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Abstract

A free-form object matching problem is addressed in this paper. Two methods are pro-

posed to solve a partial matching problem with scaling effects and no prior information on

correspondence or the rigid body transformation involved. The first method uses umbilical

points, which behave as fingerprints of a surface and their qualitative properties can be used

for matching purposes. The second method uses an optimization scheme based on the exten-

sion of the KH curvature matching method [Comput. Aided Design 35 (2003) 913], first intro-

duced in the context of a matching problem without scaling effects. Two types of curvatures,

the Gaussian and the mean curvatures, are used to establish correspondences between two ob-

jects. The curvature matching method is formulated in terms of minimization of an objective

function depending on the unknown scaling factor, and the rigid body transformation param-

eters. The accuracy and complexity of the proposed methods as well as the convergence for the

optimization approach are analyzed. Examples illustrate the two methods.
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1. Introduction

Matching of 3D objects is an important topic in computer graphics and modeling

and several significant contributions have been made in developing matching
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methods of 3D free-form objects. Free-form can be interpreted in various ways. Camp-

bell and Flynn [12] regarded free-form as ‘‘a general characterization of an object

whose surfaces are not of a more easily recognized class such as planar and/or natural

quadric surfaces.’’ On the other hand, Besl [8] explained that ‘‘a free-form surface has a

well defined surface normal that is continuous almost everywhere except at vertices,
edges, and cusps.’’ With these characteristics free-form enables us to represent various

surfaces in digital form such as ship hulls, aircraft, and automobile bodies using non-

uniform rational B-spline (NURBS) surface patches, polyhedra, and range data.How-

ever,matching for free-formobjects still remains a challenging problem. It is referred to

in terms of two different names depending on the situation. When matching is used in

the context of computer-aided inspection, it is referred to as localization, whereas when

it is used in the context of computer vision, it is referred to as registration.

Object matching can be achieved by various approaches. This paper focuses on
object matching through a process determining a rigid body transformation (trans-

lation and rotation) and a scaling factor, which make two objects match as closely as

possible. Such a matching problem can be formulated in terms of a minimization of

an objective function and the choice of such an objective function can be quite flex-

ible. In this work, the sum of the squared minimum distances between two objects is

chosen for the objective function.

Correspondence search between two surfaces is a key issue in minimizing the ob-

jective function for determining the best transformation for matching. Correspon-
dence can be established by calculating distinct features of one surface and then

finding the same ones on the other. In that case, such features need to be extracted

robustly and accurately, and carefully chosen for matching purposes. There are

many candidates that may be used as distinct features among which shape intrinsic

properties are frequently used for matching. They only depend on the geometric

shape of the object, and are independent of parametrization and representation

methods. Moreover, they are invariant under any rigid body transformation such

as rotation and translation. When such distinct features cannot be obtained, then
one has to search correspondence using methods based on iteration.

Matching problems can be classified based on several criteria. First, two types of

matching can be considered: global and partial matching. Simply, the global match-

ing is regarded as the matching for whole objects, while the partial matching is con-

sidered as the matching of part of objects. Matching problems can be further

categorized based on the availability of correspondence or initial transformation in-

formation between two objects and the application of scaling. The classification of

matching problems is summarized in Table 1. In the table, acronyms are used for
simplification as follows:

• C: Correspondence information is provided.

• I, Initial information on correspondence is provided.

• N, No correspondence information is available.

• P, Partial matching.

• G, Global matching.

• WOS, Without scaling.

• WS, With scaling.



Table 1

Classification of matching problems

Criteria Global matching Partial Matching

Without

scaling

With

scaling

Without

scaling

With

scaling

Correspondence information CGWOS CGWS CPWOS CPWS

Initial information IGWOS IGWS IPWOS IPWS

No information NGWOS NGWS NPWOS NPWS
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When correspondence information is provided, which is one of the types CGWOS
or CPWOS, then the matching problem simply is reduced to calculation of a rigid

body transformation [20,21]. If no correspondence is known, but a good initial ap-

proximation for the transformation is available (IGWOS or IPWOS), then popular

iterative schemes such as the iterative closest point (ICP) algorithm [9] can be em-

ployed. However, when no prior clue for correspondence or transformation is given

(NGWOS or NPWOS), the matching problem becomes more complicated. In this

case, the solution process must provide a means to establish such correspondence in-

formation such as in [14].
Scaling is another factor that needs to be considered separately. If a matching

problem involves scaling effects, then direct comparison of quantitative measures

cannot be used any longer. For the global matching case, a scaling factor can be es-

timated by the ratio of surface areas and applied to resolve the scaling transforma-

tion. However, when it comes to partial matching, such area information becomes

useless for the scaling factor estimation. When the correspondence information be-

tween two objects is known (CGWS or CPWS), the scaling factor between the ob-

jects can be easily obtained by using the ratio of Euclidean distances between two
sets of corresponding points or areas. If an initial scaling value as well as a good ini-

tial approximation is provided (IGWS or IPWS), the ICP algorithm [9] or other op-

timization schemes such as the quasi-Newton method [42] which are modified to

handle scaling, can be employed. The problem of NGWS type can be solved by

the moment method using the principal moment of inertia or ratio of areas or vol-

umes. However, we emphasize that few attempts have been made to solve problems

of the NPWS type.

Our main contribution in this paper is the development of algorithms to solve a
matching problem of the NPWS type. To the best of the authors’ knowledge, this

type of matching problem has not been discussed in the literature so far and this pa-

per serves as the first step to address such a matching problem and provide appro-

priate matching algorithms. This work was motivated by the Shape Intrinsic

Watermarks for 3D Solids project, which focuses on providing a method for protec-

tion of intellectual property of designed NURBS surfaces or solids bounded by

NURBS surfaces in digital form [28,29]. Suppose that someone has inappropriately

acquired part of a design surface and used it after transformation including uniform
scaling without the consent of its owner. In this situation, identifying which part of

the design has been stolen becomes a critical step for copyright protection, which can
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be achieved by finding the best rigid body transformation and scaling factor which

align the design surface, and the stolen piece as closely as possible. Other than such

an application to ownership protection of CAD models, the solution methods to this

matching problem can be also used to various applications such as inspection and

model integration.
In this paper, we propose two methods to solve problems of the NPWS type for

matching of points with a NURBS surface or a NURBS surface with a NURBS

surface. When an object represented by data points is provided as input, a least

squares surface fitting method is used to obtain a NURBS surface patch for input

to the proposed methods. In this paper, we are generally focusing on 3D CAD

models. So it is assumed that we have a design model defined by NURBS surface

patches and try to match a surface patch against this design model. One method

involves using umbilical points. There have been several papers addressing the pos-
sibility of using umbilical points for matching purposes [8,31]. But few results have

been reported. The other method is an optimization scheme using the KH method

[27]. The KH method is incorporated into an optimization process to deal with

scaling. Since the umbilical point method requires a NURBS surface representation

for extraction of umbilical points and the optimization method needs curvatures at

three points, the proposed algorithms can deal with both matching cases in the

same manner.

