
Legacy Computing Markup Language (LCML)

and LEGEND - LEGacy Encapsulation for

Network Distribution

by

Stephen Kurt Geiger

B.S., Naval Architecture and Marine Engineering (2001)
Webb Institute

Submitted to the Department of Ocean Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Ocean Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

c© Massachusetts Institute of Technology 2004. All rights reserved.

Author .
Department of Ocean Engineering

May 26, 2004

Certified by. .
Nicholas M. Patrikalakis

Kawasaki Professor of Engineering
Thesis Supervisor

Accepted by .
Michael S. Triantafyllou

Chairman, Departmental Committee on Graduate Studies

2

Legacy Computing Markup Language (LCML) and

LEGEND - LEGacy Encapsulation for Network Distribution

by

Stephen Kurt Geiger

Submitted to the Department of Ocean Engineering
on May 26, 2004, in partial fulfillment of the

requirements for the degree of
Master of Science in Ocean Engineering

Abstract

The rapid increase of computing power and emergence of distributed computing tech-
nologies such as Grid computing create new opportunities for scientific computing.
One of the challenges faced in harnessing the emerging computational power is how
to effectively use traditional command-line driven “legacy” codes within a networked
framework; and a related challenge is how to make the operation of such codes a
more user-friendly process. In this work a specification for an XML-based Legacy
Computing Markup Language (LCML) is developed. This language can be used to
create a parametized encapsulation of command-line driven codes and their associ-
ated files. Such an encapsulation can then be viewed and edited with a program
developed to process LCML descriptions. The program LEGEND (LEGacy Encap-
sulation for Network Distribution) is under development as a Java implementation
of such a program. LEGEND demonstrates that a validating graphical user interface
can automatically be generated from an LCML description. Some issues related to
the encapsulation of legacy programs and use of LCML and LEGEND are discussed,
as well as the possibilitites for the integration of these technologies with Sun Grid
Engine (SGE) and Globus software.

Thesis Supervisor: Nicholas M. Patrikalakis
Title: Kawasaki Professor of Engineering

3

4

Acknowledgments

This work was funded in part from NSF/ITR under grant EIA-0121263, and from

the US Department of Commerce under grant NA86RG0074 (NOAA via MIT Sea

Grant).

I’d like to express thanks to Dr. Constantinos Evangelinos for his assistance and

insight throughout this project, and Professor Nicholas M. Patrikalakis for being my

advisor and for his role in providing me the opportunity to study at MIT. I want to

express thanks to Dr. Kwang Hee Ko and Harish Mukundan and appreciation as well

to my friends and family.

Lastly, thanks to Jesus Christ by whom and for whom all has been created.

The earth is the Lord’s and everything in it, the world and all who live in it; for he

founded it upon the seas and established it upon the waters. - Psalm 24:1-2

5

6

Contents

1 Introduction 13

2 Background 17

2.1 Software Technologies . 17

2.1.1 A Language for All Platforms - Java 17

2.1.2 Markup the World - XML . 18

2.1.3 The Up and Coming - Grid Computing 20

2.2 Context and Related Work . 21

2.2.1 The Poseidon Project . 21

2.2.2 Examples of Related Work . 23

3 The Legacy Computing Markup Language (LCML) 27

3.1 The Role of LCML . 27

3.2 LCML Overview . 28

3.2.1 The description Element and its Children 29

3.2.2 The descriptionChildren Element and its Children 31

3.2.3 The descriptionTarget Element and its Children 32

3.2.4 The descriptionContent Element and its Children 33

3.2.5 The set Element and its Children 34

3.2.6 The var Element and its Children 36

3.2.7 The block Element and its Children 43

3.2.8 The descriptionReplacements Element and its Children . . 46

3.2.9 The descriptionConstraints Element and its Children . . . 47

7

3.2.10 The Use of Dublin Core Metadata 52

3.2.11 The Use of References and Functions 55

3.2.12 The Use of Formatting Elements 58

3.2.13 The Display of Hidden Variables 58

3.2.14 The Resolution of a Variable’s Value 58

3.2.15 The LCML Schema . 59

3.3 Discussion of the LCML and its Development 60

3.3.1 The Inclusion of Dublin Core Metadata 60

3.3.2 Use of Elements vs. Use of Attributes 61

3.3.3 Use of One vs. Many Types of Descriptions 62

3.3.4 The Design of a Variable-Based Description 64

3.3.5 The Separation of Encapsulation and Processing 65

3.3.6 Multiplicity . 66

3.3.7 Encapsulating Information . 71

3.3.8 The Use of Validation . 72

3.3.9 The Use of Constraints . 74

3.3.10 Restricted Descriptions . 75

3.3.11 The Use of Replacements . 76

3.3.12 Creating and Running Scripts 77

3.3.13 Storing State - Import/Export Format 78

3.4 Example Descriptions . 79

3.4.1 Hello World Example . 79

3.4.2 Advanced Hello World Example 80

3.4.3 ‘cp’ Example . 83

3.4.4 SGE Example . 86

3.5 Tools for Generating Descriptions . 87

3.5.1 Use of an Existing XML Editor 88

3.5.2 Extension of a Text Editor . 88

3.5.3 Use of LCML to Author Itself 90

8

4 LEGEND (LEGacy Encapsulation for Network Distribution) 91

4.1 The Role of LEGEND . 91

4.2 LEGEND Program Overview . 92

4.2.1 Getting Started . 92

4.2.2 The LEGEND Menu . 94

4.2.3 The LCML Description Tree 97

4.2.4 The LCML Description Display Area 97

4.2.5 The Status Bar . 101

4.3 Discussion of Design and Technical Considerations 101

4.3.1 User Interface Design and Implementation 101

4.3.2 The Use of Runtime.exec() . 103

4.3.3 Extension of LEGEND . 104

4.3.4 Validation, Constraints, and References 105

4.3.5 Additional Details . 106

5 Conclusions 107

5.1 Assessment of the Developed System 107

5.2 Recommendations for Future Work 108

5.2.1 Basic Tasks . 108

5.2.2 Integration of Client/Server Capability 108

5.2.3 Integration with Globus . 109

5.2.4 Development of an LCML API 109

5.2.5 Handling of Units . 109

5.2.6 Enhanced Support of Mathematical Expressions 110

5.2.7 Formatted Input . 110

5.2.8 User Interface Design and Usability of LCML 110

5.2.9 Display of Two-Dimensional Arrays 111

5.2.10 Automation in LCML/LEGEND 111

5.2.11 Automated Creation of LCML Descriptions 111

A Legacy Computing Markup Language (LCML) Roadmap 113

9

B LCML Description Schema 119

10

List of Figures

3-1 Example of the Use of LCML in Encapsulation 28

3-2 Depiction of a Two-Dimensional Jagged Array 67

3-3 Prototype of LCML Authoring Extensions for Microsoft Word 89

4-1 Opening a description file. 92

4-2 Opening a remotely located description file. 93

4-3 Example of a set of opened LCML description files. 93

4-4 Example of opened LCML files with display areas labeled. 94

4-5 The Foldable Panel Display . 97

4-6 The Sortable Table Display . 98

4-7 The Display of Set Information via a Tooltip 99

4-8 The Display of Multiple Structures 101

11

12

Chapter 1

Introduction

Though space is often considered “The Final Frontier”, the oceans that form vast

portions of the earth’s surface also remain in many ways a scientific frontier. There is

much that is unknown about them. Aided by increases in available computing power

and further motivated by the global scale of the nature of many of today’s endeavors,

efforts are being made to better understand this vast resource. A portion of these

efforts fall into the domain of ocean prediction systems.

Ocean prediction systems are software systems that have a variety of goals and

that can be helpful in dealing with several different ocean-related problems. Perhaps

their most basic purpose is that they help the scientific community gain a better

understanding of the ocean. This basic understanding is relevant to fields such as

biology and oceanography. The understanding gained through ocean prediction sys-

tems can also be applied to fields that involve interaction with the ocean. Potential

applications include pollution control, fisheries management, and naval operations.

The Harvard Ocean Prediction System (HOPS) [12] is an excellent example of an

ocean prediction system. It is also an example of a “legacy” code. As used here, the

term “legacy” does not imply the code itself is outdated; a legacy code can be under

active development. Instead, the implication is that the approach used in developing

the “legacy” software does not match current trends or the current state-of-the-art in

software development. Such differences in approach can become problematic when one

desires to effectively integrate these codes into a software environment that makes use

13

of modern techniques, and finds the “legacy” codes to be incompatible. In this work

we have concerned ourselves with those legacy codes that are driven by a command-

line and may employ file-based interactions.1,2 Such codes are commonplace in the

field of scientific computing.

A specific area of difficulty for the use of legacy codes is in the development of dis-

tributed computational systems with web-based access. In a best-case scenario, these

systems are suited to handling the following concerns: effective use of heterogeneous

computing resources, managing and concealing of computational complexities where

possible, and ease of access. Particularly noteworthy is the ongoing development of

“Grid computing” technologies [9, 10, 28]. Grid computing promises to facilitate bet-

ter and more transparent use of diverse computing resources and will be discussed

further in Chapter 2. With the incorporation of Grid computing, the best-case sce-

nario we have mentioned here becomes more within reach; however, there remains a

problem for legacy codes, in that they are not immediately suited to integration into

such an environment.

A second issue is that legacy, “command-line driven” codes typically present some

challenges for the user. An interface driven by command-line and file-based interac-

tions can certainly be functional, and in some cases can be used effectively; however,

such an interface will often lack much of the convenience that a graphical user in-

terface (GUI) could provide. A relevant consideration here is that a well-designed

GUI can also substantially lower the barriers associated with learning a new piece of

software. The development of a GUI can make the operation of a program both easier

to remember over time and easier to initially learn. This can be done by presenting

visual cues and opportune information to the user. The development of a GUI also

creates an opportunity to apply a measure of validation to user inputs. This can help

to minimize erroneous, improper or invalid program runs.

1It is worth noting here that there are other forms of “legacy” codes. These include some that
are driven by early “green-screen” user interfaces [2], or that run exclusively on legacy platforms.
These are not so much our focus, and in many cases would present challenges altogether different
from those we have dealt with here.

2One can also consider that the term “legacy”, as applied to code and computing does not appear
to have a specific, accepted, or singular definition. One might suggest that the codes we deal with
in our work are better labeled “command-line driven” codes than “legacy”.

14

In this work we consider how to deal with the issues of integration and interface of

legacy, “command-line driven” codes: integration into a modern distributed comput-

ing environment and the automated generation of a relevant user interface. Our goal

was not to develop a “stove-pipe” solution that was only applicable in a specific case

or a small set of cases, but to develop a solution that would be generally applicable.

Towards that end a two-tier solution is proposed.

First, legacy programs are encapsulated by describing them with the Legacy Com-

puting Markup Language (LCML), a set of vocabulary and syntax for describing (and

parametizing) legacy programs, their associated files, and the process used to build

them. LCML has been developed as part of this thesis work and is written in eXten-

sible Markup Language (XML).

Second, user interfaces for descriptions written in LCML can be automatically

generated by using an LCML processing program. Such a program has been de-

veloped in this thesis work under the name LEGEND (LEGacy Encapsulation for

Network Distribution).3 LEGEND provides a framework from which to generate files

associated with a program and from which to write and run scripts for launching an

encapsulated program. In its current state, LEGEND can be used to launch programs

remotely by generating a script that makes use of software that allows for the remote

execution of “command-line driven” programs.

The two-level encapsulation approach proposed here provides a general and ef-

fective way to deal with many “command-line driven” legacy codes. It allows for

the possibility of an improved user experience and integration with modern software

techniques such as Grid computing for a fraction of the effort that would typically be

needed to develop a custom solution.

3LEGEND is currently under ongoing development and the full LCML specification is not yet
supported.

15

16

Chapter 2

Background

This chapter discusses some of the underlying technologies that are relevant to this

work, provides some information on the context within which this work was developed,

and discusses some related work.

2.1 Software Technologies

There are three basic software technologies that are worthy of some discussion in

relation to this work: Java, XML, and Grid Computing.

2.1.1 A Language for All Platforms - Java

Java is an object-oriented programming language developed by Sun Microsystems

[14]. There are a number of characteristics about Java that make it well suited for

use in this project. Java is:

• a widely used language - as such it has an active development community and

there are a large number of resources available to learn Java, as well as a number

of technologies that have been developed to work with Java.

• platform-independent - for this work it was desirable to develop a platform-

independent solution. Java meets this requirement well.

17

• freely available - this fits well with making the developed software available as

results of a publicly funded research project.

• a powerful modern programming language - Java does not impose undesirable

limitations on the functionality we can effectively develop.

• capable of creating advanced graphical user interfaces (through the use of the

Swing component library [13]) - this allows for a more advanced GUI display

than we might get using a more typical web-based technology.

• well-suited to use over the web - Java has the power of applets which can be

accessed through a web browser.

2.1.2 Markup the World - XML

The eXtensible Markup Language (XML) is a text format that provides a structured

means for storage and exchange of data [8].

An XML Example

A sample XML document could appear as follows:

<root>

<child anAttribute="attribute content">

<grandchild>element content</grandchild>

</child>

</root>

The above example demonstrates several of the basic concepts of XML which are

relevant to this work.

• Bracketed items are tags that mark elements. Start tags are of the form

‘<elementName>’ and end tags are of the form ‘</elementName>’. For ex-

ample, the XML tags ‘<root>’ and ‘</root>’ mark the start and end of the

root element.

18

• An element can have text content. In the above example, the text ‘element

content’ is the text content of the grandchild element.

• An element can have other elements as content. In the above example, the

child element is content of the root element.

• An element can have string-valued attributes associated with it. Attributes are

embedded into an element’s starting tag. In the above example, anAttribute

is an attribute of the child element.

Markup Languages

While XML provides a general specification of a format for “marking-up” text, it does

not provide a specific vocabulary or the specific data structure for doing so,1 rather

XML is “extensible”. This makes it well suited as a master language for specifying a

markup language. A markup language can be thought of as a dialect appropriate for

describing the data relevant to a specific domain of information.

The best known example of a markup language (although not an XML-based

one) is the Hypertext Markup Language (HTML). Examples of XML-based markup

languages are the MathML and Scalable Vector Graphics (SVG) specifications.

To further illustrate the concept of a markup language consider the following

example of an instance of a very simple, hypothetical, XML-based Point Markup

Language:

<point>

<x>0.0</x>

<y>0.0</y>

</point>

This example demonstrates a manner in which the point with x and y coordinates

each equal to zero could be represented in XML. If the format used in the example was

1In the previous example the root element could be named node or some other string, and it
could have had attributes and/or any variation of elements and text content for its content.

19

defined as a standard specification for describing points, then it could be considered

a “Point Markup Language”.

Schemas for XML

An XML structure can be documented with a schema. An XML document is con-

sidered “schema-validated” if it has been shown to meet the format described in a

schema.

If we consider the previous “Point Markup Language” example, our schema might

serve to indicate the following:

• The root element of a point document is called point.

• A point element should have one x and one y element as its children.

• An x or y element should have a number as its only content.

While there are a several alternative schema languages including Document Type

Definition (DTD), RELAX NG [25], and Document Structure Description (DSD) [5],

in this work we have used the XML Schema language [30]. This language uses an

XML-based format to describe schemas for XML documents. Rather than describe

the details of using the XML Schema language here, the reader is pointed to [31] for

a tutorial.

2.1.3 The Up and Coming - Grid Computing

Grid computing is currently a topic of much interest, especially as a tool for enabling

advancements in scientific computing, but also potentially of considerable benefit to

a variety of disciplines [9]. For our discussion, let us first consider the question, what

is “the Grid”?

“The Grid refers to an infrastructure that enables the integrated, col-

laborative use of high-end computers, networks, databases, and scientific

instruments owned and managed by multiple organizations. Grid appli-

cations often involve large amounts of data and/or computing and often

20

require secure resource sharing across organizational boundaries, and are

thus not easily handled by todays Internet and Web infrastructures.” [28]

Some of the potential benefits of Grid computing are as follows:

• Easy access to a variety of computing resources.

• The possibility of reclaiming otherwise unused computing cycles on idle com-

puters. For large organizations with a sizable network of computers a significant

amount of computational power can be reclaimed.

• Improved collaboration between organizations sharing data and computational

resources.

There have been a number of Grid-related development projects, and several Grid-

related technologies of interest include Globus [28], Sun Grid Engine [11], and Condor-

G [4]. Far more could be written about the developing Grid technologies, but rather

the reader is directed to the aforementioned references, as well as the Global Grid

Forum [10], for more information.

2.2 Context and Related Work

2.2.1 The Poseidon Project

This work comprises a portion of the Poseidon research project, an endeavor of the

MIT Ocean Engineering Design Laboratory and Acoustics Group in association with

the Harvard University Interdisciplinary Ocean Science Group.

