
Analysis of Validated Error Bounds of

Surface-to-Surface Intersection

K. H. Ko a,∗,1 N. M. Patrikalakis b

aModeling and Simulation Laboratory, Room 202, Department of Mechatronics,

Gwangju Institute of Science and Technology, Gwangju, 500-712, Republic of

Korea

bDesign Laboratory, Department of Mechanical Engineering, Massachusetts

Institute of Technology, Cambridge, MA 02139, USA

Abstract

In this paper, we address the problem of computing the error bounds of surface to
surface intersection and propose a novel procedure to reduce them. We formulate the
surface to surface intersection problem as solving a system of ordinary differential
equations and using the validated ODE solver we compute the validated a priori

enclosures of an intersection curve, in which the existence and the uniqueness of a
solution are guaranteed. Then we use straight line enclosures to reduce the size of
the a priori enclosures. These reduced enclosures are again enclosed by bounding
curves, which can be used as the reduced error bounds of the intersection curve. We
demonstrate our method with tangential and transversal intersections.

Key words: validated ODE solver, validated error bounds, a priori enclosures,
surface to surface intersection, the tracing method, reduction of enclosures

1 Introduction

Intersection computation has been an active research topic since the inception
of computer aided design dating back to over twenty years ago. It is a core
step in geometric and solid modeling and there has been substantial literature

∗ Corresponding author.
Email addresses: khko@gist.ac.kr (K. H. Ko), nmp@mit.edu (N. M.

Patrikalakis).
1 Tel: +82-62-970-3225, FAX: +82-62-970-2384

Preprint submitted to Elsevier 28 September 2007

devoted to this topic [1]. However, among various types of intersections, surface
to surface intersection (SSI) still remains a difficult problem in practice.

When two surfaces intersect, we can find the intersection by using various
methods. In particular, the tracing method [1] is widely used in various ap-
plications. This approach requires a preliminary step, where all the critical
points of the intersection are identified and the topological configuration for
each intersection curve segment is performed [2,3]. Then we trace each SSI
curve segment by solving a set of nonlinear ordinary differential equations for-
mulated for SSI as an initial value problem (IVP) using the critical points as
the starting and ending points [1]. The intersection curve segment can also be
computed by solving a boundary value problem [2]. To reduce the difficulty
involved in handling general free-form surface intersections, special types of
surfaces such as ruled surfaces and swept surfaces have also been considered
in the literature [4].

In intersection computation, we need to consider two issues: 1) the inherent
approximation of intersecting surfaces in floating point arithmetic with lim-
ited precision and 2) the robustness of intersection calculation. Even though
we define a surface with exact coefficients, unless exact arithmetic is used, the
coefficients are inevitably approximated, creating an approximation to the sur-
face. This implies that in intersection computation we are solving a problem
which is close to what we are trying to define. In addition, the critical points
of intersections which are used as the initial conditions for tracing intersection
curves cannot be computed exactly due to the limited precision. Therefore,
the numerical methods solving such an initial value problem will generate an
approximation to the exact solution, which could result in numerical inac-
curacy that may affect the resulting topological structure of the intersection
curves. The second issue pertains to the robustness of the numerical methods
solving ODEs. As indicated in [5,1], the standard numerical methods such as
Runge-Kutta method, suffer from instabilities; when there exists a singular
point, the behavior of the methods becomes unpredictable; and where distinct
solutions are close to each other, the conventional numerical methods may
suffer from straying or looping.

As a solution to such problems, Mukundan et al. [5] proposed to use the vali-
dated ordinary differential equation solver to trace intersections. Since it op-
erates in interval arithmetic, the uncertainty involved in the surface definition
as well as the critical point computation can be handled robustly. Moreover
the validation step of the existence and the uniqueness of the solution can
prevent a possible unstable behavior associated with the topological structure
of the solution.