This paper is structured as follows: In Section 2, previous work is reviewed and in
Section 3 mathematical definitions and concepts are summarized. Two correspon-

dence search methods are introduced in Section 4. Full matching algorithms with

scaling effects are presented in Section 5. Complexity, accuracy, and convergence

of the algorithms are analyzed in Section 6 and several examples are presented in

Section 7. Section 8 concludes this paper.
2. Literature review

Moment theories for 2D or 3D objects have been widely used for object matching

and recognition. Invariant and non-invariant properties of moments have been stud-

ied and extensive literature exists on this topic. First order moment (center of mass)

and second order moment (moment of inertia) are used for matching and pose esti-

mation [34]. Also effort has been made to investigate various moment invariants

[23,44]. For a comprehensive review of moment based approaches, see Prokop

and Reeves [43]. Moment methods are simple and useful for various purposes but
they cannot be used for partial matching.

Two-dimensional contours extracted from 3D objects are also used for matching

and recognition. From the silhouettes of a 3D object, Mokhtarian [32] computes cur-

vature scale space (CSS), and uses CSS maxima to find the best matching. Recently,

Belongie et al. [5] proposed an algorithm to find correspondences between shapes.

They sample points from the shape contour and associate each point with a shape

descriptor, called the shape context, which describes the shape relative to each point.

Establishing correspondence is reduced to finding the most similar shape contexts
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from each shape under consideration. Their approach estimates the rigid body trans-

formation which aligns two shapes as closely as possible. But it requires extraction of

contours of a shape and does not deal with scaling effects.

Osada et al. [36,37] proposed the idea to reduce the shape matching problem to

the comparison of 2D probability distributions which may capture the global shape
of objects. Different shape functions based on global geometric properties are pro-

posed to compute the unique signatures for each object, and the similarity between

the distributions is investigated. Scaling can also be considered by this approach.

However, such approach does not handle partial matching problems. Johnson and

Hebert [25,26] proposed a new representation scheme for efficient object matching.

2D images which are associated with each point on the surface of an object are cre-

ated with respect to a local basis (3D point with surface normal) on the surface point.

These images, called spin images are obtained by accumulating two parameters
which are describing other points on the surface of the objects. Correspondence is

established by comparing the spin images. By doing this, they reduce 3D surface

matching to 2D image matching, which can assist in handling the problems of clutter

and occlusion. But scaling effects in matching are not taken into account. Another

set of new representation schemes include the splash by Stein and Medioni [51],

the point signature by Chua and Jarvis [15] and COSMOS by Dorai and Jain [18].

Barequet and Sharir [3] proposed an algorithm for partial surface and volume

matching of 3D images represented as a set of points. Their approach deals with
the rotation and translation separately. First, the best rotation is searched iteratively

through a sequence of rotation in a steepest-descent style by scoring the ‘‘goodness’’

of rotation based on the footprints assigned to all points and advancing in the direc-

tion of the highest score. The best translation associated with the optimum rotation

is computed by using a correlation function. Their approach also was tested with

a new footprint, directed footprint in [4]. Their algorithm handles various types

of matching problems efficiently but scaling effects are again not considered in their

approach.
Registration/localization is another way to achieve matching of two objects. De-

pending on the type of matching problems introduced in Section 1, we can find suit-

able solution methods to find the best match between two objects. For CGWOS or

CPWOS type of matching, we can use methods proposed in [2,20,21,53]. Since the

correspondence between two objects is known, the calculation of the transformation

is a relatively easy step and does not require iteration. On the other hand, with a good

initial transformation, i.e., for IGWOS or IPWOS type problems, an optimum trans-

formation can be found through iteration by minimizing an objective function of six
independent variables (three translations and three rotations). Besl and McKay [9]

used the iterative closest point (ICP) algorithm for registration of 3D shapes. Several

alternative minimization approaches are discussed for improvement of convergence.

The ICP registration is generalized to include Euclidean invariant features to provide

a more effective algorithm by Sharp et al. [47]. A similar idea was proposed by Zhang

[54]. He dealt with outliers, occlusion, appearance, and disappearance using a statis-

tical method based on distance distribution. Patrikalakis and Bardis [38] provided an

efficient method for accurate localization of free-form rational B-spline surfaces given
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an initial estimate of the localization parameters. These iteration approaches, how-

ever, cannot guarantee optimal results in a global sense. Bergevin et al. [6] proposed

a method to estimate the 3D rigid transformation between two range views of a com-

plex object. They used a hierarchical surface triangulation representation through an

iterative process, and performed the iterative least-squares computation of an incre-
mental transformation proposed by Chen andMedioni [13] to find an optimum trans-

formation based on the estimated hypothetical transformations. Chua and Jarvis [14]

developed an object recognition method through registration. Their approach aligns

two objects through registration assuming no prior knowledge of correspondence be-

tween two range data sets. They used the principal curvatures and Darboux frames

and constructed a list of possible correspondences from which the best matching is

sorted out through various searching algorithms. The method proposed in their paper

extends the above work to cover a problem of partial correspondence search.
A scaling factor adds one more degree of freedom to matching problems so that

solution schemes have to be modified to deal with it. By using a scaling parameter as

is done in [24] with the offset parameter, it may be possible to find the transformation

which may yield better results in matching. However, partial matching problems in-

cluding scaling effects become more complicated. The general formulation of match-

ing with scaling is presented in [8], and the ICP [9] can be extended to handle the

matching problems of IGWS or IPWS type as long as a good initial transformation

and a scaling value are provided.
All the algorithms developed so far can solve various types ofmatching problems as

in Table 1. However, we wish to point out that no literature addresses partial matching

problems with scaling effects and no prior clue for correspondence or transformation.
3. Mathematical preliminaries

3.1. Distance metric

The Euclidean distance between two points p1 and p2 is defined as
deðp1; p2Þ ¼ jp1 � p2j: ð1Þ
We also define the minimum distance between a surface r and a point p as follows:
dspðr; pÞ ¼ min fdeðp; piÞ; 8pi 2 rg: ð2Þ
3.1.1. Distance between a point and a parametric surface