A basic description of the project is as follows:

“Poseidon is ... a distributed computing based project that brings

together advanced modeling, observation tools, and field and parameter

estimation methods for oceanographic research. The project has three

main goals:

21

1. to enable efficient interdisciplinary ocean forecasting, by coupling

physical and biological oceanography with ocean acoustics in an op-

erational distributed computing framework,

2. to introduce adaptive modeling and adaptive sampling of the ocean

in the forecasting system, thereby creating a dynamic data-driven

forecast,

3. and to initiate the concept of seamless access, analysis, and visualiza-

tion of experimental and simulated forecast data, through a science-

friendly Web interface that hides the complexity of the underlying

distributed heterogeneous software and hardware resources. The aim

is to allow the ocean scientist/forecaster to concentrate on the task

at hand as opposed to the micro-management of the underlying fore-

casting mechanisms.” [21]

Additional details on the project are available at the Poseidon project website [24]

(as well as in [21]).

The Poseidon project makes use of the Harvard Ocean Prediction System (HOPS).

For more information about HOPS, the reader is directed to the HOPS web site [12].

As mentioned previously, the HOPS system makes use of “command-line driven”

legacy codes.2 The current work is intended to allow for integration of HOPS into

the project without stipulating changes to the HOPS source code.

The work presented in this thesis represents a continuation of work presented in the

thesis “The Encapsulation of Legacy Binaries Using an XML-Based Approach with

Applications in Ocean Forecasting” ([3]). In that work there is additional discussion of

background issues such as XML and Java technologies and some additional comments

on the ideas and approach that have been used in this project. A more concise

discussion of the approach used can also be found in [7]. These references also provide

some discussion of examples of similar work done elsewhere. We will now consider a

few additional examples of related work.

2These form a number of smaller programs that are used to first setup and then work with an
ocean model.

22

2.2.2 Examples of Related Work

Some examples of similar work are the following projects:

1. MAUI

A project developed at Sandia National Laboratories that has some similar ideas to

our work is MAUI. From the MAUI project website [18]:

“MAUI is a Java program for rapidly developing a graphical user in-

terface (GUI) for an application based on a high-level XML description

of the structure and parameters of the application. Custom actions can

be plugged into MAUI to run the applications once the input parameters

are entered into the GUI. The XML description can be easily modified to

keep up with a developing project. Additionally, using MAUI can provide

a consistent look and feel for related applications.”

While MAUI shares a similar concept to our work, there are also some significant

differences:

• MAUI outputs primarily to XML, and it appears that additional work must be

done to have the XML converted to a desired text output.

• An XML description in MAUI can contain some specific details for how the

GUI should be presented.3

• MAUI uses an object-oriented data representation. While object-oriented tech-

niques are powerful, and this gives MAUI considerable flexibility in describing

3Encapuslating user interface details has pros and cons associated with it. In the author’s esti-
mation an encapsulation approach is better served by a cleaner break between program presentation
and logic; and it is believed that this can be achieved by having an XML description conceptually
model the points of interaction with the binary, and allowing the user interface to reflect the model
inherent in the XML description. [It is worth noting that there are programs where the points of
interaction are not easily modeled in XML. (A drawing program or a highly interactive program, e.g.
full support of a command shell, come to mind as examples). Such a case might not be well suited
to a separation of presentation and logic, but such cases are not really what we have in view for our
development, and they introduce other complexities as well. They are not necessarily well-suited for
encapsulation by our work or with MAUI.]

23

data, it is probably a fair assessment that this significantly complicates the

writing of a description.

• The capabilities for validating data used in MAUI appear more limited than

what is developed in this work.

2. Javamatic

Javamatic [22] is a tool that was developed to build web-based user interfaces to

legacy command-line driven programs. The project dates back to 1997, and some

details are not readily available; nor does it appear to be an active project.

It does provide an example of and details on how a client-server arrangement can

effectively be used to enable web-based access to legacy codes.

In Javamatic the “encapsulation” of a legacy program was done at the level of Java

classes. These could be written by a programmer or through the use of a graphical

user interface that was developed for generating appropriate Java classes.

It is not clear how well the encapsulation capabilities were developed for handling

difficult cases, or if any capability for validation was provided.

3. CAWOM

The CAWOM (Cal-Aggie Wrap-O-Matic) Project [29] is another effort that has de-

veloped tools for the wrapping of command-line driven programs. In the CAWOM

approach programs are wrapped using code that is generated from the CAWOM-

developed specifications. The generated code is compatible with the CORBA (Com-

mon Object Request Broker Architecture) standard. This approach allows the func-

tionality of legacy codes to be incorporated programmatically into programs that

make use of CORBA.

This approach provides a different result than our approach. In our approach once

a program has been “encapsulated” (described in XML) a program that is capable of

reading in LCML (such as LEGEND) can automatically generate a user interface. In

the CAWOM approach the result of “wrapping” is that it is now easier to incorporate

24

the functionality of a legacy program into other CORBA capable programs. This

approach is able to handle the wrapping of highly interactive4 programs and is also

well suited to cases where the legacy functionality needs to be mixed in an integrated

way into a non-legacy program. However, with the CAWOM approach no capability

for the automatic creation of a user interface is included.

4. PISE

PISE (Pasteur Institute Software Environment) [17], is a tool used to generate web

interfaces for molecular biology programs. It makes use of XML encapsulation of com-

mand line programs and provides a web interface. It appears to be well-implemented

and to receive significant use; however, it appears to be tuned to a specific application

(in this case a large set of programs for molecular biology).

4CAWOM supports the parsing of program responses, a functionality we have not considered.

25

26

Chapter 3

The Legacy Computing Markup

Language (LCML)

In this chapter we discuss the Legacy Computing Markup Language (LCML) which

was developed as part of the work for this thesis. We will consider its function,

overview the markup language itself, discuss the development process, and exam-

ine some examples of its use. We will then consider some tools that could provide

assistance in generating LCML descriptions.

3.1 The Role of LCML

Legacy Computing Markup Language (LCML) is an XML-based markup language

that is being developed to describe command-line driven binaries, the files associated

with them, and the process used to compile such binaries. The concept is to provide

a standardized syntax and vocabulary (expressed in XML) for the description of

binaries, and their associated files and parameters. LCML can be used to describe

scripts, input files, makefiles, and include files, and it provides a number of features

to do so. With this approach of encapsulation of programs at the binary level it

is not necessary to interact with the internals of a binary’s operation. One can

“communicate” with binaries through their command-line arguments and input files,

and generally treat a binary’s internal workings as a black box. The binary is dealt

27

with at its “edges” (as shown in Figure 3-1), and no modification or even knowledge

of the binary’s source code is required.1

Figure 3-1: Example of the Use of LCML in Encapsulation

3.2 LCML Overview

Here we present an overview of the XML structure and element content used in writing

a description with the LCML. For readability, the syntax used in this discussion is

not in actual XML format; rather, it indicates the names of elements used and then

represents the structure of the nesting of elements by level of indentation. Elements

that are optional are placed in brackets (‘[]’). An asterix (‘*’) placed by an element

indicates that it can be used more than once. Unless marked or otherwise noted it is

assumed that an element must be included once and only once.

In the discussion of some elements it will be noted that the element can make use

1This approach does not entirely preclude the consideration of the “settings” with which a binary
was built and a method for handling this is discussed in Section 3.3.9.

28

of a “reference”. A discussion of what “references” are and their use can be found in

Section 3.2.11.

3.2.1 The description Element and its Children

Every LCML document should have a description element for its root element. The

description element and the elements that are its children are shown here:

- description

- descriptionName

- descriptionInfo

- [descriptionMetadata]

- [descriptionChildren]

- [descriptionTarget]

- [descriptionContent]

- [descriptionReplacements]

- [descriptionConstraints]

The children of the description element have the following significance:

descriptionName - A string appropriate for naming and identifying this description.

The name that is chosen should suggest the purpose or use of the description.

descriptionInfo - A more complete statement of the use and purpose of the

description file. Any special information relevant to the description file should also

be placed here.

descriptionMetadata - This optional element is used to provide information about

the description (metadata) and can contain any of the fifteen standard Dublin Core

metadata elements [6] as one of its children. The Dublin Core metadata elements

will receive further description in Section 3.2.10.

29

descriptionChildren - This optional element is used to reference other LCML

description files. This element and its children will be further described in Section

3.2.2.

descriptionTarget - This optional element is used to indicate that the description

can be used to generate a file or a script. If it is not used no output should be

created from the description. This element and its children will be further described

in Section 3.2.3.

descriptionContent - This optional element contains the main content of the

description. While this content is primarily used for the creation of output, it can

also be used to describe information that is useful within a group of LCML

description files.2 This element and its children are further described in Section

3.2.4.

descriptionReplacements - This is an optional element. Its children can be used

to describe substitutions to be made to portions of the text output that is created

from the content section. This element and its children are described further in

Section 3.2.8.

descriptionConstraints - This is an optional element. Its children can be used to

describe constraints on the content of descriptions and on the content of any

replacements. This element and its children are described further in Section 3.2.9.

2For example: an array index may be specified among the content, but not directly included in
the output.

30

3.2.2 The descriptionChildren Element and its Children

The descriptionChildren element is used to indicate that a description has child

descriptions.3 If it is used, it should contain at least one descriptionChild element.

The descriptionChildren element and its child element are shown here:

- [descriptionChildren]

- descriptionChild*

The descriptionChild element is used to indicate an instance of a child LCML

description. The descriptionChild element and its children are shown here:

- descriptionChild*

- [location]

- [absoluteLocation]

- [description]

- [association]

The children of the descriptionChild element have the following significance:

location - This optional element is used to indicate the path to the child

description file. If this element is used, the path should be specified relative to the

directory that the parent description file4 is located in. A reference can be used

here.5 While the location element is optional, either the location,

absoluteLocation, or description element should be used.

absoluteLocation - This optional element used to indicate the absolute path to

the child description file. The path can be specified to a local file or as a uniform

resource locator (URL). A reference can be used here. While the

3A ‘child description’ is a separate description file that is associated with its parent descrip-
tion. For example, a description that describes a program may have a description of the program’s
standard input file associated with it as its child.

4That is the description file that contains this element.
5See Section 3.2.11 for a discussion of references.

31

absoluteLocation element is optional, either the location, absoluteLocation, or

description element should be used.

description - This optional element mirrors the root description element. It is

used to directly define a child description as opposed to referencing an external

description file. While the description element is optional, either the location,

absoluteLocation, or description element should be used.

association - This optional element is used to indicate the relationship between a

child description and a variable.6,7 The association element is provided for

information only.

3.2.3 The descriptionTarget Element and its Children

The descriptionTarget element is used to indicate that this description can produce

file or script output. The descriptionTarget element and its children are shown

here:

- [descriptionTarget]

- [file]

- [script]

The children of this descriptionTarget element have the following significance:

file - This optional element is used to indicate the path that the output of this

description should be saved to if an output file is created from this description. A

reference can be used here. While the file element is optional, either the file

element or script element should be used.

6The “associated” variable should be of the ‘file’ or ‘binary’ variable-type.
7The “associated” variable should not be in a block of multiplicity (see Section 3.2.7); such an

association would be amibiguous.

32

script - This optional element is used to indicate the information to necessary to

run a script created from this description. While the script element is optional,

either the file element or script element should be used.

The script element and its children are shown here:

- [script]

- command

- scriptname

The children of the script element have the following significance:

command - This element is used to describe a command that can be used to run the

script that is output from the description.8 A reference can be used here.

scriptname - This element indicates the filename (and possibly path) of the script

to which the output text of the description should be written. The scriptname

indicated here should also be included in the text of the command element.9 A

reference can be used here.

3.2.4 The descriptionContent Element and its Children

The descriptionContent is primarily a container for set elements; it should have

at least one set element as a child and can have more. Optionally, the startText,

endText, and separator elements can be used for additional control in formatting

the output of the content. The descriptionContent element and the elements that

are its children are shown here:

8Note that the exact specification of what this text should contain has some dependence on
how the description will be processed (i.e. how the the script will be launched). For example,
if the description is to be processed in a Java program that makes use of the “Runtime.exec()”
method, then the command should be written in manner that can be properly interpreted by the
“Runtime.exec()” method.

9For example, to run the command: ‘sh tempscript’ (where the intention is to use the ‘sh’ shell
program to run the script named ‘tempscript’), the text of the command element should be ‘sh
tempscript’ and the text of the scriptname element should be ‘tempscript’.

33

- [descriptionContent]

- [startText]

- [endText]

- [separator]

- set*

The children of the descriptionContent element have the following significance:

set - This element is used to group the content and it is discussed in detail in

Section 3.2.5.

startText - This optional element is used when creating a script or file output from

the content. Whatever text is contained within the startText element is included

in the output text prior to the output from any sets.

endText - This optional element is used when creating a script or file output from

the content. Whatever text is contained within the endText element is included in

the output text after the output from all the sets.

separator - This optional element is used when creating a script or file output from

the content. Whatever text is contained within the separator element is inserted in

the output text in between the output created from sets.

Next, let us consider the set element and its children.

3.2.5 The set Element and its Children

The set element acts as a container for any number of, order of, and combination

of var and block elements. The methodology for grouping of variables, and blocks

into sets should be based on semantic reasons. A set should therefore represent a

34

group of related content.10 The set element and the elements that are its children

are shown here:

- set*

- setName

- setInfo

- [startText]

- [endText]

- [separator]

- [var]*

- [block]*

The children of the set element have the following significance:

setName - A string appropriate for naming and identifying this set. The name that

is chosen should describe the the purpose of the set, or otherwise identify the reason

for the grouping of the set’s contents into a set.

setInfo - A more complete description of the use, purpose, and/or grouping of the

set. Special information relevant to the set can also be placed here.

startText - This optional element is used when creating a script or file output from

the content. Whatever text is contained within the startText element is included

in the output text prior to the output from the variables and blocks within the set.

endText - This optional element is used when creating a script or file output from

the content. Whatever text is contained within the endText element is included in

the output text after the output from the variables and blocks within the set.

10If all parameters in the content are related to the same function then it is reasonable to only
have one set.

35

separator - This optional element is used when creating a script or file output from

the content. Whatever text is contained within the separator element is inserted in

the output text in between the output created from the variables and blocks within

the set.

var - This element is used to represent a variable, which is the base unit of much of

the content of the description. It is a complicated element and it is described in

detail in Section 3.2.6. Any number of var elements can be placed within a set (and

they can be intermingled with block elements), but a set should contain at least

one var or block element.

block - This element is used to handle a case where a variable has a multiplicity of

values. A basic example of this is an array. Its implementation is done with

flexibility to allow for nested data structures and to support one-dimensional,

two-dimensional, and in the most complex scenario: n-dimensional, multi-typed,

jagged arrays where not all values are part of the output. The details of its

implementation are discussed in Section 3.2.7. Any number of block elements can

be placed within a set (and they can intermingled with var elements), but a set

should contain at least one var or block element.

Next, let us consider the var element and its children.

3.2.6 The var Element and its Children

The var element is used to represent a variable, the basic unit of content in an LCML

description. The primary use of a variable is to store (and provide a means to edit)

the value of a parameter that is to be written to a script or file; however, a variable

can also be used for information relevant to working with a program and its files. (In

other words, the value of a variable may not always appear in the file or script that

is created from the output of a description).

While all var elements have a number of child elements in common, there are also

36

a number of “type-dependent elements” that are only relevant as children for certain

types of variables. The var element and its children are shown here:

- [var]*

- name

- info

- type

- value

- use

- hidden

- [header]

- [trailer]

- [enumeration]

- [uneditable]

- [aliases]

- [precision]

- [range]

- [units]

- [minLength]

- [maxLength]

- [multiLine]

- [fileType]

- [architecture]

The children of the var elements have the following significance:

name - A string appropriate for naming and identifying a variable. Each variable in

a description file should have a unique name.

info - A string that provides information about a variable’s significance and

purpose, and any details relevant to its proper use.

37

type - A string that indicates the type of variable. The possible variable types are:

• ‘numeric’ - used to represent numeric data (makes use of the precision,

range, and units type-dependent elements).

• ‘string’ - a general representation for string data (makes use of the minLength,

maxLength, and multiLine type-dependent elements).

• ‘file’ - represents the path to and information about a file (makes use of the

maxLength and fileType type-dependent elements).