The result of the interval based SSI computation is directly related with the
error bound analysis of SSI, which is important for geometric modeling and

2

manufacturing. A geometric model may be defined with a tolerance for con-
sidering possible errors introduced during computation and manufacturing.
In particular, the SSI intersection part in the model can be represented as
an approximate intersection curve with the associated error bounds. Mow et
al. [6] provided a relation between the model and the parameter space error
bounds for SSI curves using Taylor’s theorem and compared the result with
the Grandine-Klein (G-K) intersector [2]. They presented a convenient user
interface for specifying the model space error bounds, which are, then, con-
verted into corresponding parameter space error bounds that are provided as
input to an intersection algorithm such as the G-K intersector. This approach,
however, does not consider the validation aspect of the solution. In [5], the
validation of the intersection is discussed by using the validated ODE solver.
Then the enclosures of the solution are used as the validated error bounds of
the exact solution. In surface to surface intersection, such enclosures are com-
puted for each parametric variable with respect to the arc length parameter of
the intersection curve. As an extension to [5], Mukundan et al. [7] analyzed the
error bounds in model space and provided a relation between the parametric
and the model space error bounds. The extension, however, may overestimate
the error bounds of the intersection when the exact solution lies diagonally
across each enclosure.

In order to deal with the two goals, the validation of the intersection and the
reduction of the error bounds, we propose to use the validated ODE solver and
reduce the validated regions associated with the error bounds of the intersec-
tion. The first simple method is to use the smaller stepsize for the validated
ODE solver. This approach, however, increases the number of steps, leading
to performance degradation. In this paper, we address the error bound issues
and propose a novel method for reducing the validated error bounds of the
exact intersection curve without using a smaller stepsize. The method takes
constant a priori enclosures as input and reduces the region of each a pri-
ori enclosure by using higher order enclosure methods. It is proposed as a
postprocess of the validated ODE solver and can reduce the enclosure size sig-
nificantly in comparison to the enclosures obtained by the constant enclosure
method. Then we discuss the error bound relation between the model and the
parametric spaces.

This paper is structured as follows: In Section 2, we briefly review the val-
idated ODE solver, which serves the foundation for the presentation of this
paper. In Section 3, the proposed method is explained in detail with the ap-
plication to surface to surface intersection. Section 4 discusses the model and
the parametric space error bounds and Section 5 concludes this paper.

3

2 Computation of Error Bounds

In this section we briefly summarize the validated ODE solver and introduce
various notations used in Section 3.

Given a continuous function f : D → Rn, f ∈ Ck−1(D) for an open set
D ⊂ Rn, where k is a positive integer with k > 1, we define an autonomous
initial value problem with an initial value y0 ∈ Rn [8,9]:

y′(s) = f(y), y(s0) = y0, (1)

where s ∈ [s0, sm] for some sm > s0 and s0, sm ∈ R. Suppose we have a grid
s0 < s1 < · · · < sm, si ∈ R. The step from sj to sj+1 is called the (j + 1) step
with a stepsize hj = sj+1 − sj. We denote the solution of Equation (1) with
an initial condition yj at sj by y(s; sj,yj) [9,8].

In interval arithmetic, for an initial condition [yj] at sj, we have a set of
solutions of Equation (1) [9]:

y (s; sj, [yj]) = {y (s; sj,yj) |yj ∈ [yj]} . (2)

Here, we define an interval [y] by a set of real values in R, and [y] =
[

y, y
]

=
{

y|y ≤ y ≤ y
}

. An interval vector is defined as the vector whose components
are intervals.

In general, the validated scheme for solving an IVP of an ordinary differential
equation (ODE) consists of two phases [9]: 1) the stepsize selection and a
priori enclosure computation, and 2) the tight enclosure computation.

Phase I: Stepsize Selection and a Priori Enclosure Computation

In this phase, a stepsize hj and an a priori enclosure [ỹj] of the solution to
Equation (1) are computed such that [yj] ⊆ [ỹj] and hj = sj+1 − sj. So
[ỹj] and hj form a domain within which the existence and the uniqueness
of y(s; sj,yj) for all s ∈ [sj, sj+1] and yj ∈ [yj] are validated. Since [ỹj] is
determined from [yj] at sj, we have used j instead of j + 1 for the index of
the a priori enclosure [ỹj+1]. This step finds as large a step hj as possible
to reduce the number of discretization points in the final solution [9]. There
exist several different approaches to find such a step [10,11,9,8] and we use
the constant enclosure method [9,8] for computing a priori enclosures in this
phase.