Let us assume that we have a point p and a parametric surface r ¼ rðu; vÞ,
06 u; v6 1. Then the squared distance function is defined as follows:
Dðu; vÞ ¼ jp� rðu; vÞj2 ¼ ðp� rðu; vÞÞ � ðp� rðu; vÞÞ: ð3Þ
Finding the minimum distance between p and r reduces to minimizing (3) within

the square 06 u; v6 1. Therefore, the problem needs to be broken up into several

sub-problems which consider the behavior of the distance function at the boundary
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and in the interior of the bound [39]. The sub-problems are summarized as follows:

Find the minimum distances (1) in the interior domain, (2) along the boundary

curves and (3) from the corner points. Among those minimum distances, the

smallest one is chosen as the minimum distance between the point p and the

surface r. A robust calculation of the minima of the distance function (3) can be
achieved by the interval projected polyhedron (IPP) algorithm [39,48,55].
3.1.2. Distance metric function

A function can be defined using the distance metric (3) to formulate a localization

problem. Suppose that we have a NURBS surface r2 and an object r1 represented by

discrete points or surfaces. Then, the localization problem can be stated as finding a

rigid body transformation (a translation vector t and a rotation matrix R) so that a

global distance metric function
U ¼
X
8p2r1

dspðr2; ðrRpþ tÞÞ ð4Þ
becomes minimal, where r is a scaling factor.
3.2. Review of differential geometry

There are many textbooks available for theoretical treatment of the differential ge-

ometry of surfaces such as [17], and what follows is a summary of the relevant def-

initions and derivations used in this work.

Suppose we have a regular parametric surface
rðu; vÞ ¼ xðu; vÞ; yðu; vÞ; zðu; vÞ½ �T: ð5Þ
From the theory of differential geometry on surfaces, the first (I) and the second

(II) fundamental forms [52] are defined by
I ¼ dr � dr ¼ Edu2 þ 2F dudvþ Gdv2; ð6Þ

II ¼ �dr � dN ¼ Ldu2 þ 2M dudvþ Ndv2; ð7Þ
where N is the surface unit normal vector, E, F , and G the first fundamental form

coefficients, and L, M , and N the second fundamental form coefficients. Here, we
follow the sign convention that the positive normal curvature is defined such that the

center of curvature of the normal section curve is on the opposite side of the surface

normal [39]. The Gaussian curvature (K) and the mean curvature (H) of Eq. (5) are

given by [39,52]
K ¼ LN �M2

EG� F 2
;

H ¼ � 1

2

EN þ GL� 2FM
EG� F 2

� �
:

ð8Þ
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3.2.1. Umbilical points

An umbilic is a point on a surface where normal curvatures in all directions are

equal. At that point, the principal directions are indeterminate, and the principal di-

rection field shows a singular behavior there. The principal curvature functions can

be expressed in terms of the Gaussian and mean curvature functions as follows [52]:
j1;2ðu; vÞ ¼ Hðu; vÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2ðu; vÞ � Kðu; vÞ

p
; ð9Þ
where K and H are the Gaussian and the mean curvature functions, respectively.

Let W ðu; vÞ ¼ H 2 � K. The functions j1;2ðu; vÞ are real valued functions so that

W P 0 must hold. From the definition of an umbilical point we have W ðu; vÞ ¼ 0.

With these two conditions combined, we can infer that at an umbilical point,

W ðu; vÞ has a global minimum [31]. Here, we assume that W is at least C2 smooth.

Then, the condition that W has a global minimum at an umbilic implies that
rW ¼ 0. Therefore, at an umbilical point, the following three equations hold:
W ðu; vÞ ¼ 0;
oW ðu; vÞ

ou
¼ 0;

oW ðu; vÞ
ov

¼ 0: ð10Þ
Given a rational polynomial parametric surface patch such as a rational B�ezier
surface patch, we can set W ¼ PN=PD, where PN and PD are polynomials in u and v.
With the condition W P 0, PN P 0 is assured since PD > 0 is always true given the
regularity condition of the surface. Then, Eq. (10) reduce to
PNðu; vÞ ¼ 0;
oPN
ou

¼ 0;
oPN
ov

¼ 0: ð11Þ
3.2.2. Classification of umbilical points

Umbilical points are classified into two types: generic and non-generic. Generic

umbilical points maintain their properties under small perturbations of the surface,

while non-generic umbilical points may lose their qualitative properties under small
perturbations [7,31,39,46]. Generic umbilical points are further classified into three

types: star, monstar, and lemon as shown in Fig. 1.
Fig. 1. Three generic umbilics adapted from [39].
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The umbilic diagram shown in Fig. 2 [41] is an easy way to distinguish the type of

a generic umbilical point. In order to use this diagram, the local surface near the um-

bilical point has to be represented as a height function or the Monge form with re-

spect to an local coordinate system as follows:
r ¼ ðx; y; hðx; yÞÞ: ð12Þ

The height function hðx; yÞ is Taylor expanded at the origin of the local coordinate

system. Then we have
hðx; yÞ ¼ � j
2
ðx2 þ y2Þ þ 1

6
ðax3 þ 3bx2y þ 3cxy2 þ dy3Þ þ Oð4Þ: ð13Þ
Here, j is the normal curvature at the umbilical point, see [31,39]. Let us set

Cðx; yÞ ¼ ax3 þ 3bx2y þ 3cxy2 þ dy3. This expression implies that the local structure is

dominated by the coefficients ofCðx; yÞ, i.e., by (a, b, c, d) and they determine the types

of umbilical points [33,41]. It is convenient to represent the cubic polynomialCðx; yÞ in
the complex plane for analysis purposes. If we set f ¼ xþ iy, then Cðx; yÞ becomes
ĈðfÞ ¼ af3 þ 3bf2fþ 3bff
2 þ af

3
; ð14Þ
with
a ¼ 1

8
½ða� 3cÞ þ iðd � 3bÞ�;

b ¼ 1

8
½ðaþ cÞ þ iðbþ dÞ�;

ð15Þ
where a 6¼ 0 and f denotes the complex conjugate. We can express (14) in a coor-

dinate system rotated about the normal vector without losing any essential features
to make the coefficient of f3 be equal to 1. Using n ¼ a

1
3f, the Eq. (14) becomes
Fig. 2. The umbilic diagram adapted from [41].
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~CðnÞ ¼ n3 þ 3xn2nþ 3xnn
2 þ n

3
; ð16Þ
where x ¼ ba�
1
3a�

2
3. This means that the cubic polynomial Cðx; yÞ can be parame-

trized with respect to a single complex variable x [11]. Therefore, the variations of

Cðx; yÞ can be mapped onto the complex plane [11,33,41]. Depending on the prop-

erties of Cðx; yÞ, two characteristic lines are determined as follows:
• jxj ¼ 1,

• C : h ! �ð2eih þ e�2ihÞ,
where C is a map from h to the x-plane. They divide the x plane into sub-regions

as shown in Fig. 2. Each sub-region corresponds to a specific type of an umbilical

point. In Fig. 2, S means star, MS monstar, and L lemon. The graph C separates

umbilical points of the lemon type from those of the monstar and star types, and

the circle jxj ¼ 1 umbilical points of the star type from those of the monstar and

lemon types. If x falls on a dividing curve, then the umbilical point is of the non-
generic type. Using this diagram, the type of umbilical point is easily determined,

see [11,33,41].
4. Correspondence search

The main objective of this section is to present methods for finding a correspon-

dence between two objects (points and a NURBS surface or a NURBS surface and a
NURBS surface) using surface intrinsic properties. Let us assume that we have two

objects r1 and r2, and r1 is positioned in a different pose with no scaling effect. Re-

covery of the scaling factor is discussed in Section 5.