• ‘binary’ - used to include the path to an compiled program11 (makes use of the

architecture type-dependent element).

value - The text of this element typically represents content that can be written as

output or content that provides information relevant to the use of a description. A

reference can be used here.12

use - This element should contain the text ‘true’ or ‘false’ or a reference that

resolves to ‘true’ or ‘false’. This element describes whether this variable’s value

should be included in the text of a file or script output that is created from this

description. If a variable is not “used” (i.e. the text of the use element equals ‘false’)

then no output should be created from it. If a variable is not “used” it can still have

significance to the description it is just not included as part of the output text.

hidden - This element should contain the text ‘true’ or ‘false’ or a reference that

resolves to ‘true’ or ‘false’. This element describes whether a variable should be

11i.e. a “binary”.
12We should note one special case. If this variable has a ‘numeric’ type and the text of this

element begins with an equal sign (‘=’) then numeric validation is not performed on this value and
the beginning equal sign is not written to output. This allows an expression to be written in place
of a numeric value, as some command-line driven programs can make use of expressions in place of
a value.

38

made visible to a user working with this LCML description. If a variable is

“hidden” (that is the text of the hidden element equals ‘true’) its value is still

included in output that is created from the description (and also can have other

significance to the description), but it is generally not made visible to the user for

display or editing.

header - This optional element is used when output is created from the variable.

The text of the header element is written to the output text just prior to the text

that results from the variable’s value. If a variable’s value is not “used” than the

header’s text is not included in the output either. If the header element is omitted

there is no header text for this variable.

trailer - This optional element is used when output is created from the variable.

The text of the trailer element is written to the output text right after the text

that results from the variable’s value. If a variable’s value is not “used” than the

trailer’s text is not included in the output either. If the trailer element is

omitted there is no trailer text for this variable.

enumeration - This optional element contains an expression used to enumerate a

list of choices of valid content for the value element. The semi-colon character ‘;’ is

used to separate the choices in the list. For example: the enumeration text

‘red;green;blue’ would limit a variable’s value to be either ‘red’, ‘green’, or ‘blue’.

Since the semi-colon ‘;’ is used as the list separator, it cannot be used within the

text of an item in the list.

uneditable - This optional element can have one of the following string values:

‘value’, ‘use’, or ‘value;use’. The values indicate respectively, that the value element

should be uneditable by an LCML description user, that the use element should be

uneditable by an LCML description user, or that both the value and the use

element should be uneditable by an LCML description user.

39

aliases - This optional element is used to provide a replacement functionality. It is

shown here with its descendants:

- [aliases]

- alias*

- aliasKey

- aliasOutput

The descendants of the aliases element have the following significance:

alias - This element represents an instance of an alias.

aliasKey - If the text of this element is found within this variable’s value, the text

of the aliasOutput element is substituted in its place. A reference can be used here.

aliasOutput - This text is substituted in place of the text of the aliasKey, if the

text of the aliasKey element is found within this variable’s value. A reference can

be used here.

The following elements are only applicable for certain types of variables (as

indicated by the content of the type element):

precision - This optional element is used to indicate the intended precision of a

‘numeric’ variable’s value and should have one of the following string values:

‘integer’, ‘float’, ‘long’, or ‘double’.13 If a variable’s type is ‘numeric’ and the

precision element is not used, no assumptions should be made about the variable’s

intended precision.

13Note that there is a limitation here in that the specification of what exactly is an ‘integer’, ‘float’,
‘long’, and ‘double’ types is a language and programming model (e.g. 32 vs. 64 bit) dependent
concept. There is however, broad argeement for ‘float’ and ‘double’ for languages that conform to
the IEEE754 standard.

40

range - This optional element can contain a string that indicates the valid range for

a ‘numeric’ variable. The basic syntax of the range notation string is best described

by an example: ‘(0,1]’. This example indicates that the numeric value must be

greater than zero and less than or equal to one.

The following rules apply to the range expression:

• It should start with an opening bracket or parenthesis (‘[’ or ‘(’) and end

with a closing bracket or parenthesis (‘]’ or ‘)’).

• Inside the brackets or parenthesis should be the minimum numeric value, a

comma (‘,’), and then the maximum numeric value.

• The strings ‘-INFINITY’ and ‘INFINITY’ can be used to represent negative

and positive infinity, respectively.

• The use of a bracket (‘[’ or ‘]’) indicates the range is inclusive (greater than

or equal to/less than or equal to) versus the use of a parenthesis(‘(’ or ‘)’)

indicates the range is exclusive (greater than/less than).

• More than one range expression can be included in the range element, and

multiple ranges should be separated by semi-colons (‘;’).

The following is an example of a range expression that demonstrates these rules:

‘(0,1];[200,INFINITY)’. This range expression indicates that the numeric value of

the variable should be greater than zero and less than or equal to one, or greater

than 200 (and less than ∞).

units - An optional element that can contain a string that indicates the units

associated with a ‘numeric’ variable’s value. Currently this element is only used for

informational purposes.

41

minLength - An optional element that contains a non-negative integer indicating

the minimum number of characters of text of the value of a ‘string’ variable.

maxLength - An optional element that contains a non-negative integer indicating the

maximum number of characters of the text of the value of a ‘string’ or ‘file’ variable.

multiLine - An optional element. If the value of its text is ‘true’ it indicates that a

‘string’ variable can contain more than a single line of text. If this element is not

used it is assumed that a string variable’s value represents a single line of text.

fileType - An optional element for ‘file’ variables. If used, its text can have one of

the following values ‘input’, ‘output’, ‘input;output’, ‘includeFile’, or ‘template’.

The first three values indicate respectively that a file is:

• used as an input file,

• used as an output file,

• used for both input and output.

If the file type is ‘includeFile’:

• the output of the variable is the content of the file whose path is represented

by the value element (instead of the path).

The ‘template’ file type is:

• similar to the ‘includeFile’ type, but it assumes the path represented in the

value element is specified relative to the directory where the description file

that contains this element is located.

architecture - An optional informational element for ‘binary’ variables. It is used

to indicate the architecture (platform) that a binary was built to run on.

42

3.2.7 The block Element and its Children

The block element is used to represent repeated data (for example, an array of data).

The block element and its two children are shown here:

- [block]*

- structure

- data

The structure and data elements have the following significance:

structure - This element is used to describe the structure of the repeated data and

is used to specify the content (variables and other structures) used in the structure.

data - This element is used to hold the values of the repeated data.

Now, we will consider the structure and data elements.

The structure element and its children are shown here:

- structure

- structureName

- structureInfo

- [startText]

- [endText]

- [separator]

- numOccurs

- [var]*

- [structure]*

The children of the structure element are described here:

43

structureName - A string appropriate for naming and identifying this structure.

structureInfo - A string describing the use of or information about the structure.

startText - This optional element is used when creating a script or file output from

the content. Whatever text is contained within the startText element is included

in the output text prior to the output from the structure.

endText - This optional element is used when creating a script or file output from

the content. Whatever text is contained within the endText element is included in

the output text after the output from the structure.

separator - This optional element is used when creating a script or file output from

the content. Whatever text is contained within the separator element is inserted in

the output text in between the output created from each repeat of the structure.

numOccurs - A numeric value indicating the number of times a structure is

repeated. A reference can be used here.

var - The var element uses the same description as presented in Section 3.2.6;

however, the child value element becomes a default value and the settings for “use”

and “hidden” become applicable to all repeats. (The repeated variable’s values are

stored in the data element that corresponds to this stucture). Any number of var

elements can be placed within a stucture (and they can be intermingled with child

structure elements), but a structure should contain at least one var or child

structure element.

structure - The structure element is recursive. It can contain a child element

with different content. This allows a block to represent a nested (n-dimensional)

data structure. Any number of child structure elements can be placed within a

44

structure (and they can intermingled with var elements), but a structure should

contain at least one var or child structure element.

The data element and its children and grandchildren are shown here:

- data

- [dataInstance]*

- [value]*

- [data]*

The children and grandchildren of the data element are described here:

dataInstance - The dataInstance element represents one repeat of the data for a

structure. The number of dataInstance elements in a data section should match

the value of the numOccurs element for the corresponding structure.

value - This element is used to represent a repeated value of a variable. The

number and order of value and data elements should match the number and order

of var and structure elements for the corresponding structure. References can be

used here.

data - Just as structure elements can be recursive, the data element can be

recursive, and each data element represents the data for a corresponding structure

element. The number and order of value and data elements should match the

number and order of var and structure elements for the corresponding structure.14

14The following is meant to illustrate the relationships between structure and data elements:

The data child element of a block element corresponds to the structure child element of the
same block. If this first level structure element contains two child structures the first level data
element would have in each of its dataInstance elements two data elements (corresponding to the
first and second child structure).

45

3.2.8 The descriptionReplacements Element and its Children

The descriptionReplacements element allows for the text output created from

the descriptionContent to serve as a “template” or “boilerplate” for text con-

tent. Specific text created from the replacementContent elements can be substi-

tuted into the “template” at desired locations. This can effectively handle a sce-

nario where there is a large amount of text to be created by a description, but

much of that text is invariant (for example, the description of a complex make-

file). If the descriptionReplacements element is used, it should contain at least

one replacement element. The descriptionReplacements element and its children

and grandchildren are shown here:

- [descriptionReplacements]

- replacement*

- replacementKey

- replacementContent

These elements have the following significance:

replacement - This element represents a section of replacement. There can be one

or more than sections of replacement. Each section has its own replacementKey

and replacementContent.

replacementKey - This element should contain a string value. When the output of

the descriptionContent is created any occurences of this string will be replaced

with the output that results from the content of the corresponding

replacementContent element. A reference can be used here.

replacementContent - This element essentially mirrors the descriptionContent

element described in Section 3.2.4. The only difference is that the output created by

this content is used when the replacementKey text is found in the output of the

descriptionContent. This output is substituted in place of the replacementKey

46

text at any place that the replacementKey text occurs.

3.2.9 The descriptionConstraints Element and its Children

The descriptionConstraints element is used to describe specific criteria for vari-

able values and/or relationships between variables. Specific tests are called “con-

straints”, and are expressed either in terms of “requirements” or “conflicts”.15 If the

descriptionConstraints element is used, it should contain at least one requirement

or conflict element. The descriptionConstraints element and its children are

shown here:

- [descriptionConstraints]

- [requirement]*

- [conflict]*

The requirement and conflict elements have the following significance:

requirement - The requirement element is used to describe a case where if specific

criteria for variable values and/or relationships between variables are true it is

expected that certain other specific criteria and relationships are also true. A

requirement is considered violated if its “condition” returns a ‘true’ result and what

it “requires” returns a ‘false’ result.

conflict - The conflict element is used to describe a case where a certain set of

specific criteria for variable values and/or relationships between variables are

expected to not all be true. A conflict is violated if everything specified in it returns

a ‘true’ result.

Now, we will consider the requirement and conflict elements in more detail.

15Anything that can be described using “requirements” should also be describable using “conflicts”
and vice versa; however, in some cases one or the other may prove far more convenient.

47

The requirement element and it children and grandchildren are shown here:

- [requirement]*

- explanation

- condition

- [test]*

- [group]*

- requires

- [test]*

- [group]*

The children and grandchildren of the requirement element have the following

significance:

explanation - A textual explanation of the constraint. (It should be written to be

easily understandable).

condition - The condition element can contain test and group elements. A

condition returns a ‘true’ result if all tests and groups within it return a true result.

requires - The requires element can contain test and group elements. A

requires element returns a ’true’ result if all tests and groups within it return a true

result (and otherwise returns a false result).

test - The test element is the basic unit of the constraint specification and is

described in detail below. It can be evaluted to return ‘true’ or ‘false’. Any number

of test elements can be placed within a condition or requires element (and they

can be intermingled with group elements), but both the condition and requires

elements should contain at least one test or group element.

group - The group element is used to group a number of tests and is described in

48

detail below. It can be evaluated to return ‘true’ or ‘false’. Any number of group

elements can be placed within a condition or requires element (and they can be

intermingled with test elements), but both a condition and a requires element

should contain at least one test or group element.

The conflict element and its children are shown here:

- conflict

- explanation

- [test]*

- [group]*

The children of the conflict element have the following significance:

explanation - A textual explanation of the constraint. (It should be written to be

easily understandable).

test - The test element is the basic unit of the constraint specification and is

described in detail below. It can be evaluted to return ‘true’ or ‘false’. Any number

of test elements can be placed within a conflict (and they can be intermingled with

group elements), but a conflict should contain at least one test or group element.

group - The group element is used to group a number of tests and is described in

detail below. It can be evaluated to return ‘true’ or ‘false’. Any number of group

elements can be placed within a conflict (and they can be intermingled with test

elements), but a conflict should contain at least one test or group element.

The test element and its children are shown here:

- [test]*

- item

- relation

49

- item

The children of the test element have the following significance:

item - A string, a numeric value, or a reference16 can be used here.

relation - This element should contain one of the following strings describing the

expected relationship between the item elements:

• ‘SAME’ - true if two items contain strings that are identical

• ‘DIFF’ - true if two items contain strings that are not identical

• ‘EQ’ - true if two items contain values that are numerically equal

• ‘NEQ’ - true if two items contain values that are not numerically equal

• ‘LT’ - true if the value of the first item is numerically less than the value of

the second item.

• ‘LEQ’ - true if the value of the first item is numerically less than or equal to

the value of the second item.

• ‘GT’ - true if the value of the first item is numerically greater than the value

of the second item.

• ‘GEQ’ - true if the value of the first item is numerically greater than or equal

to the value of the second item.

item - Usage is the same as instance of item above.

A test returns a ‘true’ result if the relationship described by the relation element

matches the actual relationship between the two item elements, otherwise it returns

16See Section 3.2.11 for an explanation of the use of references from this element as they represent
a special case.

50

a ‘false’ result.

The group element and its children are shown here:

- [group]*

- [operator]

- [test]*

- [group]*

The children of the group item have the following significance:

operator - This optional element should have one of the following string values:

‘AND’, ‘OR, or ’‘XOR’. If the operator element is not included the default operator

is ‘AND’.

test - See description above. Any number of test elements can be placed within a

group (and they can be intermingled with group child elements), but a group

should contain a total of at least two test and/or group child elements.

group - The group element can be used recursively, a group can contain another

group. Any number of group child elements can be placed within a group (and they

can be intermingled with test elements), but a group should contain a total of at

least two test and/or group child elements.

The significance of the operator element follows the normal rules for logical

operators and a group returns a ‘true’ result if:

• the operator equals ‘AND’ and all tests and groups contained in it return

‘true’ results.

• the operator equals ‘OR’ and any test or group contained in it returns a ‘true’

result.

51

• the operator equals ‘XOR’ and exactly one of the tests and groups contained

in it returns a ‘true’ result.

3.2.10 The Use of Dublin Core Metadata

The term metadata can be loosely defined as “data about data”. The Dublin Core

Metadata Initiative (DCMI) is an organization that is commited to the development

of metadata standards. Among the work done by the Dublin Core Metada Initiative

has been the creation of a core set of metadata for the documentation of electronic

documents. The Dublin Core metadata consists of fifteen parameters and can be

expressed as elements in XML. As mentioned previously, these elements can optionally

be included as documentation in an LCML description.

The Dublin Core elements are described here, using descriptions from the DCMI

website [6]. Note that: any of these elements can also include the xml:lang attribute

in order to indicate the langauge used in their encoding.

dc:title - A name given to the resource. Typically, Title will be a name by which

the resource is formally known.

dc:creator - An entity primarily responsible for making the content of the

resource. Examples of Creator include a person, an organization, or a service.

Typically, the name of a Creator should be used to indicate the entity.

dc:subject - Subject and Keywords. A topic of the content of the resource.

Typically, Subject will be expressed as keywords, key phrases or classification codes

that describe a topic of the resource. Recommended best practice is to select a value

from a controlled vocabulary or formal classification scheme.

dc:description - An account of the content of the resource. Examples of

Description include, but is not limited to: an abstract, table of contents, reference

to a graphical representation of content or a free-text account of the content.

52

dc:publisher - An entity responsible for making the resource available. Examples

of Publisher include a person, an organization, or a service. Typically, the name of a

Publisher should be used to indicate the entity.

dc:contributor - An entity responsible for making contributions to the content of

the resource. Examples of Contributor include a person, an organization, or a

service. Typically, the name of a Contributor should be used to indicate the entity.

dc:date - A date of an event in the lifecycle of the resource. Typically, Date will be

associated with the creation or availability of the resource. Recommended best

practice for encoding the date value is defined in a profile of ISO 8601 and includes

(among others) dates of the form YYYY-MM-DD.

dc:type - Resource Type. The nature or genre of the content of the resource. Type

includes terms describing general categories, functions, genres, or aggregation levels

for content. Recommended best practice is to select a value from a controlled

vocabulary (for example, the DCMI Type Vocabulary). To describe the physical or

digital manifestation of the resource, use the FORMAT element.

dc:format - The physical or digital manifestation of the resource. Typically,

Format may include the media-type or dimensions of the resource. Format may be

used to identify the software, hardware, or other equipment needed to display or

operate the resource. Examples of dimensions include size and duration.

