheme, then translated -14, 12 and -3
voxels to create the second model. Total elapsed time
was 63 seconds, yielding ∆r of 4 and ∆t of 2. Results
are displayed in Table 6.

5.2 Homogeneous Objects

The objects in this section are solid models which do
not vary in the interior. If not already in voxelized form,
mesh or other surface model types can be voxelized.
We used Binvox, a binary voxelization tool produced by
Patrick Min (http://www.cs.princeton.edu/∼min/binvox)
based on the work of Nooruddin and Turk [40].

Shrek. The 3D mesh model of Shrek shown in Figure
8 was produced by Maurizio Pocci in 3D Valley. Two
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Table 6 Registration results for various examples. For each model, the first line is the inverse of the induced rotation/translation,
the second line is the algorithm’s recommended rotation/translation for re-alignment. Note that the last two examples (Gooch Brain
1 and 2) have an initial misalignment, so the algorithm’s results should not exactly match the induced amounts.

Rotation Translation
Model

θ φ ψ
∆r

i j k
∆t

Knee Induced 20 -4 -41 -13 -8 -11
Algorithm 20 -4 -40 1 -12 -9 -10 2

Brain Induced -28 -37 34 14 -12 3
Algorithm -27 -36 33 4 14 -13 2 2

Full Shrek Induced -12 -15 14 -11 3 -11
Algorithm -12 -14 14 1 -12 3 -10 2

Cropped Shrek Induced -10 -20 -30 -14 6 -3
Algorithm -10 -21 -30 1 13 -7 4 4

Noise SNR 4.74 Induced -10 -20 -30 -3 7 0
Algorithm -10 -21 -30 1 -3 8 0 2

Noise SNR 0.67 Induced -10 -20 -30 -3 7 0
Algorithm -10 -20 -30 1 -3 8 0 1

Clutter Induced -6 -8 7 5 -3 2
Algorithm -6 -6 6 3 5 -3 1 2

Gooch Brain 1 Induced -5 -5 -70 0 0 0
Algorithm 1 -3 -73 10 8 4 -2 14

Gooch Brain 2 Induced 0 0 0 0 0 0
Algorithm 3 2 -3 8 7 -4 0 11

Fig. 6 Knee MRI scan. The top row is the original object. The
middle and bottom rows are the reconstructed wavelet coefficients
at the second and third levels of resolution respectively. The left-
hand column is model A. The right-hand column is model B,
which has been rotated and translated.

Fig. 7 Brain MRI scan (from MATLAB). The top row is the
original object. The middle and bottom rows are the recon-
structed wavelet coefficients at the second and third levels of
resolution respectively. The left column is model A. The right
column is model B, which has been rotated and translated.
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tests were run. The first was a registration of the full
model and the second a cropped portion of the model.

Fig. 8 Shrek model produced by Pocci and voxelized using Bin-
vox.

The first test, using the full Shrek model with an
induced rotation in pitch-roll-yaw Euler angles of 12,
15 and -14 degrees and an induced translation of 11,
-3 and 11 voxels, had an elapsed time of 262 seconds,
with a ∆r of 1 degree and a ∆t of 2 pixels. The second
test, which used the cropped model, had an elapsed
registration time of 67 seconds and yielded a ∆r of 1
degree and a ∆t of 4 pixels. See Table 6 and Figure 9.

5.3 Noise

Noise can be induced in 3D models in many ways. In
medical imaging, noise is induced by the patient, either
through movement or over time through growth and
change. All sensing methods induce some type of noise.
Manipulating the objects in their electronic form also
induces noise. To test our method for noise sensitivity
in a controlled manner, we added Gaussian noise to
an object to obtain varying signal to noise ratios, then
applied the algorithm to attempt registration.

Gaussian noise was added only to the rotated and
translated object, which was then registered to the orig-
inal object without noise. The Gaussian noise was gen-
erated using a normally distributed set of random num-
bers with a mean of zero, variance of one, and standard
deviation of one. This set of randomly generated num-
bers was then multiplied by some greater standard devi-
ation to achieve the desired signal to noise ratio (SNR).
The SNR was calculated using the ratio of root mean
square amplitudes of the signal and the noise [41]:

SNR =
(
Asignal

Anoise

)2

=
∑n

i=1 x
2
i∑n

i=1 k
2
i

Fig. 9 Cropped Shrek solid model. The top row is the origi-
nal object. The middle and bottom rows are the reconstructed
wavelet coefficients at the second and third levels of resolution
respectively. The left column is model A. The right column is
model B, which has been rotated and translated.

where A is the root mean square amplitude, xi is the
voxel intensity at each point in the object, and ki is the
intensity of the noise added at each point in the object.
The SNR can also be expressed in decibels:

SNRdB = 10 log10

(∑n
i=1 x

2
i∑n

i=1 k
2
i

)
As the test model, we used the knee MRI object with

a rotation of 10, 20 and 30 degrees and a translation of
-3, 7 and 0 voxels. The first test used a variance of 100
to achieve a SNR of 4.74, or 13.50 dB. Successful regis-
tration occurred in an elapsed time of 34 seconds. The
second test used a variance of 5000 to achieve a SNR of
0.67, or -3.48 dB. Successful registration occurred in an
elapsed time of 46 seconds. Results are shown in Table
6.