4.1. Surface fitting

Two cases are dealt with for matching in this paper: the point vs. surface and the

surface vs. surface matching cases. Since the proposed algorithms are based on dif-
ferential properties for matching, robust, and accurate extraction of them is an im-

portant step. When the surface vs. surface case is considered, the differential

properties can be accurately calculated. However, estimation of umbilical points

or curvatures from range data itself is a difficult problem. A surface fitting method

such as a least squares fitting method or a method in [49] is preferred here because

high order derivative properties can be calculated analytically from the fitted surface.

In this paper, we use a NURBS surface fitting method in the least squares sense

[19,42] using the singular value decomposition method. When data points are ar-
ranged as a grid, then the chord length parametrization method can be adopted

for parametrization of the data points, and the control points of a NURBS surface

are obtained using the standard least squares method. If data points are unorga-

nized, one can use the base surface method for parametrization proposed by Ma

and Kruth [30]. A Gaussian (low pass) filter is used to eliminate high frequency noise

in the data points to reduce the effects from the noise in the differential property

calculation [35].



130 K.H. Ko et al. / Graphical Models 67 (2005) 120–148
4.2. Umbilical Points

This method depends on the existence of umbilical points on an object. Several

papers indicate the possibility of the use of umbilical points for matching and recog-

nition [8,31]. An umbilical point is defined as a point, where normal curvatures in all
directions are equal. Generic umbilical points are stable with respect to small pertur-

bations so that they may act as fingerprints on a surface [7,31,39,45,50]. Besl [8] dis-

cussed the use of umbilical points as surface features for matching and suggested a

possible matching method. Maekawa et al. [31] and Patrikalakis and Maekawa [39]

proposed a robust method to calculate umbilical points and demonstrated their sta-

bility under small perturbations.

To locate umbilical points from range data, any type of surface fitting method

may be used to obtain a NURBS surface patch, which is provided as input to the
umbilical point detection algorithm [31,39]. Let us assume that we have an approx-

imated surface r1. When generic umbilical points exist on both surfaces r1 and r2, we

can use the x-plane to establish correspondence between the umbilical points. Let us

assume that r1 and r2 have n1, n2 umbilical points, respectively. Then we calculate x
in Eq. (16) for each umbilical point, i.e., x1j ðj ¼ 1; . . . ; n1Þ for the umbilics on r1 and

x2k ðk ¼ 1; . . . ; n2Þ for the umbilics on r2. Since the number of generic umbilical

points on a surface is generally small, an exhaustive search scheme can be employed

without loss of performance.
The searching process involves finding ðx1j;x2kÞ which satisfy
x1j

�� � x2k

�� < dx; ð17Þ
where dx is a user-defined tolerance.

4.3. KH Method

The overall diagram of the KH method is shown in Fig. 3. The input of the pro-

cess includes two objects and three pairs of the Gaussian and the mean curvatures at

three different non-collinear locations. The algorithm yields the minimum value of U
in the Eq. (4), and the corresponding rotation matrix R and the translation vector t.

Since no scaling effect is involved, we assume that the scaling factor r ¼ 1.

4.3.1. Step 10

Step 10 is to select three non-collinear points m1, m2, and m3 on r1 away from

the boundary of r1 where each point has different, Gaussian K and mean curvature

H values. At mi, we have Ki and Hi, where i¼ 1, 2, 3. Next, subdivide r2 into ra-

tional B�ezier surface patches Bj ðj ¼ 1; . . . ; nÞ by inserting appropriate knots

[22,40]. Then for each rational B�ezier surface patch Bj, we express Kj and Hj in

the bivariate rational Bernstein polynomial basis from Eq. (8) using rounded inter-
val arithmetic to formulate the problem. This allows us to use the interval pro-

jected polyhedron (IPP) algorithm [39,48] for solving nonlinear polynomial

systems. For each pair Ki and Hi, we solve the following system of equations by

the IPP technique.
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Kjðu; vÞ ¼ Ki � dK ;

Hjðu; vÞ ¼ Hi � dH ðj ¼ 1; . . . ; n and i ¼ 1; 2; 3Þ;
ð18Þ
where dK and dH represent the uncertainty of estimated curvatures from data points.

For each pair of Ki and Hi, a list of roots Li ¼ ðuik; vikÞ; ðk ¼ 1; . . . ; diÞ is obtained.
Here, the integer value di varies depending on the tolerances dK and dH , and the

shape of the surface for which Eq. (18) are formulated. However, typical values for

different examples are from four to a few thousand [27].

4.3.2. Step 12 (selection process)

A simple pruning search based on the Euclidean distance can be applied to the

selection process. We have three lists of candidate points,

Li ¼ ðuik; vikÞ; ðk ¼ 1; . . . ; diÞ from which one 3-tuple ðn1; n2; n3Þ

n1 ¼ r2ðu1k; v1kÞ; n2 ¼ r2ðu2k; v2kÞ; n3 ¼ r2ðu3k; v3kÞ; ð19Þ
is selected to satisfy the following Euclidean distance constraints simultaneously
m1jj �m2j � n1j � n2jj < dselect;

m2jj �m3j � n2j � n3jj < dselect;

m3jj �m1j � n3j � n1jj < dselect;

ð20Þ
where dselect is a user-defined tolerance.
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4.3.3. Step 14

The correspondence information between each point mi on r1 and ni on r2 is

established, from which a list of translation vectors and a rotation matrices can

be obtained. We choose a translation vector and a rotation matrix which produces

a minimum value of Eq. (4) with s ¼ 1, see Ko et al. [27].
5. Algorithms with scaling effects

In this section, matching algorithms involving scaling are discussed. Two methods

are proposed. One is to use umbilical points for matching and the other is to formu-

late a matching problem based on optimization.