4

Phase II: Tight Enclosure Computation [8,9]

In this step, given [ỹj] and hj at sj obtained from Phase I, a tight enclosure
[yj+1] ⊆ [ỹj] at sj+1 is computed such that

y (sj+1; sj, [yj]) ⊆ [yj+1] . (3)

This means that [ỹj] is the a priori enclosure for a step [sj, sj+1], and [yj]
and [yj+1] where [yj] ⊆ [ỹj] and [yj+1] ⊆ [ỹj]. The interval [yj+1] at sj+1 is
provided as the initial condition for the next step, which is used to determine
the stepsize hj+1 and an a priori enclosure [ỹj+1] at sj+1. The naive com-
putation of the enclosure [yj+1] at sj+1 may result in the explosion of the a
priori enclosure size in the subsequent integration step. This phenomenon is
called the wrapping effect [11,12,9] and controlling such an effect is the pri-
mary goal of this phase. In order to control the size of the enclosure, the local
coordinate transformation [12], the QR-factorization method [11], the interval
Hermite-Obreschkoff method [8], etc. were proposed. In this work, we use the
QR-factorization method by Löhner [11] for Phase II.

In combining Phases I and II, the validated ODE scheme computes the solution
of a system of differential equations with the wrapping effect controlled. It
generates constant a priori enclosures [ỹj] and tight intervals [yj] at sj and
those a priori enclosures can be used as the validated error bounds of the
solution.

3 Reduction of Error Bounds

The algorithm given in Section 2 focuses on how to compute constant a priori
enclosures and tight bounds avoiding the wrapping effect. However, the size
of the constant a priori enclosures can be much larger than necessary so the
associated error bounds are over-estimated. In this section we propose a novel
method to reduce the size of the error bounds without taking a shorter stepsize
hj. We explain our method in detail and expand our discussion to surface to
surface intersection.

3.1 Proposed Method

Assume that we have a system of nonlinear ODEs whose dimension is at least
one as given in Equation (1), where yj = (1yj,

2 yj, · · · ,
γ yj), γ ≥ 1. Then using

the validated ODE method, we obtain [ỹj] for [sj, sj+1] and [yj+1] at sj+1.
Consider one component βyj, (1 ≤ β ≤ γ). Then the bounds at sj and sj+1 and

5

the a priori enclosure for [sj, sj+1] can be computed, which are schematically
shown in Fig. 1. As shown in the figure, the constant enclosure is given in
rectangular form in the βy and s domain. This rectangular shape, however,
over-estimates the validated a priori enclosure, leading to the over-estimation
of the error bound.

In order to reduce the constant a priori enclosure, we propose to use enclosures
based on degree one polynomials. Given the constant a priori enclosure

[

β ỹj

]

,

we compute two straight lines enclosing the exact solution starting at (sj, βyj)
and (sj,

βyj) towards sj+1 as given in two dotted lines in Fig. 1. Here, βyj

and βyj are the upper and the lower values of the bound
[

βyj

]

. Similarly,

we compute two lines enclosing the exact solution starting at (sj+1, βyj+1)
and (sj+1,

βyj+1) towards sj. For this computation, we need to consider three
different cases as shown in Fig. 2: 1) when the straight lines intersect within
[

β ỹj

]

as shown in Fig. 2(a), 2) when they intersect the boundary of
[

β ỹj

]

as

shown in Fig. 2(b) and 2(c), and 3) when the two cases 1) and 2) happen at
the same time.

s j

y

[y

[y

s j+1

j]

]

[yj+1]

j
β

β~

β

Fig. 1. The two straight lines are intersecting within the a priori enclosure at
[sj , sj+1] of the β component

s j

y

[y

[yj]
β~

s j

y

[y

[yj]
β~

s j

y

[y

[yj]
β~

s j+1

]

[yj+1]

j
β

β

(a) (b) (c)
s j+1

]

[yj+1]

j
β

β

s j+1

]

[yj+1]

j
β

β

Fig. 2. The three different cases of intersections between two straight lines, and
between the straight lines and the boundary of the a priori enclosure. The same
cases apply for the lower bounding lines.