Recommended best practice is to select a value from a controlled vocabulary (for

example, the list of Internet Media Types defining computer media formats).

dc:identifier - Resource Identifier. An unambiguous reference to the resource

within a given context. Recommended best practice is to identify the resource by

means of a string or number conforming to a formal identification system. Formal

53

identification systems include but are not limited to the Uniform Resource Identifier

(URI) (including the Uniform Resource Locator (URL)), the Digital Object

Identifier (DOI) and the International Standard Book Number (ISBN).

dc:source - A Reference to a resource from which the present resource is derived.

The present resource may be derived from the Source resource in whole or in part.

Recommended best practice is to identify the referenced resource by means of a

string or number conforming to a formal identification system.

dc:language - A language of the intellectual content of the resource. Recommended

best practice is to use RFC 3066 which, in conjunction with ISO639), defines two-

and three-letter primary language tags with optional subtags. Examples include

”en” or ”eng” for English, ”akk” for Akkadian”, and ”en-GB” for English used in

the United Kingdom.

dc:relation - A reference to a related resource. Recommended best practice is to

identify the referenced resource by means of a string or number conforming to a

formal identification system.

dc:coverage - The extent or scope of the content of the resource. Typically,

Coverage will include spatial location (a place name or geographic coordinates),

temporal period (a period label, date, or date range) or jurisdiction (such as a

named administrative entity). Recommended best practice is to select a value from

a controlled vocabulary (for example, the Thesaurus of Geographic Names) and to

use, where appropriate, named places or time periods in preference to numeric

identifiers such as sets of coordinates or date ranges.

dc:rights - Rights Management. Information about rights held in and over the

resource. Typically, Rights will contain a rights management statement for the

resource, or reference a service providing such information. Rights information often

54

encompasses Intellectual Property Rights (IPR), Copyright, and various Property

Rights. If the Rights element is absent, no assumptions may be made about any

rights held in or over the resource.

Upon reading through the descriptions of the Dublin Core elements one might

question the relevance of some of these elements for the role of metadata for LCML

descriptions. This was considered, but rather than attempting to carve a subset of

relevant elements out of the Dublic Core elements, a descision was made to support

all the core elements and to let the authors of LCML descriptions decide which of the

elements to include as documentation for their own descriptions.

3.2.11 The Use of References and Functions

References

“References” are used to return a text string corresponding to the ‘value’ or ‘use’

setting of the referenced variable. The resultant text string is then used in place of

the reference. There are a number of elements in LCML that references can be made

from and these elements have been noted as they were described.

This method allows the flexibility for the content of some elements that are not

variables (for example, a path associated with the file element of a descriptionTarget

element) to depend on a variable. The referenced variable can then be displayed and

edited by an LCML user in the same manner as any other variable. References can

be used in a number of other ways as well, and can make the editing process be less

labor-intensive for the user.

References themselves are also described with a text string. To reference the

‘value’ of a variable one of following two forms is used:

• REF(VariableName)

• REF(DescriptionName;VariableName)

To reference the ‘use’ setting of a variable one of following two forms is used:

55

• USEREF(VariableName)

• USEREF(DescriptionName;VariableName)

In the above statements ‘VariableName’ refers to the content of the name el-

ement of the variable we desire to reference, and ‘DescriptionName’ refers to the

descriptionName element of the description that the variable we desire to reference

is located in. It is assumed that the ‘VariableName’ is unique within the description

it is located in and that the ‘DescriptionName’ is unique within the set of open de-

scriptions.17 (It is also assumed that the ‘VariableName’ and ‘DescriptionName’ do

not contain semi-colon (‘;’) character.)

A point that requires some clarification is how references involving variables that

are located within a block construct should be handled (as these variables can have

more than one value). In the current implementation references involving a block

of multiplicity and that are not being made from a constraint are handled in the

following manner:

• Reference from within a block to a variable outside a block - there is no issue,

the reference resolves to the outside variable’s unique value.

• Reference from outside a block to a variable inside a block - this does not resolve

as the reference is ambiguous.

• Reference from within a block to a variable within the same block - the resolution

of this depends on “context”. If the referenced variable exists in the same

structure as the referencing variable or exists uniquely in its ancestry then

the reference is resolved accordingly. Otherwise, this does not resolve as the

reference is ambiguous.

• Reference from a numOccurs element in a block to a variable within the same

block - see above, there needs to be a clear context for this to resolve.

17If either is not unique the resulting behavior of an LCML processor will depend on its imple-
mentation. It could resolve to the first instance of the reference that it encounters or warn the user
of the occurrence of an ambiguous reference.

56

• Reference from within a block to variable in another block - this does not resolve

as the reference is ambiguous.

The manner of handling references from within constraints that involve multiplicity

is slightly different:

• Reference from a single item element of a test is to a variable inside a block -

this test has a true result if the tested relationship is true for all instances of

the repeated variable.18

• References from both item elements of a test are to variables inside a block -

This test can be evaluated if both referenced variables are in the same block

of multiplicity and there is “context”19 between the variables. The test has a

true result if the relationship specified between the test items is true for every

instance of shared context between the values.20 Otherwise, this test does not

resolve as the relationship between the referenced variables is ambiguous.

Functions

There are two functions supported by LCML. These functions can contain references

and can be used in any element that a reference can. They provide a means for

extending the usefulness of references.

• CONCAT(item 1 ;...;item n) - Used to join multiple items into an output

string, where an item is either a string or a reference. Items are separated by

the semi-colon (‘;’) character. For example:

– ‘CONCAT(Hello; World;!)’ yields the resultant string ‘Hello World!’.

18For example, if we test whether a repeated string variable is not equal to ‘bad value’, the test
returns true, if none of the values of the repeated string variable are equal to ‘bad value’.

19If variables are in the same structure, they have a clear shared context and the relationship is
expected to be true for each instance of that structure. If the variables are not located at the same
level, but one is nested within the ancestry of the other there is also a context. In this case the
relationship is tested between each instance of the variable that is deeper in the nesting and the
variable that it is nested under.

20For example, if two repeated variables are located in the same structure, a test between them
would be true, if the tested relationship was true for every repeat of the structure.

57

– ‘CONCAT(Hello ;REF(myName);!)’ yields the resultant string ’Hello Stephen!’

(assuming the value of the variable “myName” is ‘Stephen’).

• EVAL(item 1 ;operator ;item 2) - Used to evaluate a basic mathematical expres-

sion, where item 1 and item 2 can each be either a numeric value or a reference

to a numeric value, and operator can be one of the characters ‘+’,‘-’,‘*’,‘/’, or

‘^’ (where the meaning of these characters corresponds to their normal mathe-

matical significance).

3.2.12 The Use of Formatting Elements

The startText, endText, and separator elements are provided for the “formatting”

of output. The startText and endText elements are only included in output if a

variable that is located in the content they are associated with21 has been “used”.22

The use of the separator element is similar, in that it is only included in between

instances of output where a variable has been “used”. Similarly, the header and

trailer elements are only included if the variable that they are directly associated

with has been “used”.

3.2.13 The Display of Hidden Variables

If all variables contained within a set or structure are hidden23 then the set or structure

should not be displayed to the user by an LCML processor. It becomes in effect

hidden, because it has no variable content that can be made visible.

3.2.14 The Resolution of a Variable’s Value

The output of a variable is resolved in the following order:

21The “used” variable need not be in the first layer of content, it can be nested some layers down.
22(The output of the content can be blank, but at least one variable must be “used”.)
23(If a stucture or set contains a structure that has a non-hidden child variable, then not all

variables are hidden.)

58

• If the value involves a reference that reference is resolved (and if the referenced

value is itself a reference, it is first resolved and so on).24

• If the uneditable or enumeration elements have been used a variable’s value

should be validated against them.

• If the aliases element has been used, any relevant alias substitutions should

be applied.

• The remaining (type-specific) validation should be done. If the type is numeric

and the text starts with an equal sign (‘=’), this step should be skipped, and

the equal sign removed.

• If the type of the variable is ‘file’ and the fileType element has a value of either

‘includeFile’ or ‘template’, then the variable’s output should become the text

of the indicated file.

• If referenced, a variable should return its output from this point.

• The header and trailer elements should be applied, if they exist. The variable

output should now be: the text of the header element (if any), the output of

the variable as resolved to this point, and the text of the trailer element (if

any).

• The variable’s output should be placed in the output text and then any ap-

plicable replacement elements under the descriptionReplacements element

should be processed.

3.2.15 The LCML Schema

A schema has been developed for the Legacy Computing Markup Language using the

XML Schema language [30] and is included as Appendix B. By using this schema in

24With this scheme it is possible to create a situation where there is a circular reference (where
something makes a reference to itself). Such a reference has no significance and should not be
expected to resolve successfully.

59

conjunction with a program that validates XML against a schema, an author of an

LCML description can test a description to ensure that it meets the format defined

in the schema. The LCML schema supports the inclusion of the fifteen Dublin Core

elements by referencing a copy of the Dublin Core metadata schema.

Note that: the following three items are criteria for a proper LCML description

file that the schema is unable to verify:

• A “type-dependent” element should only be included as a child of a var element

if its use is compatible with the value of a variable’s type element.

• The number of dataInstance elements in a data element should match the

value of the numOccurs element for the corresponding structure.

• The number and order of value and data elements in a dataInstance element

should correspond to the number and order of var and structure elements for

the corresponding structure.

3.3 Discussion of the LCML and its Development

In this section we will discuss some of the issues that were considered in the develop-

ment of the structure and syntax of LCML.

3.3.1 The Inclusion of Dublin Core Metadata

We have chosen to include the Dublin Core elements as optional elements in LCML

descriptions for the purpose of documenting LCML files. There are several reasons

to do so. It allows us to support existing metadata work and it provides a means

to document LCML files using a mature standard. Presumably, this would allow for

LCML descriptions to be incorporated into a digital document storage system at a

future date. For example, a repository of all publicly available LCML files could be

established and would potentially be indexable and searchable via the Dublin Core

metadata.

60

3.3.2 Use of Elements vs. Use of Attributes

One of the questions that was considered during development of the LCML specifi-

cation was: where in a description is it best to use XML elements and in where in

a description might it be better to make use XML attributes? This is a common

question in XML development and there are no clear, definite rules for making the

distinction [26].

After some examination of the question, the decision was made to specify LCML

descriptions entirely using elements and not to make use of attributes (with a few

exceptions where uses of attributes are inherited from other specifications).25

The decision was based on the following observations and criteria:

• Attributes are best suited to the encoding of string values (and better suited to

short strings at that).

• The use of attributes is not suited to describing data that could have a child

element as content.

• In general, the use of elements produces XML that is more human-readable

than similar XML that also makes use of attributes.26

• There is some benefit to minimizing the variety of forms of XML syntax that are

used in encoding (and therefore decoding). This can simplify both description

writing and processing.

• Consistency of syntax was an important consideration in design of the LCML

specification.

Based on these criteria, there were only a few places in the specification where it

seemed worth considering the use of attributes. Given the small number of cases, it

25Attributes are used by the root description element to reference the location of the LCML
schema and the Dublin Core metadata elements all support the xml:lang attribute. These cases
are uses of attributes that are inherited from other specifications, and are therefore in a sense only
tangentially part of the LCML description.

26At least in the author’s opinion.

61

was decided to develop the specification consistently using only elements (with the

inherited exceptions that were mentioned previously).

3.3.3 Use of One vs. Many Types of Descriptions

Conceptually, the encapsulation of a program27 can involve a number of different

tasks. At the most basic level we want to be able to describe:

• How to run a compiled binary of our program (and what command-line options

can be used).

We may also want to describe:

• How to generate a binary from its source code (invoking make, imake, cmake,

configure, etc. as appropriate).

• How to write a makefile28 to build a binary. (Makefiles are used to automate

the process of building a program).

• The compile-time parameters associated with building a binary. These may be

located in a file other than the binary’s makefile such as a configurable include

file. (Examples of parameters include an array size that is determined at the

time of compilation and set via an include file or a “pre-processor define” flag).

• Details of the values of the parameters with which a binary was compiled.

• Input files associated with a binary and the runtime parameters within them.

• A structure that will organize the various descriptions associated with a pro-

gram. (This could be one structure for all the descriptions relating to a program,

or a sub-structure that categorizes all the descriptions of a certain category (e.g.

27While the encapsulation of a ‘legacy’ program is our primary goal with LCML, it is also not
difficult to envision a scenario where we only want to describe the generation of a text file or script
and don’t really have the “encapsulation” of a specific program as our intent. For an example,
see Section 3.5.3, where there is a discussion of using LCML to describe how to write an LCML
description file.

28Or equivalent depending on the system employed.

62

we might categorize the ‘source’ descriptions which are used to build a binary,

and refer to them all from one ‘source’ description).

At an earlier stage of this work we used an approach that contained a number

of different types of description files to handle these different tasks [7]. We had the

following types of descriptions: Program, Source, Makefile, Binary, and Parameter.

This is clearly not the only possible set of description types that could be created (as

evidenced by the successful switch to a single description type), but it proved to be

a workable set.

The decision to create a single type was made upon observing significant overlap

in the functionality of different description types:

• The Program and Source types were variations on a similar theme and a varia-

tion of their core functionality was already present in the Binary, Makefile, and

Parameter types.

• There was significant overlap in functionality between both the Makefile type

and the Binary type, and the Makefile type and the Parameter type (the entire

functionality of the Parameter type was a actually a subset of the functionality

of the Makefile type).

And in addition it was noted:

• In basic terms, descriptions have two tasks: the creation of text output from

parameters, and the structuring of relationships between descriptions and pa-

rameters.

• There can be significant advantages to re-use of programming effort (this is true

for both XML and Java development).

• There are benefits to having to deal with only one description type, rather than

five distinct description types, even if the one description type is slightly more

complicated as a result.

63

• While restructuring the description types into a single description type was

expected to be a significant undertaking, a substantial increase in flexibility

was expected to result.

• The only apparent drawbacks to a restructuring were: the effort involved, and

the possibility of increased complexity in the description of some aspects of the

encapsulation.29

It was therefore decided to restructure the encapsulation format making use of a

single type of description file. The Parameter type was used as the basis for this new

description type. While some parts of the restructuring involved a natural transition,

other portions required more careful consideration.

The result is that we have a single description type that is designed to describe

how to assemble sets of adjustable parameters into information rich output text. The

resultant output can be saved as a file or treated as a script. The same description

type can be used to describe relationships between parameters and descriptions. This

set of functionality provides the capabilities necessary to encapsulate command-line

driven programs.

3.3.4 The Design of a Variable-Based Description

Another design decision that was made was to make descriptions variable-centric.30

There were two implications of this decision:

• an LCML processor is only expected to implement an editable user interface for

the values and settings of variables.

• since nearly all the encapsulation of parameters (and all the encapsulation of

editable parameters) is done through the use of variables, their implementation

needs to be done in a manner that is flexible enough to describe the information

that they need to encapsulate.

29Upon completion of the restructuring it appears that while some complexity has been added,
most of the additional complexity corresponds to increased functionality.

30An alternate approach was considered making use of both “variables” and “objects”, but was
abandoned after seeing no real benefit to such a distinction.

64

The resulting framework uses variables coupled with references to allow for a lot

of flexibility. A key factor of this framework, is that not all variables have to directly

contribute to a description’s output (as their “use” setting can be ‘false’). This means

that variables can be used both to describe output or to describe data relevant within

a description.31

3.3.5 The Separation of Encapsulation and Processing

A design goal of the LCML specification, was that its implementation should stand

independently from the implementation of a processing program. Remember that in

order to make use of an LCML description file one needs to process it somehow.32

In other words, we have a two-tier architecture, with encapsulation and processing

being separate tiers.

There are several reasons that encourage such a separation between encapsulation

and processing. Such an architecture:

• is a natural extension of the use of different technologies. (XML for encapsula-

tion and Java for processing).

• facilitates the individual development of both tiers.

• effectively permits the creation of multiple processing programs, or multiple ver-

sions of a processing program (for example, a JavaScript version of a processing

program could be used alongside a Java version with the same set of description

files).

A practical consequence of this approach is that the LCML should not describe

specifics of the user interface it expects to rendered to. For example, while we can

encode a list of choices that a variable’s value could have (using the enumeration

element), we do not specify from LCML that is should be displayed in a combo-box,

or that its display should have certain dimensions.

31For an example of flexibility with the current arrangement, a description author can stage a
reference through several variables applying aliases, functions, and constraints along the way.

32The LEGEND program, discussed in Chapter 4, is an example of a tool that is under development
to process LCML descriptions.

65

There is an element in the LCML description specification where this separation

is not strictly enforced: In our current implementation it is left up to a process-

ing program to interpret the text of the command element.33 There isn’t really an

effective, implementation-independent way to describe the launching of scripts, as

different platforms, command-line shells, or processing programs may use a different

syntax. Rather than restrict a user to a single “standardized” method and shell to

intially launch a script, it was decided that the description author should be able

to specify the command used to run a script. The flexibility gained was considered

more significant than breaking the separation between encapsulation and processing

otherwise implemented.