The KH method described in Section 4.2 is designed to solve a matching problem
when no scaling effect is included, and in this section it is extended to resolve scaling

effects in the matching problem. Here, only uniform scaling is considered because

non-uniform scaling may distort the geometry of a surface so that its functionality

may be destroyed.

In case of global matching, a scaling value can be easily recovered by calculating

the ratio of areas between two surfaces or volumes between two solids. However, for

partial matching, comparison of any type of quantitative measures does not make

sense. Only qualitative feature matching can be considered. The other possible ap-
proach is to search for a good match out of many possible solutions. Both methods

are explained in the next subsections.

5.1. Use of umbilical points

The correspondence search explained in Section 4.2 only deals with qualitative as-

pects. Since the x-plane is not affected by scaling, only qualitative correspondence

can be established in the process. This implies that without a scaling factor applied,
a rigid body transformation cannot be obtained for aligning two surfaces. Therefore,

a scaling factor has to be estimated before any transformation is considered.

5.1.1. Method 1

Let us assume that we have two surfaces r1 and r2, where r1 is an approximated

surface of input data points. The overall procedure is shown in Fig. 4.

In step 100, all generic umbilical points are located on both surfaces r1 and r2 us-

ing the IPP algorithm [31,39]. Non-generic umbilical points are not used in this pro-
cess. If a generic umbilical point does not exist, this procedure cannot be applied.

In step 102, the correspondence search described in Section 4.2 is performed. The

value x in the complex plane is scale-independent so that qualitative correspon-

dences can be built from this step. Suppose that matched pairs are denoted as mk,

ðk ¼ 1; . . . ; nkÞ, where nk is the number of matched pairs. Then when at least one pair

is found, the next step 104 is performed. If no correspondence is established, then the

algorithm stops, implying that the umbilical point method cannot be used in this

case.



Fig. 4. A diagram for matching using umbilics.
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Step 104 resolves the scaling transformation. To calculate a scaling factor, the
normal curvatures are evaluated at the corresponding umbilical points on both sur-

faces r1 and r2. Then the ratio between them is obtained as a scaling factor. Suppose

that a surface r is scaled with a scaling factor r, denoted as rr. Then the normal
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curvature j on r is scaled to be j
r on rr. Therefore using this relation, the scaling fac-

tor can be recovered.

In step 106, after sorting out candidate points, a rigid body transformation is es-

timated by using the unit quaternion method [20]. Since the number of matched pairs

is more than three and if at least three pairs survive the selection process, the prob-
lem reduces to finding a rigid body transformation with three known corresponding

pairs. Using the methods in [20] a rotation matrix and a translation vector can be

calculated. If the matched pairs fail in the selection process, then the algorithm goes

to step 108 which deals with the matching process with less than three matched pairs.

In step 108, the orientations of the normal vectors at the corresponding umbilical

points are aligned. First, translate the scaled surface r1 by the difference between the

positions of the matched umbilical points. Then, align the normal vectors at the um-

bilical points. The alignment of the normal vectors can be achieved by using the unit
quaternion method [20]. Let us assume that we have two normal vectors n1 and n2 at

the corresponding umbilical points for r1 and r2, respectively. The problem of match-

ing the normal vectors can be stated as: rotate n1 around the vector Nn ¼ n1�n2
kn1�n2k

by an

angle h formed by n1 and n2. The angle h can be calculated by h ¼ arccosðn1; n2Þ, see
[20] for details of rotation in the quaternion frame.

In step 110, matching of lines of curvature emanating from an umbilical point is

performed. Depending on the type of the umbilical point, one (lemon) or three (star

and monstar) lines of curvature pass through the umbilical point as shown in Fig. 1,
and each direction can be determined by the structure of the cubic terms Cðx; yÞ as
summarized in Section 3.2.2. The directions can be obtained by calculating angles of

the lines of curvature with respect to the local coordinate system at the umbilical

point [31,39]. Using the angles, vectors which indicate the directions of lines of cur-

vature at the umbilical point can be obtained. These vectors are calculated at the

matched umbilical points on r1 and r2. Suppose that the number of the direction vec-

tors on r1 is nv1 and the number of the direction vectors on r2 is nv2. Choose one vec-
tor from r2 and align all of the vectors on r1. This process produces nv1 matched cases
among which one match is chosen that minimizes Eq. (4). This alignment is achieved

by rotation around the normal vector in the tangent plane at the matched umbilical

point. Therefore, the rotation method using the unit quaternion can be used in this

process [20].

5.1.2. Method 2

The rigid body transformation can also be obtained by using the KH method de-

scribed in Section 4.2 after the scaling transformation is resolved. The algorithm is
the same as in Fig. 4 from step 100 through step 104. After the scaling transforma-

tion is resolved, the KH method can be used to find the rigid body transformation

between two objects.

5.2. Optimization

The matching problem with scaling effects can be solved by an optimization tech-

nique. Since there is no quantitative measure that can be used to estimate a scaling
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value, the solution to the matching problem with scaling effects has to resort to an

optimum search method, which can narrow down the best estimate from a candidate

set of solutions.

As shown in Section 4.3, the KH method finds the rotation matrix and the trans-

lation vector which minimize the objective function (4) under the assumption that a
scaling factor is provided a priori. This implies that we can treat the KH method as a

function of one variable, i.e., the scaling factor r. Namely, steps 10, 12, and 14 in the

diagram of Fig. 3 are grouped as a function f such that
f ¼ Uðr;R; tÞ; ð21Þ

where U is the expression given in Eq. (4), r the scaling factor, R the rotation matrix

and t the translation vector. Since the rotation matrix and the translation vector are
obtained from the KH method, we can reduce Eq. (21) to a function of a single

variable r, or f ¼ UðrÞ. Hence, when r is given as input, then f produces the best

rigid body transformation (translation vector and rotation matrix) as well as the

value of the objective function U for the input scaling factor r. The behavior of the

function f depends on the success of steps 10 and 12 in Fig. 3. When no solution to

Eq. (18) is found in step 10, then we have no candidate points for step 12. In this

case, the function f is penalized to yield a very large value. When we have candidate

points in step 10, but the selection process fails under a given tolerance dselect, then
the tolerance is iteratively increased until any triplet is obtained or the following

holds
dselect 6 maxðjm1 �m2j; jm2 �m3j; jm3 �m1jÞ: ð22Þ
If there are more than two triplets, then, our method chooses one triplet which yields

the smallest value of U, which can be performed effectively by using an efficient

searching or sorting algorithm. When no triplet is found or the condition (22) is not
satisfied, then the function f is penalized to yield a very large value.