Then we compute the intersections either between the straight lines or between
the boundary of the a priori enclosure and the straight lines depending on

6

the cases. After this we will have a polygon Πj enclosed in the constant a

priori enclosure
[

β ỹj

]

. One example of such a polygon is shown in Fig. 3. This

s j

y

[y

[y

s j+1

j]

]

[yj+1]

j
β

β~

βΠj

Fig. 3. The a priori enclosure with straight line enclosures from sj+1 and the final
polygonal enclosure

procedure is similarly applied to the other y components, reducing the size of
all the constant a priori enclosures.

In this procedure, the computation of the bounding straight lines that enclose
the exact root is the key step and we propose to use the Taylor series [13] and
the polynomial enclosure method [9] for this purpose. In this exposition, we
omit the component index β and use y for simplicity instead of βy to indicate
the β-th component of y.

Taylor Series Enclosure Method

The validation given in Section 2 can be done by using the Taylor Series
Enclosure method [13,9]. Given an a priori enclosure [ỹj], intervals [yj] and
[yj+1] at sj and sj+1, we take the term of degree one to find

[y](s) = [yj] + (s − sj) [yj]1 , (4)

where the enclosure for the remainder is [yj]1 = f ([ỹj]). Equation (4) rep-
resents the upper and the lower bounds of the exact root in straight lines,
starting from the upper and the lower values of [yj], respectively.

Similarly, we can compute another upper and lower bounds in straight lines,
starting from the upper and the lower values of [yj+1] at sj+1 towards sj.

Polynomial Enclosure Method

Based on the polynomial enclosure method introduced in [14,9], we use a poly-
nomial of degree one as a bounding straight line for verification. We propose

7

the following three steps for computation:

(1) Let [y] (s) = [yj] + (s − sj) [vj,1]. Here, we set [vj,1] =
[

ỹ0
j,1

]

= f ([ỹj]).

(2) Compute

[v] (s) = [yj] + (s − sj) [vj,1]

⊆ [yj] + [0, hj] [vj,1] = [v∗] .

Then we set [fj,1] = f ([v∗]).
(3) Compute

[

ỹ1
j

]

= [yj]1 +
[fj,1]

2
[0, hj] . (5)

Then check if
[

ỹ1
j,1

]

⊆ [vj,1]
(

=
[

ỹ0
j,1

])

. (6)

If condition (6) is true, then the bounding enclosure in straight lines

is given by [y] (s) = [yj] + (s − sj)
[

ỹ1
j,1

]

. If not, set [vj,1] =
[

ỹ0
j,1

]

=

f
([

ỹ1
j,1

]

∪ [vj,1]
)

and go to Step 2.

The goal of this iterative procedure is to determine
[

ỹ0
j,1

]

such that condition

(6) is satisfied. Under this condition, the existence and the uniqueness of the
solution within the straight line enclosures at each step are guaranteed. If
the condition does not hold, meaning that

[

ỹ0
j,1

]

is not properly selected, we

increase
[

ỹ0
j,1

]

by taking the union of
[

ỹ0
j,1

]

and
[

ỹ1
j,1

]

and repeat the process

until condition (6) is satisfied. We can always find
[

ỹ0
j,1

]

such that condition

(6) holds since the a priori enclosure [ỹj] has already been validated for the
solution’s existence and uniqueness. The same process can be applied to the
computation of the bounding straight lines from [yj+1] at sj+1.

