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ABSTRACT

The objective of this thesis is the evaluation of
our theoretical ability to predict the global dynamic
behavior of long flexible cylindrical structures, such as
single tube marine risers, using available rigid cylinder
experimental results. To achieve this, experiments using
a flexible cylindrical model were performed and the
experimental results are compared against our theoretical
predictions. The scaling procedure governing our
experiment is presented. All the non-dimensional
parameters of the model were carefully selected to allow
us to achieve our main objective under conditions of
pronounced violation of the assumptions necessary for the
theoretical predictions. In addition, the structural
model of the riser necessary for the prediction of the
global dynamic behavior of the riser is derived and
discussed in detail. The comparison between theory and
experiment showed that our theoretical procedure based on
rigid cylinder results permitted us to predict the
important features of the response of our flexible model
with confidence and provided us with estimates of the
magnitude of the response. Suggestions for future
research geared to provide information for the design of
flexible marine cylindrical structures in actual operating
conditions are also included.
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Chapter I

INTRODUCTION AND OUTLINE

The problem addressed in this thesis is the
evaluation of our theoretical ability to predict the
global dynamic behavior of long flexible and tensioned
cylindrical structures using available rigid cylinder
experimental results. We restricted this investigation to
single tube risers because their simple geometry offers us
a better chance to understand the dynamic behavior of a
flexible cylindrical structure interacting with a real
fluid. A schematic representation of an exploration
single tube riser and its supporting system is shown in
Figure 1, taken.from Bernitsas (1979). A brief
description of the physicél system is included in Appendix
A to familiarize the reader with the terminology employed
in this work.

The thesis is organized as follows:

Chapter II provides a consistent set nf governing
equations that can be a starting point for a rational
study of the global dynamic behavior of the riser modelled
as a thin rod under tension. The equations derived
describe coupled flexural, extensional and torsional

dynamic oscillations of a thin rod in three dimensions.
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Linear constitutive relations between stresses and strains
are assumed. The relations between strains and
displacements preserve their non-linearity within the
fundamental assumptions 6f Rayleigh beam theory. The
general governing equations derived herein describe the
global dynamic behavior of other long flexible cylindrical
structures such as conductors, pipelines, tethers., and
cables. |

A systematic anaiysis of the general governing
equations is the subject of Chapter III. Order of
magnitude arguments and the disparity of the time scales
of the various modes of a riser's motion are used to
elucidate the role of'coupling and non-linear terms. The
leading order equations for each mode of the riser's
motion are derived systematically and some properties of
the equations describing flexural oscillations are
discussed. The derivation is based on small transverse
motions compared to the length and the presence of a slip
joint at the upper end of the riser.

Chapter IV describes a theoretical procedure for
the prediction of the dynamic response of a marine riser
based on available rigid cylinder experimental results.
The assumptions necessary for our theoretical procedure
are identified and discussed in detail. This Chapter
includes a brief review of the main rigid cylinder
experimental results from which a model for the local

force acting on a flexible cylinder has been derived for a
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number of idealized excitation conditions. This review
includes an analysis of the usefulness and the limitations
of such experiments. Finally, four idealized excitation
conditions are employed to illustrate how to use rigid
cylinder experimental results to estimate the static and
dynamic response of marine risers. These examples also
help us identify areas in which the limitations of rigid
cylinder experimental results are likely to be magnified.

Chapter V describes a novel experimental procedure
which is an attempt to provide a quantitative estimate of
the limitations of the theoretical procedure developed in
Chapter IV on the global dynamic behavior of long flexible
cylinders; Thié is the principal objective of this work.
The modelzemployed i; our experiments did not correspond
to a specific prototype. However, all its non-dimensional
parameters were carefully selected to allow us to achieve
our principal objective under conditions of pronounced
violation of the assumptions necessary for our theoretical
predictions. Chapter V includes the scaling procedure; a
descriptipn of the model; presentation of experimental
results aﬁd quantitative comparisons of experimental and
theoretical predictions.