Using the function f ðrÞ, the problem can be formulated as a one-dimensional

optimization problem to find a scaling value which yields the minimum of f . A
popular one dimension optimization scheme, the Golden section search [42] can

be employed to solve it. An initial bracket ½a; b; c� of the scaling factor is provided

which contains an optimum value, and satisfies f ðaÞ > f ðbÞ and f ðcÞ > f ðbÞ. Sup-
pose this bracket is I0. The Golden section search starts with I0 and continues while

the size of an interval containing the optimum value r is larger than a user defined
tolerance which determines the size of the interval. Once the size of the interval

becomes less than the tolerance, the search stops and the interval is reported to

enclose the optimum value.
6. Analysis of algorithm

In this section, the proposed algorithms are analyzed in terms of time
complexity and accuracy. The convergence of the optimization method is also

discussed.
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6.1. Complexity

6.1.1. Surface fitting

The least squares fitting method requires solving a system of linear equations.

Suppose that there are r input data points and the number of the control points
of an approximated NURBS surface patch is c. Then the solution algorithm of

the singular value decomposition takes Oðrc2 þ c3Þ multiplications [10,19]. In gen-

eral, the singular value decomposition method is slower than solving the normal

equations. However, it is more stable and reliable.

6.1.2. IPP algorithm

The total asymptotic computation time per step is Oðnlmlþ1Þ [39,48], where n is the
number of the nonlinear equations that need to be solved, l the number of the inde-
pendent variables, m the maximum degree of the variables. Since the total number of

steps depends on a user-defined tolerance, it is hard to predict how many steps will

occur in advance. But for analysis purposes, we can use a constant a to indicate the

total number of the steps performed in the algorithm. Then the asymptotic time com-

plexity becomes Oðanlmlþ1Þ.

6.1.3. Calculation of umbilical points

Calculating isolated umbilical points from a B�ezier surface patch depends on the
degrees of the surface. The governing equations that have to be solved are Eq. (11),

and the IPP algorithm is employed for the solution to a system of the nonlinear

equations. Let us assume that the degrees of a B�ezier surface are du and dv in u
and v directions. In this case, the maximum degrees of the each governing equation

in u and v directions are proportional to the degrees of the input surface. The number

of the governing equations is three and the number of independent variables is two.

Therefore, the time complexity for the calculation of umbilical point reduces to

Oðm3Þ per step, where m ¼ maxðdu; dvÞ.
In general, a surface is represented in NURBS form. Therefore, in order to apply

the IPP algorithm to locate umbilical points, the surface needs to be subdivided into

B�ezier patches by the knot insertion algorithm [39,40]. Suppose, a surface has cu � cv
control points. Then the total number of subdivided B�ezier surface patches is pro-

portional to cucv. Therefore, it is concluded that given a NURBS surface of degree

du and dv in u and v directions with cu � cv control points, the total complexity re-

duces to Oðcucvam3Þ, where m ¼ maxðdu; dvÞ, and a is the number of iteration steps

in the IPP algorithm.

6.1.4. Umbilical method

The time complexity of the matching process of the umbilical point method de-

pends on the number of isolated umbilical points on the surfaces. Suppose that n1
and n2 are the number of umbilical points on the model and target surfaces r1 and

r2. Then the search of correspondence takes Oðn1n2Þ time in the worst case. However,

in general, n1 and n2 are small integers. Therefore, the elapsed time is typically

negligible.
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6.1.5. Optimization method

The elapsed time of the optimization method relies on the number of iterations in

the IPP algorithm and the tolerance of the Golden section search. Therefore, it is rea-

sonable to consider the time complexity of one iteration of the proposed method.

The complexity of the KH method consists of two parts: the IPP algorithm and
the selection process. The IPP algorithm solves Eq. (18) using the auxiliary variable

method [39]. Therefore, the number of equations and the number of independent

variables are three. Suppose that the degrees of a NURBS surface are du and dv
and denote the total number of steps performed by the IPP algorithm as a, which
depends on the tolerance provided by the user. Since the maximum degree of each

equation is proportional to the degree of the surface, the total complexity for the

IPP algorithm becomes Oðam4Þ, where m ¼ maxðdu; dvÞ. The selection process takes

Oðd1d2d3Þ, where di is the number of points of Li in Section 4.3.2. Therefore, the over-
all time complexity is Oðalm4 þ d1d2d3Þ per iteration of the Golden section search.

6.2. Accuracy

In this section, accuracy of both matching methods is discussed.

6.2.1. Umbilical point method

The accuracy of the umbilic method depends on that of the computation in locat-
ing umbilical points. The IPP algorithm requires a tolerance dumb which limits the

size of intervals containing roots. Therefore, the tolerance dumb becomes the expected

maximum accuracy bound of the umbilic method.

The quantitative estimation of the normal curvature at an umbilical point is

important to recover a scaling factor. Since, in general, the curvature value is hard

to be estimated from a set of data points, the umbilical matching method may not

yield a satisfactory result. However, the result can be used as an initial estimate

for an optimization method such as the ICP or the method proposed in this paper,
see Section 5.2.

6.2.2. Optimization method

The accuracy of this method depends on various tolerances that need to be pro-

vided as input to the algorithm. First, the KH method requires two different toler-

ances dIPP and dselect. The tolerance dIPP is provided as input to the IPP algorithm

which limits the size of intervals of roots. The tolerance dselect is used in the selection

process of Section 4.3.2. However, the tolerance dselect does not affect the accuracy of
the final result because it is used as a value to sort out 3-tuples from a set of candi-

date points. Therefore, the tolerance dselect can be a quite large number compared to

dIPP. The additional tolerance dG, which is used by the Golden section search, is the

one which affects the accuracy of the result such that it restricts the size of an interval

which contains an optimum scaling factor.

The tolerance dG needs to be carefully chosen [42]. The algorithm is designed to

stop when the size of a bracket becomes smaller than dG during the iteration. But

how small the tolerance can be is an important issue that needs to be clarified. As
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Press et al. [42] indicate, the smallest tolerance that can be used for the Golden

section search is
ffiffi
�

p
, where � is the machine precision. The smaller tolerance thanffiffi

�
p

results in unnecessary subdivisions of the bracket so that the overall performance

deteriorates.

6.3. Convergence of the optimization method

The function f ¼ f ðrÞ is not necessarily smooth so that the function is not suit-

able for optimization methods such as the parabolic interpolation in one dimension

[42], which can find an optimum value more efficiently when a function is smooth.