In this paper we do not propose a method of how to compute [yi+1] at sj+1

when [yi] at sj is given. Instead we use [yj] at sj, [yj+1] at sj+1, and [ỹj] for
[sj, sj+1], respectively, which have already been obtained by using the validated
ODE solver. Then we process the a priori enclosure to reduce its size. Since
we use the computed bounds [yi] and [yi+1] at sj and sj+1, the wrapping effect
does not have to be considered in the proposed procedure .

3.2 Approximation of Error Bounds

In this section, we provide a method to give the upper and the lower bounds
of the exact root in polygonal form using the concept of the offset curve. With
this method, we can represent both of the bounds compactly [1].

8

Suppose we have a curve α(s). Then the offset curve α∗(s) is given by

α∗(s) = α(s) ± dn(s), (7)

where α is the progenitor, d the offset distance, s the independent variable
and n the unit normal vector of α. The curve α can be approximated from

the list of points (sj,
(yj+y

j
)

2
) in the B-spline curve form. The choice of α could

be arbitrary as long as it can be used as the progenitor of an offset curve.
Then we compute the distances from the vertices of the upper and the lower
bounding polylines to the curve α and compute the maximum distance which
is set for d in Equation (7).

3.3 Analysis

Suppose that we have n a priori enclosures. Then the time complexity of the
computation of bounding straight lines by either the Taylor series or the poly-
nomial enclosure methods is O(n) since we compute four straight lines for each
a priori enclosure. However, an iteration may be needed for the polynomial
enclosure method for validation. In such a case, we require more computation
time but in most cases the number of iterations is small.

The computation of the maximum distance from each bounding vertex to the
progenitor curve is implemented using Newton’s method. It is not possible
to estimate the time for this computation but we can denote it by tǫ. This
computation time is proportional to the number of bounding vertices and for
each range [sj, sj+1] we have at most four bounding vertices including the ones
at each sj and sj+1. Therefore, we have O(4(n + tǫn)) and since in most cases
the actual computation requires less than three iterations, making tǫ << 1,
the worst case time complexity becomes O(n).

We compute the progenitor planar curve α(s) which approximates the center
points at each sj in the least squares sense. If we use m control points for the
approximation, then the time complexity for this step is O(m3+mn) including
matrix multiplication operations.

In conclusion, the time complexity of the proposed method mostly depends on
the number of the a priori enclosures and the number of the control points of
the progenitor. Most of the time is spent in the approximation of the progenitor
curve.

9

3.4 Tracing Surface to Surface Intersection Curves Using a Validated ODE
Scheme

In this section, we demonstrate how to compute the reduced validated error
bounds of an intersection curve using the proposed procedure.

We have chosen two typical examples for demonstrating our method: transver-
sal and tangential intersections. These two examples are enough for illustration
since any complicated intersections can be decomposed into a set of monotonic
components of transversal and tangential intersections.

Each intersection is formulated as a system of nonlinear ordinary differential
equations with initial conditions [1]. In order to solve the system using the
validated ODE solver we first reformulate it in terms of interval arithmetic. As
indicated in [5], we replace each variable by a corresponding interval variable
without changing the equations.

For implementation, we used the existing packages for interval arithmetic
[15,16] and the validated ODE solver [8,9]. All programs were compiled using
g++ 4.0.3 and run on a Linux computer with a 3.2GHz CPU and 2GB RAM.

3.4.1 Transversal Intersection

Figure 4 shows two transversally intersecting bicubic Bézier surfaces P(σ, t)
and Q(u, v) with parameter domains (σ, t) ∈ [0, 1]2 and (u, v) ∈ [0, 1]2, which
are taken from Mukundan et al. [5]. The initial conditions (0.00000, 0.00000),

Fig. 4. Transversal intersection of two bicubic surfaces [5]

(0.49999, 0.50001), (0.00000, 0.00000) and (0.49999, 0.50001) for σ, t, u and v,
respectively, are used for computation. The validated ODE solver, then, traces
the solutions for each parameter and generates a series of enclosures as given

10

in Fig. 5, where the constant a priori enclosures are shown with respect to the
arc length s. The zoomed-in views of part of the a priori enclosures of each
parameter with respect to s are superimposed in each image in Fig. 5 to show
the detailed shapes of the enclosures. The widths of each initial value are 0
for σ and u, and 1.0× 10−5 for t and u. The number of the a priori enclosures
is 1810.