3.3.6 Multiplicity

The term ‘multiplicity’ is used as a general term to describe cases where a parameter

or collection of parameters has a multiplicity of values. The LCML language handles

multiplicity with the block construct.

Multiplicity can take a wide variety of forms; describing them and handling their

implications proved to be one of the most challenging aspects of developing the de-

scription format. The simplest example of an instance of multiplicity is that of a

one-dimensional array of values for a single variable. A slightly more complicated ex-

ample of an instance of multiplicity is a two-dimensional array, and the most complex

example is that of a jagged, multi-typed, n-dimensional data structure where individ-

ual variables can be disregarded at will. We will consider each of these requirements

in turn, and in some detail.34

33Currently LEGEND interprets it using the Runtime.exec() Java method. Similar methods should
be available in other programming languages (and may even work with the same or very similar
syntax to what is used with the Runtime.exec() method.)

34This last example can also be thought of as a tree-like data structure of non-homogenous nodes,
where nodes are expected to have certain characteristics based on their location in the tree. The
structure we have developed is not suited to highly arbritrary data that differs greatly in content
and contains little structure. It is probably fair to note though, that generally the parametization
of scripts or input files to programs does not exhibit extreme instances of these characteristics.
There probably are also imaginable cases that though supported by our structure, start to stretch
its usefulness.

66

Describing n-dimensional data

The LCML implementation supports an n-dimensional data structure by the recursive

nature of the structure and data elements. This allows for an unlimited amount

of nesting. While in practice it is expected that most descriptions will be limited to

two or three levels of nesting, given the recursive nature of specification supported

by XML, it is not really any more complicated to support an n-dimensional nesting

than an explicit two or three dimensional nesting.35

Jagged

We are using the term “jagged array” to describe a multi-dimensional array that is

not necessarily rectangular. A two-dimensional “jagged array” can be thought of as

a vector, each element of which is a vector containing an arbitrary number of objects.

Figure 3-2: Depiction of a Two-Dimensional Jagged Array

The primary difficulty that supporting the description of jagged arrays adds is the

question of how to specify the individual indices. The following example demonstrates

the recommended method, which makes use of a reference:

35It is worth noting that there are also challenges in viewing and editing n-dimensional data, and
that an LCML processor needs to implement some form of “recursive” display, to appropriately
handle the recursive data structure.

67

<block>

<structure>

<structureName>Example Structure</structureName>

<structureInfo>Demos a 2D jagged array.</structureInfo>

<numOccurs>2</numOccurs>

<var>

<name>jaggedIndex</name>

...

</var>

<structure>

<structureName>Jagged Structure</structureName>

<structureInfo>Dimension = ‘jaggedIndex’</structureInfo>

<numOccurs>REF(jaggedIndex)</numOccurs>

<var>

<name>My Letter</name>

...

</var>

</structure>

</structure>

<data>

<dataInstance>

<value>1</value>

<data>

<dataInstance>

<value>A</value>

</dataInstance>

</data>

</dataInstance>

<dataInstance>

<value>3</value>

68

<data>

<dataInstance>

<value>A</value>

</dataInstance>

<dataInstance>

<value>B</value>

</dataInstance>

<dataInstance>

<value>C</value>

</dataInstance>

</data>

</dataInstance>

</data>

</block>

Multi-typed

The idea of multi-typed array36 is handled in a straight-forward manner by the

structure construct. A multi-typed array can be described in a straight-forward

manner by placing variables with the desired types within a single structure. This

can also be combined with a nested structure to support a more complex situation

such as the inclusion of a vector within a multi-typed array.

Disregarding Variables

In the design of the structure of multiplicity we have included support for a multiplic-

ity of values, but not a multiplicity of “use” settings. There are however, cases where

it might be desirable to be able to “use” a variable on some repeats and not “use” it

on others. There is a way to handle this through references. The “use” setting for

the variable whose value we desire to control should contain a reference to a variable

36Extensive work was done investigating how to represent one-dimensional and two-dimensional
arrays within a variable before it was concluded that a multi-type array was truly necessary to
represent the variety of situations that we expect could be encountered.

69

that is located in the same structure and whose value evaluates to ‘true’ or ‘false’.

The referenced variable can then be edited, thereby controlling the “use” setting of

the referencing variable (the “referenced” variable can have its own “use” setting set

to ‘false’ thereby having no impact on the output of the description).37 The following

is an example:

<block>

<structure>

<structureName>Example Structure</structureName>

<structureInfo>Demo of disregarding variables.</structureInfo>

<numOccurs>1</numOccurs>

<var>

<name>myVariable</name>

...

<use>Ref(useMyVariable)</use>

...

</var>

<var>

<name>useMyVariable</name>

...

<enumeration>true;false</enumeration>

</var>

</structure>

<data>

<dataInstance>

<value>myValue</value>

<value>false</value>

37This arrangement can also be coupled with the use of aliases and multiple references to allow
a non-boolean setting to be “filtered” to a boolean setting to control the use of a variable, or to
control the “use” of a number of variables with one edit. There are scenarios where either of these
techniques could prove useful. (This is a tangential statement, as this could be useful outside of a
block of multiplicity as well).

70

</dataInstance>

</data>

</block>

Multiplicity of Binaries and Files

There is no problem directly associated with including a variable of the ‘binary’ or ‘file’

type within a multiplicity stucture. However, we have not supported a strong linking

between child descriptions and variables in multiplicity. (Or any variables for that

matter as the linking we have supported is informational through the association

element or implied through the use of references between descriptions). In other

words, the concept of multiplicity has not been extended to cover a multiplicity of

descriptions.38

The Separation of Structure and Data

Our approach to describing multiplicity splits the description into structure and

data elements. We considered the alternative of not separating structure and data and

mixing them into a single representation. After some examination it was concluded

that separating the structural and data representations resulted in a cleaner and

overall more understandable representation.

3.3.7 Encapsulating Information

A portion of the process of encapsulation deals with capturing the knowledge that

is necessary to use a program. While some of this knowledge becomes embedded

into the validation of variable values and the description of constraints, there is also

the possibility to provide both general and specific information to the user. In the

38While we have not made any special provisions to support multiple of instances of the same
description file, we can approach a situation where multiple instances of the same description are
required by independently declaring each instance of a description file (over-declaring if necessary)
or by using a single description file to sequentially write multiple files. While neither of those
suggestions may seem ideal, the complications involved in the implementation of (and particularly
the meaningful referencing of) a multiplicity of descriptions are significant and such a capability is
beyond the scope of the current work.

71

LCML specification there is an element for information provided at nearly every level

of the description: description, set, structure, and variable. As the text of

these elements is intended to be provided to users of encapsulated programs, making

effective use of these elements can go a long way towards helping a user learn and use

an encapsulated program.

It is also worth mentioning that since the informational elements simply contain

text, there is a bit of freedom in exactly what information is described and in what

manner it is described. With some thought and effort, within a well-developed de-

scription it should generally be possible to encode much of the information present

in a program’s documentation into the information elements that provide help to the

user. If this is done, a user can work with the encapsulated program with less of a

need to reference its documentation.

It is recognized that there are instances where an information element is required

by LCML but there may not really be relevant information to place there. Despite

the fact that this can occur, the information elements were made mandatory as it

is presumed that if they are required there is a greater chance they will be used

effectively; and even if only a little information is provided, in many cases a little

help is preferable to no help.

3.3.8 The Use of Validation

One of the difficulties found with the traditional command-line driven interface is

that the only opportunity for the “validation” of input parameters is typically what-

ever validation is done by the program at runtime, i.e. once it is already running.

Furthermore, the process of editing the scripts and arguments used by command-line

driven interfaces can be error-prone. This is true in terms of logical errors (specifica-

tion of an incorrect or inappropriate value), syntax errors (forgetting an extra space,

comma, etc.), and typographical errors (editing of text with accidental unintended

results). Because of the problems associated with this scenario a more capable system

of data validation should prove helpful to a user. This is especially true in the case

of a program that may take hours to run (and crash at some point in its run), or

72

in a scenario where programs are being launched into a queueing system (where the

results will be collected later).

With an encapsulation approach such as LCML there is the opportunity to make

provision for a more agressive validation scheme that ensures the validity of the data

against basic criteria. These criteria can be applied while a user is editing the param-

eters of a description. There are also many cases where it is desirable to “validate”

parameters in terms of their relationships to other parameters in the input file or

against more extensive criteria. While this is similar in concept to basic validation

we have separated it conceptually, and handle it under the term “constraints”.39

It is worth noting that the XML Schema language provides a fairly extensive set

of functionality for validation. Some of this functionality overlaps concepts we have

implemented (for example the specification of a numeric range). We have not made

use of this functionality, and there are several reasons not to:

1. The XML Schema based validation is not expressive enough to handle all the

situations we would like to express.

2. Making use of the XML Schema language would require restructuring our de-

scriptions. A description author would then have to learn both the constructs

of the XML Schema language, and our adaptation of it for use in legacy encap-

sulation (if such an adaptation is even possible).

3. Performing our own validation affords us the opportunity (and on the downside

requires us to) provide our own handling of validation errors.40

In LCML, the following properties can be specified at the variable level and can

39We actually have three concepts that are associated with the idea of “validation”.

1. The validation of an LCML description against a schema (i.e. schema-validation).

2. Basic validation of variable values as supported by LCML (what we are currently describing).

3. Validation of specific criteria and relationships between variables (what we have labeled “con-
straints”).

These concepts are distinct and should not be confused.
40If we had used an XML Schema-based approach we could make use of standard routines for

schema validation.

73

be tested for validity (the LCML elements used to specify the property are included

in parenthesis):

• A variable’s value cannot be edited. (uneditable)

• A variable’s “use” setting cannot be edited. (uneditable)

• A variable’s value must be part of a list of acceptable values. (enumeration)

• A ‘numeric’ variable’s value must be a number.41 (type)

• A ‘numeric’ variable’s value must match an expected precision (integer, float,

long, double).42 (type, precision)

• A ‘numeric’ variable’s value must fall within a certain range.43 (type, range)

• A ‘string’ variable’s value must contain a minimum of a certain number of

characters. (type, minLength)

• A ‘string’ or ‘file’ variable’s value may contain a maximum of a certain number

of characters. (type, maxLength)

3.3.9 The Use of Constraints

The basics of the use of constraints have been described in some detail in Section 3.2.9.

The system was developed to be able to reflect complicated relationships between

more than one variable. The encapsulation of constraints is verbose, but here it was

decided that clarity is preferrable to brevity.

One difficult situation that is related to the use of constraints, is how to handle

an instance where a constraint involves the options that a binary was built with.44

The following scheme is proposed as a method for handling such a situation:

41If a numeric variable’s value begins with an “=” then validation is bypassed (this allows an
expression to be used).

42See previous note.
43See previous note.
44This scenario is certainly applicable to our test case HOPS.

74

• A description can be written to accompany a binary description. This descrip-

tion should output a file in LCML description format45 which describes any

parameters that may be referenced after the binary is built.46

• This description can make use of references to retrieve the values of relevant

parameters from the binary description.

• At build-time, a copy of this “build-time” description can be saved.

• Constraints can be then written involving these stored “build-time” parameters.

It is also worth noting that describing all constraints imaginable is not necessarily

a worthwhile or even possible task. Constraints can certainly assist a user in running

a program, but at some level the user has to understand how to use the program that

has been encapsulated. There are probably limited returns for the effort involved in

describing esoteric constraints. Furthermore, it is worth remembering that guidance

can be provided to the user through the information elements, and that this can be

used to guide the editing process. While this clearly does not provide any form of

checking, it does provide a means of helping the user to use the encapsulated program

properly (and it can be used to inform the user of constraints that could not otherwise

be described with LCML).

3.3.10 Restricted Descriptions

One of the ideas incorporated into LCML is an allowance for the restriction of the

visibility of variables in a description.47 This is included because there are cases that

it might be desirable to restrict a description such that a user does not need to view all

variables. (See [17], where usability testing of a command-line encapsulation system

resulted in a similar conclusion).

45Here we are proposing the use of LCML to describe an LCML file because we can easily parse
and read the parameters stored in an LCML file at a later time.

46The absoluteLocation element was included in LCML so that we would be able to read back
in such a description.

47While this restriction of visibility (i.e. ‘hiding” variables) is described in LCML, it would have
its effect when the description is being viewed and edited with an LCML processor.

75

A restriction can be done purely for the sake of convenience (it may simply be

unecessary to view some variables) or it could be done as a means of limiting a user

to a subset of the functionality in a description. (For example, this could be used

to prevent a novice user from incorrectly editing parameters that do not require any

attention or to provide a novice user with a simpler interface). With the scheme

described here, a description writer can simply provide different states of descriptions

(you could have a ‘spring’, ‘summer’, and ‘fall’ version of a description) or could

specifically envision user roles such as ‘novice’, ‘intermediate’, and ‘expert’.

In LCML, the restriction of a variable’s visibility is accomplished using the hidden

element. As discussed in Section 3.2.6, a hidden element contain either the text ‘true’

or ‘false’ or a reference that resolves to ‘true’ or ‘false’. If the hidden setting is ‘true’

then the element should not be made visible to the user by an LCML processor.48

Because the hidden element can contain a reference, it is possible to setup a

dynamic description where variables can be hidden and unhidden. Such a scenario

could be used to hide parameters whose relevance depends on other parameters or

to allow the display of multiple description states (as discussed above) from a single

description.49

3.3.11 The Use of Replacements

There are two functionalities that can be used for “replacement” (i.e. the substi-

tion of text) in LCML. One occurs on the description level and makes use of the

descriptionReplacements element. The other occurs on the variable level and

makes use of the aliases element. While they provide some overlap in function-

ality, they also can be useful in different cases.

Replacements can be used in a variety of ways, some of which have been suggested

48Though an LCML processor could also support a “show hidden variables” mode, where all
variables are shown regardless of their “hidden” setting. Such a mode could also give a user the
capability to edit the “hidden” settings of variables. (There are some benefits to allowing such a
mode and we have implemented one in LEGEND).

49If the creative use of alias elements is incorporated into such a scenario (being used inside
“helper variables” to filter a “mode” string into a ‘true’/‘false’ value as appropriate), a description
author could create a description where a user can choose between one of several display “modes”
by editing a single variable.

76

already. We will illustrate one additional manner here.

A question that arose was: when we encapsulate a program that makes use of

a number of files, is there any way to describe the file paths in a manner that they

can be easily moved from one computing account or environment to another without

having to individually reconfigure each path. (While the use of relative paths could

provide a partial answer to this, it isn’t a perfect solution). The following is an

approach using aliases.

• Within each file variable of interest a description author can specify the path in

terms of some common base value, ‘$BASEPATH/mysubdirectory/myfilename’

(where ‘mysubdirectory’ and ‘myfilename’ correspond to the directory and file

of interest).

• The description author can also specify an “alias”, where the “alias key” should

be ‘$BASEPATH’ and the “alias output” should be a reference to a file variable

which contains the “base path” as its value.

• All the file variables can be made to reference a common variable containing

the base path in this manner.

• In this scenario, if the code is installed on a new system, the description can

be updated by changing one variable. The use of the alias replacement type

automatically extends the change to wherever it needs to be implemented.

Note that: here we are assuming that the same file structure is used on the new

installation (just with a different base path).

3.3.12 Creating and Running Scripts

One of the goals of LCML was to be able to not only encapsulate the input files

used by a legacy program but also to be able to encapsulate the commands used to

run a program and the process used to compile a legacy binary. The language was

developed to be suited to both of these possibilities.

77

One of the questions that came up was how to best generate scripts, and a limited

deterministic approach was rejected in favor of a more flexible approach (scripts and

files are now described in the same manner, so all the flexibility that was developed to

describe parameter files can now be applied to scripts). The approach used should be

able to work with a very wide variety of command-line driven systems. For example,

the current framework should be flexible enough to describe: the UNIX ‘cp’ command,

launching an program using MPI (Message Passing Interface), using Sun Grid Engine

to queue a script for running a legacy program, or the compilation of a program with

a tool such as ‘gmake’.

3.3.13 Storing State - Import/Export Format

The values and settings of variables in an LCML description provide a default state

for the description; however, it is also desirable to be able to save other states of the

description (with different values and settings). One manner in which this can be

done is to simply replicate the entire description, but with an edited set of values

and settings. While this can effectively capture the state of a description, and is a

straight-forward manner by which to create multiple versions of a description, three

drawbacks have been identified to this approach:

1. It is a verbose approach. Much of the information contained in a description is

static, and immutable by the process of editing the description. It is unecessary

to duplicate this information every time the state of the description is stored.