Instead, a slow, but robust method, the Golden section search in one dimension is

employed for this optimization problem. This optimization technique is designed

to cope with the worst possible case [42] and narrow down the interval which surely
contains an optimum value. It is known that the Golden section search converges

linearly to an interval of user-defined size which surely contains an optimum (local

minimum) value. The strategy of the proof is to show that the interval in the subse-

quent step which contains an optimum value decreases by a factor of c ð< 1Þ. An

assumption is made that three points a, b, and c in a bracket [a, b, c] satisfy the fol-

lowing conditions.
f ðaÞ > f ðbÞ; f ðcÞ > f ðbÞ: ð23Þ

In addition, suppose that w is 3�

ffiffiffi
5

p
=2. This is called the Golden ratio which is used

in the subdivision of the interval. We have an initial bracket [a0, b0, c0] which con-

tains an optimum value and satisfies (23). At the nth step, suppose that we have an

interval [an, bn, cn] and at an, bn, and cn the conditions (23) are satisfied. Moreover, we

have ðbn � anÞ=ðcn � anÞ ¼ w. The interval ln is calculated as ln ¼ jcn � anj. At the

next step, i.e., ðnþ 1Þth step, a value xn is selected which satisfies the ratio

ðxn � anÞ=ðcn � anÞ ¼ 1� w and then the function f ðxnÞ is evaluated there. If
f ðxnÞ > f ðbnÞ, then an interval [an, bn, xn] is chosen. If f ðxnÞ < f ðbnÞ, then the other

interval [bn, xn, cn] is taken. These two conditions guarantee that the selected interval

encloses the optimum value all the time. First, let us assume that the interval [an, bn,
xn] is selected. The size of the interval is lnþ1 ¼ jxn � anj which is equivalent to

ð1� wÞln. Since 1� w < 1, ln is decreased to lnþ1 by a factor of 1� w. Next, consider

the interval [bn, xn, cn]. The size of the interval is lnþ1 ¼ jcn � bnj which is also equal to

ð1� wÞjcn � anj, i.e., ð1� wÞln. Therefore, in both cases, the size of the interval ln is
reduced by a factor of 1� w ð< 1Þ.
7. Examples

7.1. Matching with scaling

Two methods are tested with several numerical examples. The formulation for the

Eqs. (11) and (18) are performed and solved by using the IPP algorithm in interval
arithmetic for robustness reasons [1], and the rest of the calculation is done in double
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precision. For simplicity all numbers are shown rounded at the fourth digit after the

decimal point. A linux machine with 1.6GHz CPU and 512Mbytes was used for cal-

culation.

7.1.1. Umbilical point matching

In this section,matching through umbilical points is demonstratedwith an example.

Supposewe have a set of data points r1 and a surface r2. The surface r2 shown inFig. 5 is

a bicubic B-spline surface with 64 (8� 8) control points enclosed in a box of

25mm� 23.48mm� 11mm. It has three star type umbilical points also as shown in

Fig. 5, and the parametric values of the umbilical points in interval arithmetic from

the IPP algorithm are summarized in Table 2. The elapsed time to calculate the umbil-

ical points is 81 s. The center values of the interval roots representing umbilical points in

Table 2 and the correspondingx values are shown in Table 3. The point set r1 shown in
Fig. 6 is approximated with a bicubic B-spline surface patch of 256 (16� 16) control

points. It takes 20 s to obtain the approximated surface. It has one umbilical point of

star type as shown in Fig. 6. The root is ([0.207059775021701, 0.207059851944778],

[0.684685549876914, 0.684685626799991]) in interval arithmetic and the elapsed time

is 524 s. The center value of the interval and x values are given in Table 4.
Fig. 5. Surface r2 and its umbilics.

Table 2

Umbilical points in interval arithmetic

Estimated umbilics for surface r2 using the IPP algorithm

No. (u, v)

1 ([0.748157559043998, 0.748157794338109], [0.0280931620263166, 0.0280933620263166])

2 ([0.860717315099411, 0.860717550393523], [0.4999999, 0.5000001])

3 ([0.748157559043993, 0.748157794338105], [0.971906637973675, 0.971906837973676])



Table 3

Umbilics and x values for r2

Surface r2

No. (u, v) x ¼ ðxþ iyÞ

1 (0.748, 0.028) 0:094� 0:069i

2 (0.861, 0.5) 0:151� 0:261i

3 (0.748, 0.972) 0:094þ 0:069i

Fig. 6. (A) Input point set r1. (B) Approximated surface of r1. (C) Located umbilical point (star type).

Table 4

An umbilic and x value for r1

Surface r1

No. (u; v) x ¼ ðxþ iyÞ

1 (0.207, 0.685) 0:151� 0:261i
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Each x value is plotted in the complex plane as shown in Fig. 7. We can find out

that the umbilical point of r2 matches the number 2 umbilical point of r1 by compar-

ing their complex x values. Since a correspondence has been found, a scaling factor

can be estimated by using the normal curvatures at the corresponding umbilical

points on both surfaces. The normal curvatures at the corresponding umbilical

points of r1 and r2 are j1 ¼ 0:334� 10�2 and j2 ¼ 0:113� 10�2, respectively. So

the scaling factor r can be calculated as s ¼ j1
j2
¼ 2:941. This scaling factor is applied

to r1 and translated by the difference of the positions between the two corresponding
umbilical points to get r01. The next step is to align the normal vectors n1 for r

0
1 and n2

for r2. The alignment can be done by rotating r01 by the angle between n1 and n2
around a vector Nn ¼ n1�n2

kn1�n2k
. The angle is 0.239 (rad) for this example. In order to

match lines of curvature passing umbilical points, one direction of the lines of cur-

vature from the surface r2 is selected. Let us denote the selected direction vector

as v2



Fig. 7. Umbilical points on the x-plane.

Table

Angles

No.

1

2

3

Table

Rotati

Ang
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v2 ¼ ð�0:821;�0:021;�0:570Þ: ð24Þ

Then three rotation angles between v2 and the directions in Table 5 at the umbilical
points on r01 are calculated as in Table 6. Here, the angles are measured from

or0
1

ou at the

umbilical point. Matching the directions of lines of curvature is done by rotating r01
around the normal vector in the tangent plane at the umbilical point. The rotation of

r01 by the first angle 1:105 rad yields the best match as shown in Fig. 8. The relative

measure of the maximum error can be calculated by dividing the maximum distance

error by a square root of the surface area of the surface, which is 0.011.
5

and directions of lines of curvatures

Angle (rad) Direction

0.964 (0.141, )0.001, )0.990)
)0.964 (0.879, 0.017, 0.477)

1:669� 10�15 (0.893, 0.014, )0.450)

6

on angles for matching lines of curvature

1 2 3

le (rad) 1.105 3.033 2.069



Fig. 8. Localized points onto the surface.
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7.1.2. Optimization