Chapter VI summarizes the findings of this work on

the basis of which recommendations for future research are

made.
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Chapter II
THE EQUATIONS OF MOTION OF THE MARINE RISER

II.l THE MATHEMATICAL MODEL

A mathematical model describing the global behavior
of a marine exploration riser was developed by Bernitsas
(1979) . Based on this study a new model for deep sea marine
exploration risers is derived. Whenever possible the same
notation used by Bernitsas (1979) has been adopted. The
assumptions made in our model, many of which are the same as

in Bernitsas (1979), (1980), (1982), are listed below:

1, The riser is modelled as a thin rod rather than
as a shell. This is an acceptable assumption because we are
only interested in the global behavior of our system and

because of the riser's small diameter to length ratio.

2. The material is assumed homogeneous and
isotropic which is a good model for steel structures. Small
strains permit the use of linear constitutive relations
between stresses and svrains. Note that strains will remain
small even for flexural deformations equal to a few riser
diameters because of the large length to diameter ratio of a

typical riser.
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3. The drill string is neglected, because this
leads to small underestimation of the mass and stiffness of

the riser.

4. The contribution of the kill and choke lines to
the stiffness of the riser is neglected because it is small.
This leads to a rotationally uniform structure. Further,
any concentrated forces from these lines on the riser
through the connectors and flanges are neglected, because

their global influence is small.

5. The contribution of the buoyancy mocules to the
flexural, extensional and torsional rigidity of the riser is
neglected. This is justified because the Young's modulus of
the buoyancy material is smaller by several orders of

magnitude than that of steel.

6. Forces exerted on the riser from the circulating
mud as a reaction to centripetal, Coriolis and frictional
forces exerted on the mud are neglected because they are

small.,

7. Shearing deformations are neglected. This is
justified because they are of order (Dn/sz compared to
rotations of riser cross sections after bending, where D, L
are the diameter and length of the riser and n the order of

the excited flexural mode. For typical deep sea risers



21

D/L <<l and n is small (i.e., low frequencies are excited).
This assumption implies that plane cross sections remain
plane after bending and normal to the neutral axis. (Rayleigh

beam theory, see Crandall et al, (1968)).
8. Thermal effects are neglected.

The characteristic features of the model, derived

on the basis of thz assumptions listed above, are:

a. It models coupled flexural, extensional and
torsional dynamic oscillations of thin rods in three

dimensions in a consistent manner.

b. The relations between strains and displacements
preserve their full non-linearity within the fundamental

assumptions of Rayleigh beam theory.
c. Our model is expected to treat accurately:

1. Large flexural deflections of the

centerline (of the order of a few riser diameters).

2. Large vertical displacements of any
cross section (as long as the centerline extensional strain

remains small).
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3. Small structural torsion angles (small
enough to permit the use of a linear constitutive relation
between the torsional restoring moment and the rate of
change of the torsion angle with respect to the arc length

of the centerline).

4. The impact of the hydrostatic and mud
static pressures on the restoring force is properly taken in-

to account (Bernitsas, (1979)).

The purpose of derivation of such a model is the
desire to acquire a consistent set of governing equations
that can be a reliable starting point for a rational study

of the global dynamic behavior of risers.

II.2 BRIEF DEVELOPMENT OF THE EQUATIONS OF MOTION

II.2.1 Analysis of Deformation-Constitutive Relations

Detailed accounts of the equations of equilibrium of

thin rods can be found in Love (1944) and Landau and
Lifshitz (1959) for the cases of large static deformations.
In addition,an extensive analysis of the nature of the
strain tensor in a bent, extended and twisted thin rod is

given in Love (1944). For the sake of completeness, the
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dynamic equations of a riser undergoing flexural, torsiocnal

and extensional oscillations are briefly presented below.