2. It works on a description level. When editing a set of descriptions (as would be

typical for the editing of an encapsulated program), it may be desirable to save

the state of all descriptions, or a group of descriptions, and not have to consider

them individually.

3. It is a static approach. It is reasonable to expect that as encapsulated programs

undergo continued development that the descriptions that describe them may

require incremental updates. A previously saved copy of a description would

78

become incompatible and need to edited “by hand” for use with the updated

program. However, if a file only stores the state of the program, it could be

used to modify the state of an updated description to match the stored state

(as best as possible).

So, an alternative approach is to develop a format for storing the state of the

variables in a description. It is not intended that a file in such a format would be

written by a person, but rather that it would be generated by an LCML processor

such as LEGEND, which could have the capability to export and import description

states.

3.4 Example Descriptions

3.4.1 Hello World Example

We’ll start with a traditional “Hello World” example. The following LCML descrip-

tion can be used to create a text file that contains the text “Hello World”.

<?xml version=’1.0’ encoding=’UTF-8’?>

<description

xmlns:xsi=‘http://www.w3.org/2001/XMLSchema-instance’

xsi:noNamespaceSchemaLocation=‘http://deslab.mit.edu/LCML/lcml.xsd’>

<descriptionName>Hello World Example</descriptionName>

<descriptionInfo>This example is used to generate a file

that contains the text ‘‘Hello World’’</descriptionInfo>

<descriptionTarget>

<file>HelloWorld.txt</file>

</descriptionTarget>

<descriptionContent>

<set>

<setName>Hello World Set</setName>

79

<setInfo>This set is used to hold the Hello World variable.</setInfo>

<var>

<name>helloWorld</name>

<info>This variable is used to output the text "Hello World".</info>

<type>string</type>

<value>Hello World</value>

<use>true</use>

<hidden>false</hidden>

</var>

</set>

</descriptionContent>

</description>

Notes:

• The first line is typical and indicates the XML version and character encoding

used by this LCML document.

• In this example, the root description element contains two attributes. These

are used to reference the location50 of the LCML schema. (A local path to a

copy of the schema could also be substituted).

• We have used the descriptionTarget element to declare that this description

can be used to create file output and that the created file should be named

named “HelloWorld.txt”.

• We have used a variable within the descriptionContent section to encode the

actual text of the file, “Hello World”.

3.4.2 Advanced Hello World Example

The following is a more complex “Hello World” example.

50The location listed here is not guaranteed to be the final online location for this schema.

80

<?xml version=’1.0’ encoding=’UTF-8’?>

<description

xmlns:xsi=‘http://www.w3.org/2001/XMLSchema-instance’

xsi:noNamespaceSchemaLocation=‘http://deslab.mit.edu/LCML/lcml.xsd’

xmlns:dc="http://purl.org/dc/elements/1.1/">

<descriptionName>Advanced Hello World Example</descriptionName>

<descriptionInfo>This example is used to generate a file that says

Hello to the world and to the user, and

demonstrates some features of LCML.</descriptionInfo>

<descriptionMetadata>

<dc:title xml:lang="en">Advanced Hello World Example</dc:title>

<dc:creator>Stephen Geiger</dc:creator>

</descriptionMetadata>

<descriptionTarget>

<file>HelloWorld.txt</file>

</descriptionTarget>

<descriptionContent>

<set>

<setName>Hello World</setName>

<setInfo>Holds the basic Hello World.</setInfo>

<var>

<name>helloWorld</name>

<info>This variable is used to output the text

"Hello World

and Hello USER!" </info>

<type>string</type>

<value>Hello World</value>

<use>true</use>

<hidden>false</hidden>

81

<trailer>
and Hello USER!</trailer>

<uneditable>value;use</uneditable>

</var>

</set>

</descriptionContent>

<descriptionReplacements>

<replacement>

<replacementKey>USER</replacementKey>

<replacementContent>

<set>

<setName>User Name</setName>

<setInfo>Contains the user name.</setInfo>

<var>

<name>userName</name>

<info>Enter your name here.</info>

<type>string</type>

<value></value>

<use>true</use>

<hidden>false</hidden>

</var>

</set>

</replacementContent>

</replacement>

</descriptionReplacements>

<descriptionConstraints>

<conflict>

<test>

<item>REF(userName)<item>

<relation>SAME</relation>

<item>Sam</item>

82

</test>

</conflict>

</descriptionConstraints>

</description>

Notes:

• We have added an additional attribute (‘xmlns:dc’) to the root description

element. It is used to define the ‘dc’ namespace and allows us to reference the

Dublin Core metadata elements.

• We have added an example of the inclusion of two of the Dublin Core metadata

elements as a means of documenting our description. The first of the two Dublin

Core elements we have included demonstrates the use of ‘xml:lang’ attribute.

• We have added the use of a trailer element that adds the text ‘and Hello USER!’

to the variable output. The text ‘
’ is a representation of a newline

character so that ‘and Hello USER!’ is put on a new line.

• In this example we have used the uneditable element to indicate that the

user should not be able to edit the “value” or “use” setting of the helloWorld

variable.

• In this example we have also used the descriptionReplacements element. In

this case it is used to replace the text “USER” with an appropriate user name.

• We have specified a constraint that indicates that the supplied user name can-

not be ‘Sam’. The constraint also demonstrates the use of a reference to the

“userName” variable.

3.4.3 ‘cp’ Example

A more practical example is a description of the UNIX ‘cp’ command. In this case,

instead of creating a file we want to be able to run a script.51

51For this example we have assumed that the script will be invoked by the ‘runtime.exec()’ method
in Java. This assumption affects the syntax of the command element, though the syntax we have

83

<?xml version=’1.0’ encoding=’UTF-8’?>

<description

xmlns:xsi=‘http://www.w3.org/2001/XMLSchema-instance’

xsi:noNamespaceSchemaLocation=‘http://deslab.mit.edu/LCML/lcml.xsd’>

<descriptionName>‘cp’ Example</descriptionName>

<descriptionInfo>This example is used to generate a script that copies

a file using the UNIX ‘cp’ command.</descriptionInfo>

<descriptionTarget>

<script>

<command>sh tempscript</command>

<scriptname>tempscript</scriptname>

</script>

</descriptionTarget>

<descriptionContent>

<set>

<setName>‘cp’</setName>

<separator> </separator>

<setInfo>This set is used to describe the ‘cp’ command,

which is used to copy files.</setInfo>

<var>

<name>‘cp’ binary</name>

<info>Used to write the ‘cp’ command in a script.</info>

<type>binary</type>

<value>cp</value>

<use>true</use>

<hidden>true</hidden>

</var>

<var>

used here could potentially work with other implementations as well.

84

<name>Source File</name>

<info>Enter the source file here.</info>

<type>file</type>

<value>mysourcefile</value>

<use>true</use>

<hidden>false</hidden>

</var>

<var>

<name>Destination File</name>

<info>Enter the destinations file here.</info>

<type>file</type>

<value>mydestinationfile</value>

<use>true</use>

<hidden>false</hidden>

</var>

</set>

</descriptionContent>

</description>

Notes:

• We have made use of the separator element to insert a separator (in our case

a space) between the output of the variables.

• We have hidden the ‘cp’ binary variable as there is no real reason to display it

to the user.

• The encapsulation done here could be incorporated into a larger script, and

used as a means of staging files while working with another program. This file

staging could be before and/or after the other program is run.

85

3.4.4 SGE Example

A final example is how to write a description that can be used to launch a script in

the Sun Grid Engine environment.

<?xml version=’1.0’ encoding=’UTF-8’?>

<description

xmlns:xsi=‘http://www.w3.org/2001/XMLSchema-instance’

xsi:noNamespaceSchemaLocation=‘http://deslab.mit.edu/LCML/lcml.xsd’>

<descriptionName>SGE Example</descriptionName>

<descriptionInfo>This example demonstrates how to

use LCML to run a script with the

Sun Grid Engine program. The script itself simply

contains a UNIX command.</descriptionInfo>

<descriptionTarget>

<script>

<command>qsub tempscript</command>

<scriptname>tempscript</scriptname>

</script>

</descriptionTarget>

<descriptionContent>

<startText>#$ -S /bin/sh
</startText>

<set>

<setName>Script Content</setName>

<setInfo>Holds a unix command.</setInfo>

<var>

<name>myCommand</name>

<info>Used to launch a UNIX command.</info>

<type>binary</type>

<value>uname -s</value>

86

<use>true</use>

<hidden>false</hidden>

</var>

</set>

</descriptionContent>

</description>

Notes:

• To launch a script into SGE we have simply used an appropriate syntax for the

command element and content for the startText element that points the script

to an appropriate shell to use from SGE. For more details on the general use of

SGE, see the SGE documentation [11].

3.5 Tools for Generating Descriptions

The LCML document format is an XML-based document specification with some

inherent complexity and syntax. In order to simplify the process of preparing LCML

description files the possibility of providing an LCML description authoring tool was

investigated. Such a tool could be be provided as an alternative to preparing all

LCML descriptions directly in a text editor (“by hand”). The following are potential

benefits for the description author:

• Reduced effort of physically entering the text of an LCML description.

• Readily available guidance as to the appropriate structure of the LCML de-

scription.

Three general approaches were considered:

1. Use of an existing XML editor with specific application to LCML description

files through either validation against the LCML schema or custom modifica-

tion/extension of the editor.

87

2. Extension of the features of an existing text editor by adding tools to simplify

the process of authoring an LCML description.

3. Creation of an LCML description that is capable of assisting in the creation of

other LCML descriptions.

3.5.1 Use of an Existing XML Editor

A search was undertaken for freely available (preferably open-source) cross-platform

XML editors, that included support for XML-based schemas.52 There was not much

found that seemed to meet the criteria, and the best prospect among the XML editors

investigated was Pollo [23], which does provide support for schema validation.53

The alternative idea of customizing an existing XML editor to LCML would likely

require a significant programming effort and therefore this approach is not recom-

mended given the possibilities present with the other two approaches.

3.5.2 Extension of a Text Editor

The second idea was to enhance an existing text editor to make it easier to write

the text of LCML description file. With this approach, the description author would

have to work with the “source view”(i.e. editing the raw text and tags) of the XML;

however, the extensions could provide features that facilitate the insertion of skeleton

LCML text, thereby simplifying and providing guidance to the editing process.54

There are a large number of text editors available and several candidates for

extension are discussed here.

52Support for XML based schemas was considered an important characteristic because a well
implemented XML editor could then provide editing assistance that is specifically relevant to LCML
by referencing the schema. The editor could also then be used to ensure that the description produced
was a valid description according to the schema.

53Schema validation in Pollo warns about the presence of an unexpected
“xsi:noNamespaceSchemaLocation” attribute in the LCML description element. If this is
encountered, it can be ignored.

54It is worth noting, that while working in such a view maybe somewhat intimidating at first to
someone not real familiar with XML, with a little experience this could be a fast approach to writing
descriptions.

88

EMACS

The EMACS editor, better known in the Unix world, is a text editor that is available

on a wide variety of platforms. It supports “modes” which are used for editing

specific types of text, and a possible approach would be the creation of a “mode” for

the editing of LCML.

JEdit

JEdit [16] is a mature Java-based, open source, programmer’s editor that has support

for macros as well as a plugin architecture. It might be possible to write an effective

plugin for the authoring of LCML descriptions.

Microsoft Word

Microsoft Word contains advanced and powerful macro/scripting capabilities. The

creation of a set of tools for authoring LCML in Word would be relatively straight-

forward given a knowledge of the Visual Basic for Applications (VBA) scripting lan-

guage, and an example of such an implementation was prototyped.

Figure 3-3: Prototype of LCML Authoring Extensions for Microsoft Word

89

However, such an implementation does not meet two goals present in the project:

the use of tools that are available cross-platform and are freely available.

OpenOffice.org

OpenOffice.org [20] is an open source office suite that is available for a number of

platforms and which contains macro and scripting capabilities. As such, its use should

be suitable for the project. It is expected that an implementation of a set of tools to

assist in authoring LCML could be done for OpenOffice.org’s word processing package.

The implementation could be made similar to the tools prototyped in Microsoft Word.

3.5.3 Use of LCML to Author Itself

While LCML has been developed for the creation of text relevant to legacy computing

(primarily input files and shell scripts), it proves to be well-suited to the creation of

information-rich text and it is therefore possible to create an LCML document that

is designed to author other LCML documents.55 A prototype of this technique shows

promise.

55This also proved to be a good test case for LCML as in it we are forced to couple a high level
of multiplicity with a level of variability of content within that multiplicity.

90

Chapter 4

LEGEND (LEGacy Encapsulation

for Network Distribution)

In this chapter we discuss the development and use of the program LEGEND (LEGacy

Encapsulation for Network Distribution). We will first overview the use of the pro-

gram and then discuss the handling of several specific issues.

4.1 The Role of LEGEND

The LEGEND program is being developed as a tool for processing and displaying

description files written in Legacy Computing Markup Language (LCML) and for

generating output from them. LEGEND automatically generates a user interface for

a set of LCML descriptions. A user can then edit parameter values (with assistance

provided in understanding the parameters and in validation of the parameter values)

or as appropriate create a file and/or a script output for a description state. If a

script is created, it can then be run from the LEGEND interface. In this manner

LEGEND can be used to run a program encapsulated in LCML.

91

4.2 LEGEND Program Overview

4.2.1 Getting Started

Since LEGEND works with Legacy Computing Markup Language (LCML) descrip-

tions, the process of using LEGEND begins by selecting Open ... or Open from

web ... from the LEGEND’s File menu. This allows the user to open an LCML

description. Alternatively, the user can open a file that was created by exporting a

description state and the description that it references will automatically be opened

(and its values and settings set to the exported state).1 If the Open from web ...

functionality was selected, a mini web-browser is presented, and the user can either

“browse” to the location of a file or can directly enter the URL2 of a file.

Figure 4-1: Opening a description file.

1This feature is undergoing development.
2Uniform Resource Locator.

92

Figure 4-2: Opening a remotely located description file.

When a description is opened, it is opened along with any LCML “child” descriptions

referenced by it, as well as any of their “descendant” descriptions.3 The following is

an example result:

Figure 4-3: Example of a set of opened LCML description files.

3In other words, a description opens with all its child descriptions, which in turn open with all
their child descriptions, and so on recursively (until no more descriptions are referenced).

93

There are four areas of the screen to consider: the menu, the LCML description

tree, the LCML description display area, and the status bar. We will discuss the use

of each of these areas in turn.

Figure 4-4: Example of opened LCML files with display areas labeled.

4.2.2 The LEGEND Menu

The LEGEND menu contains three submenus, the File menu, the Tools menu, and

the Help menu.

The File Menu

The File menu contains the following choices:

• Open ... - Displays a dialog box used to open an LCML description file and

its descendants, or select and open an exported state of a description and its

descendants.

• Open from web ... - Similar to the Open ... menu option, except that this

choice can be used to open a file from the internet.4

4(i.e. a location that can be referenced via a URL (Uniform Resource Locator)).

94

• Save XML Description ... - Displays a dialog box used to save a complete

copy of the LCML description that is currently being edited (with the current

parameter values and settings).

• Close - Used to close the currently open LCML descriptions.

• Import ... - Displays a dialog box used to import a set of previously exported

values to the currently selected description (and possibly its descendants).5

• Export ... - Displays a dialog box used to export an xml file containing values

from the currently selected description (and possibly its descendants).6

• Quit - Used to exit the LEGEND program.

The Tools Menu

The Tools menu contains the following choices:

• Refresh - This option regenerates the user interface (re-displaying the current

state of the description). When using a “table display” this can be used to

return a sorted table to its initial order.

• Extensions - Holds a sub-menu which contains any plugins that are currently

accessible from LEGEND. See Section 4.3.3 for additional information.

• Options - The options menu contains the following choices:

– No Schema Validation / Open with schema validation - This op-

tion indicates whether LCML descriptions are to be validated against the

LCML schema upon being opened. If Open with schema validation

is selected, then LCML descriptions are expected to reference the LCML

schema (and they will fail validation if they do not contain a reference to

a schema).

5This feature is under developement.
6This feature is under developement.

95

– Test Constraints On Action / Always Test Constraints - This op-

tion specifies how often any constraints in the description are tested. If

Test Constraints On Action is selected, constraints are only tested

when file or script output is to be created from a description. The Al-

ways Test Constraints option is used to test constraints upon any edit

of a variable’s ‘value’ or ‘use’ setting as well as when file or script output

is to be created.

– Don’t Show Hidden / Show/Edit Hidden - This option controls

whether “hidden” variables7 are displayed to the user. If Show/Edit

Hidden is selected, the “hidden” setting for variables is also shown and

editable.

– Use Panel Display / Use Table Display - This option allows the user

to choose between the default “panel display” and a “table display”.