A few examples are presented for demonstration of the optimization method. The

first example is to match two objects shown in Fig. 9. Data points in Fig. 9B have

been scaled and transformed. A bicubic B-spline surface with 324 ð18� 18Þ control
points is used to approximate the data points to calculate the Gaussian and the mean

curvatures at three seed points shown as circles in the figure. The fitting step takes
Fig. 9. Example 1 for the optimization method. (A) Matched surfaces. (B) Input points and three selected

seed points for matching.
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99 s. The bottle surface shown in Fig. 9A is a bicubic B-spline surface with 64 (8� 8)

control points, enclosed in a box of 25mm� 23.48mm� 11mm. The problem here is

finding a scaling factor and a rigid body transformation which make the two objects

match as closely as possible. In this example, dIPP ¼ 0:5 was used for the IPP algo-

rithm tolerance and dG ¼ 0:001 for the Golden section search tolerance. For an ini-
tial interval for the Golden section search, ½0:3; 1:0� was used. The Gaussian and the

mean curvature functions are approximated by a bicubic B-spline surface with

256� 256 control points and provided as input to the algorithm. The tolerances

dK and dH of 0.0001 and 0.001 are used, respectively. After the optimization stops,

the estimated scaling factor is 0.364, and the rotation matrix and the translation vec-

tor are summarized in Table 7. The matched surfaces are shown in Fig. 9A and the

darker portion is surface B scaled and transformed. The relative measure of the max-

imum error can be calculated by dividing the maximum distance error by a square
root of the surface area of the bottle, which is 0.0068.

The second example is an artificial surface shown in Fig. 10. The surface shown in

Fig. 10A is a bicubic B-spline surface with 400 ð20� 20Þ control points enclosed in a

box of 10mm� 10mm� 2.5mm. The Gaussian and the mean curvature values are

estimated at three selected seed points as shown in Fig. 10B. An interval of [0.3,

1.0] is used for an initial bracket for the optimization routine, and a value of

0.001 is used for the tolerance of the Golden section search. The recovered scale
Table 7

Estimated rigid body transformation for the first example

Rotation matrix Translation vector

0:039 0:921 0:386
�0:169 0:388 �0:906
�0:985 �0:030 0:171

2
4

3
5 ½ �32:090 �53:595 �12:391 �

Fig. 10. Example 2 for the optimization method. (A) Matched surfaces. (B) Input points and three selected

seed points for matching.
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value is 0.652, and the relative maximum error is 0.002. The estimated rigid body

transformation for this example can be found in Table 8.

The localized result is presented in Fig. 10A.

The third example is half of a fictitious automobile hood surface enclosed in a box

of 13mm� 12mm� 6mm. To imitate the behavior of a 3D scanner, the points P in
Fig. 11B are disturbed by the following equation with n ¼ 0:01 [31,39]:
Table

Estima

Rot

0:
�0
�0

2
4

Fig. 1

three s
P0 ¼ Pþ n
ðexij; e

y
ij; e

z
ijÞ

T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ex2ij þ ey2ij þ ez2ij

q ; ð25Þ
where exij, e
y
ij, and ezij ði; j ¼ 1; 2; 3) are randomly chosen numbers which vary from )1

to 1. Three seed points are selected, where the Gaussian and mean curvatures are

evaluated as shown in Fig. 11B. An interval of [0.3, 1.0] is used for an initial bracket

for the optimization routine, and a value of 0.01 is used for the tolerance of the

Golden section search. The recovered scaling factor is 0.708, and the relative max-

imum error is 0.0005. The estimated rigid body transformation for this example can

be found in Table 9 and the localized result is presented in Fig. 11A.
The elapsed time of the optimization method (excluding the surface fitting step)

depends on the tolerances of the Golden section search and the IPP algorithm.

The elapsed times for the examples under the given tolerances in this subsection

are summarized in Table 10.
8

ted rigid body transformation for the second example

ation matrix Translation vector

110 �0:906 �0:409
:235 �0:423 0:875
:966 2:13� 104 �0:259

3
5 ½ 63:566 45:262 33:335 �

1. A matching of a fictitious automobile hood surface. (A) Matched surfaces. (B) Input points and

elected seed points for matching.



Table 10

Elapsed times for the examples

Examples Times (s)

Bottle surface (Fig. 9) 3449

Test surface (Fig. 10) 1567

Automobile hood (Fig. 11) 907

Table 9

Estimated rigid body transformation for the third example

Rotation matrix Translation vector

0:451 0:054 �0:891
�0:787 0:495 �0:368
0:421 0:867 0:265

2
4

3
5 ½ 4:28 11:463 0:137 �
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8. Conclusions

We have addressed a problem of partial matching of free-form objects with scal-

ing effects and no prior information on correspondence, and proposed two methods

to solve it. With rough tolerances, the methods can be used to produce a good initial

value for iterative algorithms such as the ICP algorithm and its variants. When tight

tolerances and accurately estimated curvatures are used, the methods can yield accu-

rate transformations. In the optimization method, an initial interval estimate of the
scaling factor needs to be determined which includes the optimum value. However,

unlike the ICP algorithm which requires an initial rigid body transformation as well

as an initial scaling factor, our optimization method needs only an initial interval of

the scaling factor because it incorporates the KH method which can handle a match-

ing problem of NGWOS or NPWOS type. Therefore, estimation of an initial ap-

proximation becomes considerably simplified. In addition, the overall performance

of the optimization method can be improved by combining the Golden section

search and the secant method [16]. Near an optimum point where the size of the in-
terval from the Golden section search is small, the secant method may be used to re-

duce execution time due to its faster convergence rate.

The proposed algorithms are well suited to copyright protection of CAD models

represented by NURBS surface patches. Extension of the current algorithms to be

used for various representation methods such as polyhedral and range data is recom-

mended. In order to achieve this goal, estimation of differential properties from

range data is important. In this paper, a least squares NURBS surface fitting method

is used to obtain an approximated NURBS surface which is provided as input to the
algorithms. However, this approximation itself requires further study. Since there is

no general method which can cover all cases, a different method needs to be em-

ployed for the estimation of differential properties depending on the quality of input

data. In conjunction with this estimation of differential properties, the overall effect
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of noise in the input data on the matching result needs to be investigated. This anal-

ysis is important when real scanned data are provided as input.

Interval arithmetic is used for the formulation and solution of the systems of non-

linear equations in the calculation of umbilical points and the KH method using the

IPP algorithm. After that, center values of each interval are calculated and floating
point arithmetic is used in the subsequent calculation. All calculation for both pro-

posed algorithms can be performed using interval arithmetic to enhance robustness.

The method of classification of umbilical points and the Golden section search using

interval arithmetic is a subject for future research topic.
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