−0.2 0.32

 0.48−0.2

 0
 0.34

 0.5
 0

 0.2

 0.36

 0.52

 0.2

 0.4

 0.38

 0.54

 0.4

 0.6

 0.4

 0.56

 0.6

 0.8

 0.42

 0.58

 0.8

 1

 0.44

 0.6

 1

 1.2

 0.46

 0.62

 1.2

 0

 0

 0.48

 0.64

 2

 2

 0.5

 0.66

 4

 4

 0.52

 0.68

 6

 6

 0

 0

 8

 8

 2

 2

 10

 10

 4

 4

 12

 12

 6

 6

s

s

σ t

u v

 8

 8

 10

 10

 12

 12s

s

Fig. 5. The a priori enclosures for each parameter with respect to the arc length s

The two proposed reduction methods are applied to these constant enclosures.
The amount of reduction against the constant enclosures is summarized in
Table 1. The ratio means that the enclosed area from the proposed methods
has been reduced by that amount compared to that of the constant enclosures.

Parameter Taylor Enclosure Polynomial Enclosure

σ 93.70% 99.60%

t 85.95% 95.65%

u 93.08% 99.58%

v 85.97% 96.59%

Table 1
Reduction ratios for each variable

The reduced enclosure for the parameter u using Taylor enclosure method is
shown in Fig. 6 for illustration. The left image of Fig. 6 displays the constant
and the reduced enclosures over the entire range of s and the right one shows
the magnified figure of the portion circled in the left image, where the solid
lines are the rectangular enclosures from the constant enclosure method and
the dotted ones indicate the reduced enclosures by Taylor enclosure method.

The center points at each sj are approximated using a cubic B-spline curve

11

−0.05

 0.294
 0

 0.296 0.05

 0.298 0.1

 0.3
 0.15

 0.302

 0.2

 0.304

 0.25

 0.306

 0.3

 0.308

 3.64

 0.35

 3.66

 0.4

 3.68

 0.45

 3.7 0 3.72 1 3.74 2 3 4 5s

t t

s

Fig. 6. The constant and reduced enclosures for the parameter u.

with 100 control points, which is used as a progenitor curve for the error bound
computation. The maximum distances of the reduced enclosures and of the
rectangular a priori enclosures from the progenitor curve are summarized in
Table 2. The table contains maximum distances from the progenitor curve.
So, the maximum widths of the bounding curves are twice the values in the
table.

Domains Taylor Enclosure Polynomial Enclosure Rectangular Enclosure

σ − s 1.4151 × 10−4 9.0123 × 10−6 8.7119 × 10−3

t − s 1.1783 × 10−4 1.7720 × 10−5 1.4334 × 10−3

u − s 1.6311 × 10−4 9.7552 × 10−6 8.7159 × 10−3

v − s 1.1829 × 10−4 1.5877 × 10−5 1.1617 × 10−3

Table 2
Maximum distances from the progenitor curve

 0.338

 0.339

 0.34

 0.341

 0.342

 0.343

 0.344

 0.345

 4.05 4.06 4.07 4.08 4.09 4.1 4.11 4.12
s

u

Fig. 7. The bounding curves of the reduced enclosures from Taylor enclosure method
for the parameter u.

Figure 7 shows two bounding curves of the reduced enclosures generated by
Taylor enclosure method. In the figure, the two thick solid curves are the
bounding curves, the rectangles the constant enclosures and the dotted lines
the reduced straight line enclosures.

12

In Fig. 8 the bounding curves obtained by Taylor and the polynomial enclosure
methods are plotted in uv parametric domain. The right image contains part

 0.48
 0.5845

 0.5

 0.585
 0.52

 0.5855
 0.54

 0.586
 0.56

 0.5865 0.58

 0.587 0.6

 0.5875
 0.62

 0.588
 0.64

 0.5885

 0.136

 0.66

 0.137

 0.68

 0.138−0.1 0.139 0 0.14 0.1 0.141 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
u u

vv

Fig. 8. The bounding curves by Taylor and the polynomial enclosure methods in uv

parametric space

of the entire curves within the rectangle for better visualization. The outer
solid curves are the bounding curves by Taylor enclosure method and the
inner dotted ones by the polynomial enclosure method.