Note that there is noise induced in each of these
tests through the initial rotation process in addition to
the Gaussian noise induced.

This algorithm uses the second- and third-level res-
olution wavelet coefficients for registration. The first-
level resolution wavelet coefficients contain information
relating to the smallest scale details; much of the noise
is contained in this level. This makes the algorithm
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quite robust to noise, as demonstrated by the exam-
ples herein.

Fig. 10 Knee MRI scan with Gaussian noise added. Top image
without noise, center image with SNR 4.74, bottom image with
SNR 0.67.

5.4 Occlusion and Clutter

This example was constructed using Paul Debevec’s
knee MRI. A full model of the knee was rotated and
translated in three dimensions, then the original and
rotated versions were cropped so the majority of the
object was the same but the edges contained different
parts of the knee; some portions were rotated out of
the box while others were rotated in. You can see in
Figure 11, for example, that the top right edge of the
knee is visible in the left column but not in the right
column. Similarly, variations in the tibia are visible at
the bottom edge in the right column but not in the
left. Successful registration was achieved in 18 seconds;
results are shown in Table 6.

Fig. 11 Occlusion and clutter. The top row is the original ob-
ject. The middle and bottom rows are the reconstructed wavelet
coefficients at the second and third levels of resolution respec-
tively. The left column is model A which has been cropped. The
right column is model B, which was rotated before cropping.

5.5 Temporal

The final example consists of two MRI scans taken of
Bruce Gooch at different times, one on June 5 and one
on July 13. The other examples in this section are con-
cocted by rotating and translating an object then com-
paring to a copy of its original self; therefore, the rota-
tion and translation are known exactly. In this example,
we are comparing two different objects of unknown ini-
tial orientation.

For the first test, we move the June 5 scan through a
large rotation, then attempt registration with the July
13 scan. Results are shown in Table 6. The resulting
rotation and translation are not exactly equal to the
induced ones; in fact, this is correct. It can be seen in
Figure 12 that the post-alignment registration is im-
proved over the initial slightly unaligned version.

For the second test, the June 5 and July 13 scans
are registered as is, with no induced rotation or trans-
lation. Results are shown in Table 6. Note that the rec-
ommended rotation and translation are very close to
the difference between the induced and recommended
rotation and translation in the first test.
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Fig. 12 Temporal brain MRI scan comparison. The left image was taken on July 13. The center image was taken on June 5. The
right hand image is the June 5 image after a large rotation is induced then removed through registration with the July 13 image; note
that the alignment is improved after registration despite the large initially induced angle. For example, the top of the eye is no longer
visible after registration.

6 Conclusions and Recommendations

We have demonstrated an algorithm to conduct rigid
registration of voxelized three-dimensional objects us-
ing the wavelet transform. The method performs regis-
tration of objects that are grossly misaligned and brings
them closely into alignment. Global registration is suc-
cessfully achieved without need of initial alignment in-
formation. Further fine registration may be conducted
at this point using elastic registration methods or other
fine alignment methods such as ICP.

We explored the effects of variations in the algo-
rithm such as choice of feature point type and quantity,
rotation representation, and voting scheme. Choices are
explained and quantified.

We presented several applications and demonstrated
efficacy on both fully three dimensional models in which
the intensity varies throughout and on surface models in
which the interior is a constant value. The algorithm is
robust to noise, occlusion and clutter, and can operate
on models that vary in time.

The method is as fast or faster than other geometric
feature registration methods and is significantly faster
than voxel intensity registration methods, thus making
its use as a pre-processing step for voxel intensity meth-
ods feasible. It operates on voxelized objects, which
many geometric feature registration methods do not,
and solves the problem of most voxel intensity methods
in that it achieves global registration without settling
into a local minimum.

The directions in which this research could go next
are numerous and interesting. A partial matching ap-
plication could allow the alignment of smaller data sets
to larger ones. Adding scale variation could allow the
alignment of higher resolution data sets in areas of in-
terest. Within the algorithm itself, the exploration of

different size filters or different shape wavelets that still
meet the DTCWT criteria is possible and may lead to
improvements in precisely locating feature points. Cross
modal registration would allow the comparison of ob-
jects from different types of scans, such as MRI and CT
data for medical applications or acoustical and optical
data for security applications such as mine detection.
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