– Export Current Description / Export From Current Down - This

option controls the export behavior. If Export Current Description is

selected, exporting only stores the state of the description that is currently

being edited. If Export From Current Down is selected, exporting

stores the state of the description that is currently being edited and that

of all its descendants. (If Export From Current Down is selected

and the originally opened description file (the root of the description tree)

is currently selected, exporting stores the state of the entire set of open

descriptions.)

The Help Menu

The Help menu currently contains one item:

• About ... - Displays a dialog box that contains basic information about the

program.

7i.e. LCML variables whose hidden element has the value ‘true’ (or whose reference resolves to
the value ‘true’).

96

4.2.3 The LCML Description Tree

The LCML description tree contains the description names of all the open LCML

descriptions. The root node of the description tree corresponds to the description

that was originally “selected” to be opened (and if that description does not reference

any “child descriptions” it will be the only node in the tree).

The tree is used to navigate through the LCML descriptions that are open. Se-

lecting a description in the tree makes it the “currently selected” description, causing

the description display area to show an interface corresponding to that description.

4.2.4 The LCML Description Display Area

The LCML description display area presents a graphical user interface for the cur-

rently selected description. It is automatically created by LEGEND and is used to

configure the values and settings for the variables in the currently selected description.

We will discuss various aspects of the description display area and its use.

Foldable Panel Display

The default interface for the description display area makes use of “foldable” panels.

Figure 4-5: The Foldable Panel Display

97

Each panel corresponds to a “set” in LCML and can be collapsed (or restored)

using the button at the panel’s top-right corner. At the top-right corner of the entire

description display area there is button that can be used to collapse all panels. When

there is a large number of sets and variables in an LCML description, this arrangement

facilitates the navigation to a specific set.

Sortable Table Display

An alternate interface for the description display area that makes use of a sortable

table is available. The table display8 provides two capabilities that are not present in

the panel display:

• variables can be sorted (by set, name, value, etc.)

• all variable values are in one column (making it simpler and quicker to carry

out a large number of edits.

Figure 4-6: The Sortable Table Display

8This feature is under developement.

98

Display of Information

Information is contained in LCML descriptions at the description, set, structure, and

variable levels. When the cursor hovers over a relevant area of LEGEND a piece of

this information is displayed to the user as a “tooltip”. For example, if the cursor

hovers over the heading of a panel that displays a set, the information for that set

should appear.

Figure 4-7: The Display of Set Information via a Tooltip

Editing

There are generally only two types of settings that are edited in an LCML description:

the “use” and “value” settings of variables.9 The general process of editing involves

configuring the “value” and “use” settings for the variables in a description and then

creating output (a file or a script) from the description.

Validation and Constraints

When the result of the editing of a variable’s “value” does not pass validation an

informational message is displayed to the user and the variable’s value reverts back

9If the menu option Show/Edit Hidden is selected, a third setting, the “hidden” setting of
variables is also editable

99

to its value prior to editing. When a constraint is violated a warning is simply

displayed.10

Saving a File/Running a Script

If the currently selected description supports the creation of output to a file and/or a

script then a panel is included at the bottom of the description display area for this

purpose. A button is included for the creation of each relevant type of output (i.e.

there may be a Write File ... button, a Run Script ... button, or both, depending

on what variety of output the description supports).

Display of Multiplicity

It is possible that a description file has a block element containing variables with a

multiplicity of values. Such a case is represented in the description display area with

an Edit Structure ... button.

Selecting the Edit Structure ... button displays a dialog11 that contains a table

representing the content of the block’s structure element. Each variable and child

structure contained in the structure element is placed in its own column and the

table contains a row for each dataInstance element of the structure.

If the block is multi-dimensional, the additional dimensions can be opened by

clicking the Edit Structure ... buttons found in the table display of the original

structure. Clicking on the heading of a variable’s column displays details about that

variable and provides access to its “use” setting (and possibly its “hidden” setting as

well). The following figure displays the first and second dimension of a block:

10These functions are under development.
11This feature is under development.

100

Figure 4-8: The Display of Multiple Structures

4.2.5 The Status Bar

The status bar is used to provide feedback to the user during program operation.

In our implementation, it is typically used to present confirmation information that

follows some sort of action.

4.3 Discussion of Design and Technical Consider-

ations

4.3.1 User Interface Design and Implementation

General

Attention was paid to try to make the user interface simple to use and streamlined

where possible. A general design principle used was to the minimize the number of

mouse clicks that are necessary to complete basic actions. Also, attempts were made

to follow standard conventions for user interface components. (For example, menu

items and buttons that are used to display a dialog box end in the text ‘ ...’).

101

Some of the features that were implemented to help the user easily edit descrip-

tions include: relevant information from a description is displayed to the user in

tooltips, variables that are uneditable are actually not editable, and variables with

an enumeration are displayed using drop-down “combo-boxes” only permitting the

selection of appropriate choices.

Folding Panel Display

As mentioned in Section 4.2.4, a user interface concept that was implemented in the

“panel display” view of the description display area was the idea of folding panels.

This idea of folding has seen use in integrated development environments and text

editors. In the context of editing text (or code), folding allows portions of text to

be “folded” or hidden from display and then later “unfolded” on demand. This can

allow a user to work with a cleaner display and allow a user to navigate through a

long display more quickly. A similar idea was also found in MAUI [18].

Our use of folding is similar, and in our application we are able to fold a “set”.

(When folded a set’s contents are not displayed). A two-state button provides feed-

back to the user on the state of the folding. Also, a global folding button can be used

to collapse all the sets. The global folding functionality does not unfold sets as it is

unclear what action should be undertaken in the event that there are some sets that

are folded and some that are not. In the interest of straight-forwardness the button’s

functionality is that it always collapses all sets. A normal (single-state) button is

used for this case. The global folding functionality, in conjuction with the ability to

fold single sets, allow a user a convenient manner by which to deal with only one set

at a time (the user can simply fold all sets and then expand the ones of interest one

at a time).

Sortable Table Display

While the default panel display of LCML description content provides a clear pre-

sentation of sets and their variables, it is not compact and is not well-suited for the

quick traversal through and editing of large numbers of variables. The sortable table

102

display was developed to try to address these issues and to make it easier to find

specific variables (again when there is a large number of variables).

The sortable table display contains the “table” at the top, and an “information

panel” at the bottom. The information panel provides an alternative to the standard

tooltip based information system in the event a user wants to read a long section

of information more carefully, or in the (presumably) rare case that there is more

information provided then will fit in a tooltip.

The development of the sortable table display involved extending the JTable Java

Swing component. It was extended both to be able to display other components

(labels, check boxes, and combo boxes) within it and to be sortable. The extension

was based on the examples found in [1] and [27].

Remote File Browsing

Another issue that was addressed was what could be done to make it easier for a

user to access a remote file than always having to manually enter an entire URL. The

solution that was developed was the creation of a remote file browser.

The “remote file browser” was implemented using the HTML12 rendering capa-

bilities of the JEditorPane Java Swing component. While these capabilities do not

match those of a full featured web browser, there is sufficient capability to allow a

user to browse through most websites and thereby select a description file that is

remotely available from a website. This approach works if the description files are

linked to from a webpage or if remote browsing of the file system is supported for the

remote folders of interest.

4.3.2 The Use of Runtime.exec()

If LEGEND is used to run scripts, it passes the value of the command13 element from an

LCML description to the ‘Runtime.exec()’ method in Java. If issues are encountered

12Hyper Text Markup Language
13The command element is a child of the script element, which is itself a child of the

descriptionTarget element.

103

with the proper use of the command element that are not made clear by available

examples, it is suggested that the reader consult the Java documentation and/or other

resources related to ‘Runtime.exec()’ as there can be some intricacies involved in its

proper use. In our development, examples from various online articles were considered

so that we would properly handle the use and output of the ‘Runtime.exec()’ method.

4.3.3 Extension of LEGEND

As discussed previously one of the goals of this work is to support the integration of

legacy programs with modern software development techniques. As a test case, we

considered how LEGEND could be integrated with Sun Grid Engine (SGE) [11], a

tool used for management of distributed computing.

Initially, a direct integration of SGE was planned. This would allow a typical

LCML script to be run locally or using SGE. However, upon further consideration it

was decided that it is preferable to describe how to launch a program into the SGE

environment at the level of the LCML descriptions (this can be done since SGE is a

command-line driven program). While this approach involves slightly more work for

a description author, it is preferable, as it represents a far more flexible and general

solution.

Some work had already been done on creating an “SGE Monitor” tool. This

tool would be used for monitoring the status of SGE from LEGEND. It was then

considered how this work could best be incorporated into LEGEND. Some LEGEND

users might take advantage of such a tool for use with SGE, but many potential users

may have no use for such a functionality. This could be true of many other potential

tools that could be written for use with LEGEND (for example, someone who works

with a specific types of data sets may might desire to make use of a visualization

tool for them in conjunction with LEGEND). Given these considerations, it was

concluded that a useful arrangement would be to allow “extensions” to LEGEND. In

the envisioned setup, these extensions could be placed in a ‘.jar’ file14 and placed in

the same directory as the LEGEND program. LEGEND would automatically detect

14A java archive file.

104

them and could add them to the Extensions submenu.15,16

4.3.4 Validation, Constraints, and References

When a user edits a variable’s “value” in LEGEND, validation takes place as soon as a

change is completed; this scheme identifies invalid variable values immediately. Note

that the initial values of variables are never validated (as they should be correct).

With constraints LEGEND provides an option; constraints can be checked only

upon the creation of output, or they can be checked upon any edits to a variable

“value” or “use” setting as well as upon the creation of output. While the latter

scheme indicates a violation of constraints whenever it occurs, there are cases where

this could prove to be more of an annoyance to the user than a help. (Imagine a

case where editing a single value results in the need to resolve a large number of

constraints that must be dealt with individually).17 If the former scheme (the default

option) is selected the user can deal with any constraint violations at the time that

output is created.

When a constraint violation occurs the text of the constraint’s explanation el-

ement is displayed to the user in a warning message. LEGEND does not attempt

to “fix” the constraint violation, and there is not sufficient information available to

determine what should be fixed.18

It is also worth noting that the support of references (see Section 3.2.11) results in

a rather dynamic situation. When a variable’s “value” or “use” setting is updated, it

should be tested if that “value” or “use” setting was referenced by any other element

in the set of open LCML descriptions. If it is referenced by some other element than

15With such a structure the extensions could be independent of LEGEND with the exception of
a method and field “signature” that allows them to recognized. They could even be java wrappers
to external programs. Alternatively, they could make use of the LEGEND data model and classes,
but they would still need to implement an appropriate method and field signature.

16This feature is currently under development.
17If there are ten constraints violated, and they are resolved one at a time, fixing the first one

still results in the notification to the the user of nine constraint violations to be addressed, and the
second, eight, and etc.

18For example, in the case of a conflict involving two variable values, it is not immediately clear
which variable has the “wrong” value. (The conflict only expresses that a certain relationship
between two values is not allowed).

105

the effect of this change should be considered. It may result in a validation event (if

the referenced setting is used for another validated “value”), a constraint violation

(if the more aggressive constraint checking scheme is used), or the need to update a

multiplicity structure (if the referenced value serves as the dimension of a structure).19

4.3.5 Additional Details

The LEGEND software makes use of JDOM (Java Document Object Model) and the

Apache Xerces-J software for accessing, parsing, and schema validating XML. The

basis for the selection of these technologies and some additional details about them

are discussed in [3].

LEGEND can be run as a Java application or as a Java applet. If it is run as an

applet it should be bundled in a ‘.jar’ file and signed. Details are again discussed in

[3].

LEGEND is a work under development and is in the process of being made to

support the complete LCML specification described in Chapter 3.

19The handling of the details that are discussed in this section is under development.

106

Chapter 5

Conclusions

5.1 Assessment of the Developed System

In this thesis we have discussed the development and use of a Legacy Computing

Markup Langauge (LCML) and LEGEND, a processor for LCML. These two software

technologies form an effective two-tier system for the encapsulation of command-line

driven legacy programs.

A specification of the LCML language has been presented that is capable of han-

dling a large number of situations that could appear in the encapsulation of a program.

While LEGEND is still in the process of being made to support the complete LCML

specification, basic functionalities have been implemented and they demonstrate the

effectiveness of the approach. Most of the remaining functionalities have been suc-

cessfully prototyped on previous “working” versions of the LCML specification.

An encapsulation of the Grids program of the HOPS software system was suc-

cessfully undertaken. In addition, preliminary encapsulations of the remainder of the

programs in the Harvard Ocean Predictions System were completed.

In its current state, the system can be used to run a program remotely by describ-

ing a third-party program (such as rsh, SGE, or Globus) that is capable of handling

the remote command-line interactions and using the encapsulated program through

the third-party program.

Lastly, it is worth noting that the development of LCML descriptions can be done

107

rapidly, and it is expected that use of the LCML/LEGEND system for encapsulating

a command-line driven program provides a large savings in programming time and

effort versus the development of a custom GUI.

5.2 Recommendations for Future Work

5.2.1 Basic Tasks

There are some basic tasks that require completion. In its current state the LCML

specification has been further developed than the corresponding LEGEND implemen-

tation. LEGEND needs to be extended to support the complete LCML specification.

Some particular areas that require additional work are the display of multiplicity, the

use of references, and support for import/export.

Additionally, to complete our test case, the entire HOPS suite needs to be en-

scapsulated with LCML. Based on the results of our preliminary encapsulation of the

remaining programs, it is expected that this will be pretty straightforward given the

current LCML specification.

5.2.2 Integration of Client/Server Capability

While the current approach allows for a program to be run remotely by describing

a third-party program to handle its remote use, another option is develop an inte-

grated client/server capability into LEGEND that facilitates the remote execution of

encapsulated programs. With such a capability, a user could edit descriptions using

a client instance of LEGEND, and then use LEGEND to communicate with a remote

server and run the encapsulated programs on the remote server.

Since the LEGEND program currently works as an applet, it is also possible that

an applet-based client/server approach could be developed where LEGEND would

be able to run programs on the server that the applet was downloaded from. In

such a scenario, LEGEND could be used truly as a web-based interface. There are

some implementation details that would need to be considered (basically how to

108

communicate with the server from the applet), as well as security issues that would

need to be handled. Also, in its current state, LEGEND is a rather large program for

widespread use as an applet. The possibility of triming down the libraries included

in LEGEND to a minimum necessary functionality might be able to address this.

5.2.3 Integration with Globus

While the current approach allows integration with Globus [28] through the descrip-

tion of and use of the command-line, another option is a direct integration of Globus

and LEGEND through the use of the Globus toolkit (and Java). Such an approach

would “Grid” enable LEGEND, and in turn would “Grid” enable programs described

in LCML.

5.2.4 Development of an LCML API

Currently, the LEGEND source code works with LCML descriptions via JDOM [15],

which provides a representation of XML content in Java. A better approach may

be to develop an LCML API that that models the structure of an LCML document

in Java. Such an API would still make use of a technology like JDOM to create

an LCML model from the underlying XML, but it would allow remainder of the

LEGEND source code to deal with LCML objects instead of XML objects.

5.2.5 Handling of Units

Currently the units element (an optional element for numeric variables) is provided

for information only. A more descriptive handling of units could be provided (for

an example approach see [19]). Potentially, a system could be developed that allows

LEGEND to be extended to allow for input in a variety of units (for example: kilo-

meters, meters, and miles) and automatic conversion to the format expected for a

certain program or file.

109

5.2.6 Enhanced Support of Mathematical Expressions

Currently, the validation of the “precision” and “range” of numeric variables can

be bypassed by entering an equal sign ‘=’ as the first character of the value of a

numeric variable. This allows an expression to be entered in the place of an actual

numeric value, as there are instances where this is supported by a program reading

the file. However, it is not currently possible to validate the numeric value of such

an expression. Instead of using the ‘=’ flag to indicate the presence of an expression,

the EVAL() function (see Section 3.2.11) can be used to provide a basic expression

that can be evaluated.

A more flexible implementation might allow for the use of a more complicated

mathematical expression in a variable’s value, while still allowing for validation of

the value of the expression. More complicated expressions could also be used in

the specification of constraints. Their use, however, would require a standardized

expression format and the incorporation of an expression parsing technology in LCML

processing programs.

5.2.7 Formatted Input

We have not really considered the description of formatted input. By “formatted

input” we mean input that has specific constraints on how it is to be entered. For

example, a program may expect a variable to be specified in the form ‘###.##’ or

‘(###) ###-####’, (where the ‘#’ indicates a digit should be present). One possible

approach is to add an element to LCML that allows a “regular expression” to be

provided for a variable and used for its validation.

5.2.8 User Interface Design and Usability of LCML

The design of the LEGEND user interface could be further considered. There is

potential for adding right click menus and improved keyboard navigation (if these

would represent an improvement). The current user interface could also be given

some formal or informal usability testing to identify aspects that could be improved.