3.4.2 Tangential Intersection

In this section, we demonstrate our method to a tangential intersection case.
Figure 9 shows two bicubic Bézier surfaces intersecting tangentially, which
were taken from [17]. The initial interval values are given by σ, u = [0.0000000, 0.0000000]
and t, v = [0.4999999, 0.5000001], respectively.

Fig. 9. Two tangentially intersecting surfaces [17]

The validated ODE solver generates 2789 a priori enclosures with an arc length
of 207.4. Table 3 summarizes the reduction ratios compared to the constant
enclosures. We use a cubic B-spline with 200 control points to compute the
progenitor. The maximum distances of the reduced enclosures and of the con-
stant a priori enclosures from the progenitor are summarized in Table 4. The

13

Parameter Taylor Enclosure Polynomial Enclosure

σ 98.51% 99.99%

t 89.35% 99.38%

u 99.22% 99.99%

v 88.08% 99.71%

Table 3
Reduction ratios for each variable

Domains Taylor Enclosure Polynomial Enclosure Constant Enclosure

σ − s 2.1577 × 10−5 1.2740 × 10−6 2.0986 × 10−3

t − s 2.8052 × 10−5 2.3918 × 10−6 2.6951 × 10−4

u − s 1.3364 × 10−5 1.1331 × 10−6 2.0992 × 10−3

v − s 5.2834 × 10−5 2.6521 × 10−6 6.8490 × 10−4

Table 4
Maximum distances from the progenitor curve

maximum widths of the bounding curves are twice the values in the table.

Figure 10 shows the bounding curves of v with respect to s. A blown-up image
of part of the bounding curves is provided in the right for illustration where
the solid curves are the bounding curves by Taylor enclosure method and the
dotted ones are those by the polynomial enclosure method.

 0.3954

 0.35

 0.3956 0.4

 0.3958
 0.45

 0.396

 0.5
 0.3962

 0.55 0.3964

 0.6

 0.3966

 0.65

 0.3968

 0

 0.397

 50 54.2 100
s

v

 54.4 150 54.6
s

v

 200 54.8 250 55 55.2 55.4 55.6

Fig. 10. The bounding curves of the Taylor and polynomial enclosure methods with
respect to s

4 Model and Parametric Space Error Bounds

As pointed out in [6], when a model is defined by parametric surfaces, tol-
erances given for parametric space are not intuitively understood in practice
since in most cases it is in model space where the tolerances are provided for
design and manufacturing. Therefore, we need a method to relate a tolerance

14

in model space to that in parametric space. In particular, for an SSI problem,
given a tolerance in model space, we compute the corresponding tolerances for
each parametric variable using the methods by Mow et al. [6] or Mukundan et
al. [7]. The former can be used for intersections of general surfaces, whereas
the latter presents a limited case of two bicubic surface intersection based on
interval arithmetic. Once we have the tolerances of each parametric variable,
we can iteratively reduce the validated error bounds whose size is less than
the tolerances for each parameter.

5 Conclusions

In this paper, we propose a novel method to compute the validated error
bounds of surface to surface intersection. We compute the validated constant
a priori enclosures using the validated ODE solver and reduce them through
the straight line enclosure methods without decreasing the step size. Then
we compute the bounding error curves for compact representation of those
reduced enclosures.

We believe that the validation of the reduced error bounds generated by the
proposed method opens a way of guaranteeing the validity of a geometric
model near the intersection by considering both the topological and numerical
aspects in intersection computation at the same time. With this method, we
can possibly achieve a topologically consistent model. Moreover, the proposed
method can be interfaced with interval solid modeling method with no extra
effort. Further investigation of these topics is a subject of future research.