110

We could also test how well the LCML language is suited to the process of writing

descriptions. This could be done by giving a small group of potential description

authors a few sample programs to describe and gathering feedback on the process

of description authoring. Such feedback could also be helpful in clearly formulat-

ing the needs of an LCML authoring tool, and identifying any needs for additional

documentation of the language.

The work that has been done in investigating the development of an LCML au-

thoring tool can also be continued, so that such a tool could be made available.

5.2.9 Display of Two-Dimensional Arrays

A special case of multiplicity is that of a two-dimensional array (represented by a

structure containing only another structure, which contains only a single variable).

In the current implementation of LEGEND such a case would be handled like any

other instance of multiplicity and would be displayed as a one-dimensional array

of one-dimensional arrays. However, for this special case it would be possible to

implement a display that shows the full two-dimensional array in a single table.

5.2.10 Automation in LCML/LEGEND

Running or compiling a command-line driven program may involve multiple steps. A

user may need to configure and save several different input files and then configure

and launch a script. Currently, in such a case the user must know that each of these

steps needs to be done, and there is no means to ensure that they are done. A possible

development would be the implementation of a scheme by which the handling of these

details could be partially automated, or by which a user could be guided through the

process of configuring and operating such a program.

5.2.11 Automated Creation of LCML Descriptions

For some programs that have a “man” page (documentation that is readable with

the Unix ‘man’ command), it may be possible to write a small program that reads

111

in the “man” page and outputs an LCML description. Such a technique is probably

only plausible for programs with “man” pages that are sufficiently standardized, but

in such cases it could represent a highly automated manner by which to create a

graphical user interface for a command-line program.

112

Appendix A

Legacy Computing Markup

Language (LCML) Roadmap

This section gives a terse overview of the LCML language. Optional elements are

bracketed, elements with an asterix can occur more than once. Notes are indicated

by numbers in parenthesis. If an element can contain a reference, it is marked with

the text ‘(REF)’.

- description (1)

- descriptionName

- descriptionInfo

- [descriptionMetadata]

- [dc:title] (2)

- [dc:creator] (2)

- [dc:subject] (2)

- [dc:description] (2)

- [dc:publisher] (2)

- [dc:contributor] (2)

- [dc:date] (2)

- [dc:type] (2)

- [dc:format] (2)

113

- [dc:identifier] (2)

- [dc:source] (2)

- [dc:language] (2)

- [dc:relation] (2)

- [dc:coverage] (2)

- [dc:rights] (2)

- [descriptionChildren]

- descriptionChild*

- [location] (3),(REF)

- [absoluteLocation] (3),(REF)

- [description] (3)

- [association]

- [descriptionTarget]

- [file] (4),(REF)

- [script] (4)

- command (REF)

- scriptname (REF)

- [descriptionContent]

- [startText]

- [endText]

- [separator]

- set*

- setName

- setInfo

- [startText]

- [endText]

- [separator]

- [var]* (5)

- name

- info

114

- type

- value (REF)

- use (REF)

- hidden (REF)

- [header]

- [trailer]

- [enumeration]

- [uneditable]

- [aliases]

- alias*

- aliasKey (REF)

- aliasOutput (REF)

- [precision] (6)

- [range] (6)

- [units] (6)

- [minLength] (6)

- [maxLength] (6)

- [multiLine] (6)

- [fileType] (6)

- [architecture] (6)

- [block]* (5)

- structure

- structureName

- structureInfo

- [startText]

- [endText]

- [separator]

- numOccurs (REF)

- [var]* (7)

- [structure]* (7)

115

- data

- [dataInstance]* (8)

- [value]* (9),(REF)

- [data]* (9)

- [descriptionReplacements]

- replacement*

- replacementKey (REF)

- replacementContent

- [descriptionConstraints]

- [requirement]* (10)

- explanation

- condition

- [test]* (11)

- item (REF)

- relation

- item (REF)

- [group]* (11)

- [operator]

- [test]* (12)

- [group]* (12)

- requires

- [test]* (11)

- [group]* (11)

- [conflict]* (10)

- explanation

- [test]* (11)

- [group]* (11)

116

Notes:

1. The description element can reference the LCML schema using xmlns:xsi

and xsi:noNamespaceSchemaLocation attributes.

2. Any of the child elements of the descriptionMetadata element (the Dublin

Core elements) can make use of the xml:lang attribute.

3. A descriptionChild element should contain either a location, an absoluteLocation,

or a description element.

4. A descriptionTarget element should contain either a file or script element.

5. A set element should contain at least one var or block element as a child

element and the occurences of these two elements can be intermingled.

6. This element is a “type dependent” element (only relevant for certain types of

variables).

7. A structure element should contain at least one var or structure element as

a child element and the occurences of these two elements can be intermingled.

8. The number of dataInstance elements should match the value of the numOccurs

element for the corresponding structure.

9. The number and order of value and data elements should match the number

and order of var and structure elements for the corresponding structure.

10. A descriptionConstraints element should contain at least one requirement

or conflict element.

11. A condition, requires, or conflict element should contain at least one test

element or one group element.

12. A group element should contain a total of at least two children that are either

a test element or a group element.

117

118

Appendix B

LCML Description Schema

<?xml version="1.0"?>

<!-- lcml.xsd -->

<!-- This schema should be used for LCML description documents. -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<xs:import namespace="http://purl.org/dc/elements/1.1/"

schemaLocation="simpledc20021212.xsd"/>

<xs:element name="description" type="descriptionItem"/>

<xs:complexType name="descriptionItem">

<xs:sequence>

<xs:element name="descriptionName" type="xs:string"/>

<xs:element name="descriptionInfo" type="xs:string"/>

<xs:element name="descriptionMetadata"

type="descriptionMetadataItem" minOccurs="0"/>

119

<xs:element name="descriptionChildren"

type="descriptionChildrenItem" minOccurs="0"/>

<xs:element name="descriptionTarget"

type="descriptionTargetItem" minOccurs="0"/>

<xs:element name="descriptionContent"

type="descriptionContentItem" minOccurs="0"/>

<xs:element name="descriptionReplacements"

type="descriptionReplacementsItem" minOccurs="0"/>

<xs:element name="descriptionConstraints"

type="descriptionConstraintsItem" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="descriptionMetadataItem">

<xs:sequence>

<xs:group ref="dc:elementsGroup"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="descriptionChildrenItem">

<xs:sequence>

<xs:element name="descriptionChild"

type="descriptionChildItem" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="descriptionChildItem">

120

<xs:sequence>

<xs:choice>

<xs:element name="location" type="xs:string"/>

<xs:element name="absoluteLocation" type="xs:string"/>

<xs:element name="description" type="descriptionItem"/>

</xs:choice>

<xs:element name="association" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="descriptionTargetItem">

<xs:choice>

<xs:element name="file " type="xs:string"/>

<xs:element name="script" type="scriptItem"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="scriptItem">

<xs:sequence>

<xs:element name="command" type="xs:string"/>

<xs:element name="scriptname" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="descriptionContentItem">

<xs:sequence>

<xs:element name="startText" type="xs:string" minOccurs="0"/>

121

<xs:element name="endText" type="xs:string" minOccurs="0"/>

<xs:element name="separator" type="xs:string" minOccurs="0"/>

<xs:element name="set" type="setItem" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="setItem">

<xs:sequence>

<xs:element name="setName" type="xs:string"/>

<xs:element name="setInfo" type="xs:string"/>

<xs:element name="startText" type="xs:string" minOccurs="0"/>

<xs:element name="endText" type="xs:string" minOccurs="0"/>

<xs:element name="separator" type="xs:string" minOccurs="0"/>

<xs:choice maxOccurs="unbounded">

<xs:element name="var" type="varItem"/>

<xs:element name="block" type="blockItem"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

<xs:complexType name="varItem">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="info" type="xs:string"/>

<xs:element name="type" type="xs:string"/>

<xs:element name="value" type="xs:string"/>

<xs:element name="use" type="xs:string"/>

<xs:element name="hidden" type="xs:string"/>

122

<xs:element name="header" type="xs:string" minOccurs="0"/>

<xs:element name="trailer" type="xs:string" minOccurs="0"/>

<xs:element name="enumeration" type="xs:string" minOccurs="0"/>

<xs:element name="uneditable" type="xs:string" minOccurs="0"/>

<xs:element name="aliases" type="aliasesItem" minOccurs="0"/>

<!-- The remaining elements in the "var" element are

type dependent and should only be used in conjuction

with an appropriate value of the "type" element.

This is not checked by the schema. -->

<xs:element name="precision" type="xs:string" minOccurs="0"/>

<xs:element name="range" type="xs:string" minOccurs="0"/>

<xs:element name="units" type="xs:string" minOccurs="0"/>

<xs:element name="minLength" type="xs:string" minOccurs="0"/>

<xs:element name="maxLength" type="xs:string" minOccurs="0"/>

<xs:element name="multiLine" type="xs:string" minOccurs="0"/>

<xs:element name="maxLength" type="xs:string" minOccurs="0"/>

<xs:element name="fileType" type="xs:string" minOccurs="0"/>

<xs:element name="architecture" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="aliasesItem">

<xs:sequence>

<xs:element name="alias" type="aliasItem"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

123

<xs:complexType name="aliasItem">

<xs:sequence>

<xs:element name="aliasKey" type="xs:string"/>

<xs:element name="aliasOutput" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="blockItem">

<xs:sequence>

<xs:element name="structure" type="structureItem"/>

<xs:element name="data" type="dataItem"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="structureItem">

<xs:sequence>

<xs:element name="structureName" type="xs:string"/>

<xs:element name="structureInfo" type="xs:string"/>

<xs:element name="startText" type="xs:string" minOccurs="0"/>

<xs:element name="endText" type="xs:string" minOccurs="0"/>

<xs:element name="separator" type="xs:string" minOccurs="0"/>

<xs:element name="numOccurs" type="xs:string"/>

<xs:choice maxOccurs="unbounded">

<xs:element name="var" type="varItem"/>

<xs:element name="structure" type="structureItem"/>

</xs:choice>

124

</xs:sequence>

</xs:complexType>

<xs:complexType name="dataItem">

<xs:sequence>

<!-- The number of dataInstances should match the value

of the "numOccurs" element of the appropriate

structure. This is not checked by the schema. -->

<xs:element name="dataInstance" type="dataInstanceItem"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="dataInstanceItem">

<xs:sequence>

<!-- The number of and order of "value" and "data"

elements should match the number and order of

"var" and "structure" elements for the appropriate

structure. This is not checked by the schema. -->

<xs:choice maxOccurs="unbounded">

<xs:element name="value" type="xs:string"/>

<xs:element name="data" type="dataItem"/>

</xs:choice>

</xs:sequence>

125

</xs:complexType>

<xs:complexType name="descriptionReplacementsItem">

<xs:sequence>

<xs:element name="replacement"

type="replacementsItem" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="replacementsItem">

<xs:sequence>

<xs:element name="replacementKey" type="xs:string"/>

<xs:element name="replacementContent"

type="descriptionContentItem"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="descriptionConstraintsItem">

<xs:choice maxOccurs="unbounded">

<xs:element name="requirement" type="requirementItem"/>

<xs:element name="conflict" type="conflictItem"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="requirementItem">

<xs:sequence>

126

<xs:element name="explanation" type="xs:string"/>

<xs:element name="condition" type="conditionItem"/>

<xs:element name="requires" type="requiresItem"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="conditionItem">

<xs:choice maxOccurs="unbounded">

<xs:element name="test" type="testItem"/>

<xs:element name="group" type="groupItem"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="requiresItem">

<xs:choice maxOccurs="unbounded">

<xs:element name="test" type="testItem"/>

<xs:element name="group" type="groupItem"/>

</xs:choice>

</xs:complexType>

<xs:complexType name="conflictItem">

<xs:sequence>

<xs:element name="explanation" type="xs:string"/>

<xs:choice maxOccurs="unbounded">

<xs:element name="test" type="testItem"/>

<xs:element name="group" type="groupItem"/>

</xs:choice>

127

</xs:sequence>

</xs:complexType>

<xs:complexType name="testItem">

<xs:sequence>

<xs:element name="item" type="xs:string"/>

<xs:element name="relation" type="relationItem"/>

<xs:element name="item" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="groupItem">

<xs:sequence>

<xs:element name="operator" type="operatorItem" minOccurs="0"/>

<xs:choice minOccurs="2" maxOccurs="unbounded">

<xs:element name="test" type="testItem"/>

<xs:element name="group" type="groupItem"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="relationItem">

<xs:restriction base="xs:string">

<xs:enumeration value="SAME"/>

<xs:enumeration value="DIFF"/>

<xs:enumeration value="EQ"/>

<xs:enumeration value="NEQ"/>

128

<xs:enumeration value="GT"/>

<xs:enumeration value="GEQ"/>

<xs:enumeration value="LT"/>

<xs:enumeration value="LEQ"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="operatorItem">

<xs:restriction base="xs:string">

<xs:enumeration value="AND"/>

<xs:enumeration value="OR"/>

<xs:enumeration value="XOR"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

129

130

Bibliography

[1] Z. Anjum. Display any JComponent in a cell. http://www.codeguru.com/java/

articles/162.shtml.

[2] Y. Bi, M. E. C. Hull, and P. N. Nicholl. An XML approach for legacy code reuse.

The Journal of Systems and Software, 61(2):77–89, 2002.

[3] R. Chang. The encapsulation of legacy binaries using an XML-based approach

with application in ocean engineering. Master’s thesis, Massachusetts Institute

of Technology, May 2003.

[4] Condor-G. http://www.cs.wisc.edu/condor/condorg/.

[5] Document structure description. http://www.brics.dk/DSD/.

[6] Dublin core metadata initiative. http://www.dublincore.org.

[7] C. Evangelinos, R. C. Chang, P. F. J. Lermusiaux, and N. M. Patrikalakis.

Web-enabled configuration and control of legacy codes: An application to ocean

modeling. International Journal of Cooperative Information Systems, 2004. To

appear.

[8] Extensible markup language website. http://www.w3.org/XML/.

[9] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling

scalable virtual organizations. International Journal of Supercomputing Appli-

cations, 15(3), 2001.

[10] Global Grid Forum. http://www.ggf.org.

131

[11] Grid Engine. http://gridengine.sunsource.net/.

[12] Harvard Ocean Prediction System (HOPS). http://oceans.deas.harvard.

edu/HOPS/.

[13] Java foundation classes (JFC/Swing). http://java.sun.com/products/jfc/.

[14] Java technology website. http://java.sun.com/.

[15] JDOM. http://www.jdom.org/.

[16] jEdit - open source programmer’s text editor. http://www.jedit.org/.

[17] Catherine Letondal. PISE, a tool to generate web interfaces for molecular biology

programs. http://www.pasteur.fr/recherche/unites/sis/Pise/.

[18] MAUI. http://csmr.ca.sandia.gov/projects/maui/.

[19] F. Olken and J. McCarthy. Measurement units in XML datatypes. http://

pueblo.lbl.gov/∼olken/mendel/w3c/xml.schema.wg/units/syntax.htm.

[20] OpenOffice.org. http://www.openoffice.org/.

[21] N. M. Patrikalakis, J. J. McCarthy, A.R. Robinson, H. Schmidt, C. Evangelinos,

P. J. Haley, S. Lalis, P. F. J. Lermusiaux, R. Tian, W. G. Leslie, and W. Cho.

Towards a dynamic data driven system for rapid adaptive interdisciplinary ocean

forecasting. In F. Darema, editor, Dynamic Data-Driven Application Systems.

Kluwer Academic Publishers, Amsterdam, 2004. To appear.

[22] C. Phanouriou and M. Abrams. Transforming command-line driven systems to

web applications. In Selected Papers from the Sixth International Conference on

World Wide Web, pages 1497–1505. Elsevier Science Publishers Ltd., 1997.

[23] Pollo. http://pollo.sourceforge.net/.

[24] Poseidon - rapid real-time interdisciplinary ocean forecasting: Adaptive sampling

and adaptive modeling in a distributed environment. http://czms.mit.edu.

132

[25] RELAX NG home page. http://www.relaxng.org/.

[26] SGML/XML: Using elements and attributes. http://www.oasis-open.org/

cover/elementsAndAttrs.html.

[27] N. Tamemasa. Sorting the table. http://www.codeguru.com/java/articles/

219.shtml.

[28] The Globus alliance. http://www.globus.org/.

[29] E. Wohlstadter, S. Jackson, and P. Devanbu. Generating wrappers for command

line programs: the Cal-Aggie Wrap-O-Matic project. In Proceedings of the 23rd

International Conference on Software Engineering, pages 243–252. IEEE Com-

puter Society, 2001.

[30] XML schema. http://www.w3.org/XML/Schema.

[31] XML schema tutorial. http://www.w3schools.com/schema/.

133