Acknowledgments

This work was supported in part by the US NSF (grant No. DMS-0138098,
CCR-0231511, and DMI-062933) and by the Korea Research Foundation grant
funded by the Korean Government (MOEHRD) (KRF-2006-331-D00036). Any
findings, opinions or recommendations provided in this paper are those of
the authors and do not represent the official views of the US NSF or the
MOEHRD.

References

[1] N. M. Patrikalakis, T. Maekawa, Shape Interrogation for Computer Aided
Design and Manufacturing, Springer-Verlag, Heidelberg, 2002.

15

[2] T. A. Grandine, F. W. Klein, A new approach to the surface intersection
problem, Computer Aided Geometric Design 14 (2) (1997) 111–134.

[3] T. Sakkalis, The topological configuration of a real algebraic curve, Bulletin of
the Australian Mathematical Society 43 (1991) 37–50.

[4] J.-K. Seong, K.-J. Kim, M.-S. Kim, G. Elber, R. R. Martin, Intersecting a
freeform surface with a general swept surface, Computer-Aided Design 37 (5)
(2005) 473–483.

[5] H. Mukundan, K. H. Ko, T. Maekawa, T. Sakkalis, N. M. Patrikalakis, Tracing
surface intersections with a validated ODE system solver, in: G. Elber, N. M.
Patrikalakis, P. Brunet (Eds.), Proceedings of the Ninth EG/ACM Symposium
on Solid Modeling and Applications, EG/ACM, Eurographics Press, Genoa,
Italy, 2004, pp. 249–254.

[6] C. Mow, T. J. Peters, N. F. Stewart, Specifying useful error bounds for geometry
tools: an intersector exemplar, Computer Aided Geometric Design 20 (5) (2003)
247–251.

[7] H. Mukundan, K. H. Ko, N. M. Patrikalakis, Intersections with validated error
bounds for building interval solid models, in: Proceedings of the IDETC/CIE
2005, ASME Design Engineering Technical Conferences, ASME, Long Beach,
CA, USA, 2005.

[8] N. S. Nedialkov, Computing the rigorous bounds on the solution of an initial
value problem for an ordinary differential equation, Ph.D. thesis, University of
Toronto, Toronto, Canada (1999).

[9] N. S. Nedialkov, K. R. Jackson, G. F. Corliss, Validated solutions of initial
value problems for ordinary differential equations, Applied Mathematics and
Computation 105 (1) (1999) 21–68.

[10] P. Eijgenraam, The Solution of Initial Value Problems Using Interval
Arithmetic., Mathematical Centre Tracts No. 144., Stichting Mathematisch
Centrum, Amsterdam, 1981.

[11] R. J. Löhner, Computation of guaranteed enclosures for the solutions of
ordinary initial and boundary value problems, in: J. Cash, I. Gladwell (Eds.),
Computational Ordinary Differential Equations, Clarendon Press, Oxford, 1992,
pp. 425–435.

[12] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.

[13] G. F. Corliss, R. Rihm, Validating an a priori enclosure using high-order
Taylor series, in: G. Alefeld, A. Frommer, B. Lang (Eds.), Scientific Computing
and Validated Numerics: Proceedings of the International Symposium on
Scientific Computing, Computer Arithmetic and Validated Numerics - SCAN
’95, Akademie Verlag, Berlin, 1996, pp. 228–238.

[14] R. J. Löhner, Step size and order control in the verified solution of IVP with
ODEs, in: SciCADE’95 International Conference on Scientific Computation and
Differential Equations, Stanford, CA, 1995.

16

[15] O. Knuppel, Bias-basic interval arithmetic subroutines, Technical Report 93.3,
Technical University of Hamburg-Harburg, Harburg, Germany (1993).

[16] O. Knuppel, Profil-programmers runtime optimized fast interval library,
Technical Report 93.4, Technical University of Hamburg-Harburg, Harburg,
Germany (1993).

[17] H. Mukundan, Surface-surface intersection with validated error bounds,
Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA
(February 2005).

17