The basic cartesian reference frame OXYZ has its
center at the lower ball joint, with the positive Z axis
directed vertically upwards. The centerline of a deflected
riser is a general three-dimensional curve and can be
described by three cartesian coordinates with respect to
OXYZ in terms of the length s of the curve from the origin O
and time t. We will follow the motion of a point A of the
centerline being at distance s(0) from O along the curve at
time t=0, as it evolves in time. Its coordinates with

respect to OXYZ at time t are the components of

r=(xt,x%,2x*)-0 (IT.1)
2 2 ¢, T
where g= (i, 3, k) (IT.2)

is the right-handed triad of unit vectors of 0X¥Z, and

xl = X(s,t) = X(s(0),0) + u(s,t) (II.3)

x2 = ¥(s,t) = ¥(s(0),0) + v(s,t) (II.4)

x3 = Z(s,t) = 2(s(0),0) + w(s,t) (II.5)
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where ﬁ(s(O),O), Q(s(O),O), i(s(O),O) are the coordinates of
A at time t=0 and u,v,w are the dynamic displacements of A

in the 0XYZ axis system and

ds = |dr| ' (I1.6)

The centerline curve is in general tortuous (i.e. non-plane)

curve of curvature:

K(s,t) = Ifss | (II.7)
and measure of tortuosity (or geometric torsion):
( )
1 2 3
Xs Xs Xs
= _g=2 1 2 3
T(s,t) = =K “det ¢ Xgg Xsg Xeg ¢ (1I.8)
1 2 3
X3ss Xsss Xsss
\ /

(Eisenhart, (1947)). Subscript s denotes partial derivative
with respect to the arc length s. From the definition of -

it follows that T is zero for a plane curve.

To describe flexural, extensional and torsional
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deformations of the rod, it is convenient to divide the rod
into infinitesimal elements of length ds, each of which is
bounded by two adjacent cross sections. To each cross
section we attach a coordinate system Afng , so chosen
that all systems are parallel in the state of vertical
static equilibrium and further ¢ is tangent to the
centerline of the rod. When the rod is in vertical static
equilibrium OX and A¢ , OY and A n, Oz_and A ; are
parallel. At time t, any two adjacent systems tnz are
rotated through an infinitesimal relative angle. It is
known (Crandall et al, (1968)) that an infinitesimal angle
of rotation can be regarded as a vector parallel to the axis
of rotation. Let d¢ be the vector of the angle of
relative rotation of two systems £ng .at distance ds apart
along the rod. 1Its components are the angles of rotation
about each of the three coordinate axes. To describe the
deformation we define the vector rate of rotation of the

coordinate axes along the rod:

Q@ = ¢ (IT.9)

A

The component Q;ag; t is the rate of change of the
structural torsion angle with respect to s, where t is the
unit tangential vector to the centerline curve at point A

defined by:

>
[}
H
[}
)
Q
&
ja

(IZ.10)
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Let ﬁ, 5 be the normal and binormal unit vectors of the

centerline curve at A defined by:

- -1

n =K Igg = (37, 37, 3.) - U (II.1ll)
b =txn = (Yl, Yz, Y3) - U (I1.12)
i_ .1 j k i _k
where Y K (xsxss x%sxs) (I1.13)

with the understanding that i,j,k take the values 1,2,3
cyclically. The principal local vectors are connected by

the Frenet relations:

¢t = K-n (II.14)
S
ns = -(K . E + T - g) (11015)

b. = t - n (II.16)

For a fixed time, the change of vector t between two

neighboring points of the centerline is dt = de x t or
dividing by ds:
£t =

s (I1.17)

Io
»
>

Multiplying vectorially by t and using (II.12) and (II.14)

we find that:
2 =Kb + Q% (IT.18)

Let f be the angle between n and the
positive n axis and 1l,m,n the

direction cosines of b with respect to

AAN

Agng,
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Using (II.l6) we obtain that:

2 _ 2 2 2 '
7 = ls + m_ + ng (II.19)

The first term of the right hand side of (II.l18) is a vector

A ~

with two components QE, Q" along § and n (since n=0). We

may put:
1 =25 k! = —cost (I1.20)
m= 2" k! = sintf (IT.21)
with K2 = g5% + n? (I1.22)
and tanf = - /05 (II.23)

Using the fact that (Landau and Lifshitz, (1959)):

by = (b,) +Qxb (II.24)

s AgEng

and (II.l19) we find that:

2% = £, + T (II.25)

Let M be the restoring moment at each cross section about
the center point, analyzed in its components M& , M1 , M5
along the local A¢ , An , A axes respectively. The
constitutive relations between these and the rate of

rotation of the system A ¢ng along s are:
M®(s,t) = EI(s(0))0%(s,¢t) (II.26)

M"(s,t) = EI(s(0))2"(s,t) (II.27)

Mo (s,t) = GI,(s(0))g%(s,t) (II.28)
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where E, G are the moduli of extension and shear of steel

respectively, related by

G = E/2(1l+v) (II.29)

where v is the Poisson's ratin and I(s(0)) and Ip(Q(O)) are
the moments of inertia of the cross section about a neutral
axis and the center respectively. For a complete discussion
of the'validity of (II.26) - (II.28) see Landau and Lifshitz
(1959). The notation of equations (II.26) - (II.28) means
that the dimensions and shape of the cross §ection are
assumed unaltered during the dynamic motion of the riser.

If this is so:

I(s(0)) = 3 I,(s(0)) = FHDZ(s(0))-DF (s(0))] (11.30)

where Di(s(O)), Do(s(O)) are the inner and outer steel pipe
diameters at point A and time t=0. The change of shape of
the cross section (ovalization) is negligible, because the
ratio Do/ § , where § is the pipe thickness, is not very
large (typical values D° / 8§ =25-30) and the riser slopes
are relatively small, even for large lateral displacements
(=a few diameters) for low frequencies (von Karman,
(1911)).

In addition, the approximation of constant riser
diameters with time is consistent with a linear constitutive
relation for extensional oscillations. If transverse

dynamic shrinking and expansion of the riser tubes were
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considered, then a material volume conservation in time
implies a non-linear constitutive relation connecting
tension T(s,t) in the material and the centerline strain

i(s,t) of the form:

T(s,t) = —45:8) EaS(5(0)) + T(s(0),0) (II.31)
1+€(s,t)

where A S (s(0)) is the local steel cross section area and
the centerline strain ¢ (s,t) is defined by:

. ds(t) ~ ds(0)
€(s,t) = =757 (II.32)

For small values of € (s,t) equation (II.3l) reduces to:

T(s,t) = &(s,t) EAS(s(0)) + T(s(0),0) + O(EASE®) (Ir.33)

which is consistent with equations (II.26)-(II.28).

Relations (II.20)=-(II.23) and (I1I.26)=-(II.27) imply
that the bending moments along the local binormal and normal

vectors are respectively:
M(s,t) = LI(s(0))K(s,t) (I1.34)

M (s,t) = 0 ‘ (II.35)
These relations imply that for a tortuous centerline curve,
bending takes place in the osculating local plane (&, n)
only. This can be also seen from the following geometrical

consgiderations.
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The projection of the centerline curve in the
neighborhood of point A on the local osculating plane (t, ﬁ)
is a parabola of the form:

2 K(0) .2 3
Y === s + 0(s7) as s - 0 (II.36)

and on the local rectifying plane (£, b) a curve exhibiting

an inflection point at A of the form:

y3 = - Elﬂ%llgl 53 + 0(54) as s + 0 (IT.37)
where y 2, y3 are the ordinates of the projected curves
along n and b respectively, the arc length'is temporarily
measured from point A and K(0), T (0) are the values of
the curvature and geometric torsion of the centerline curve
at point A. These egpressions can be shown easily by Taylor
expanding r(s) (as measured from point A) in the
neighborhood of that point and using the Frenet relations
(IT.14)-(II.16) (Eisenhart, (1947)).

Finally it is convenient to define the following

quantities, as shown in Bernitsas, (1979), (1980):

The "effective" tension Pe(s,t) by:

Pe(s,t) = T(s,t) + B*(S(O))[hw-Z(s,t)]-Wm(S(O))[hm-Z(S,t)]

(II.38)
where h", hm are the water and mud elevations above the

lower joint and B*, q“are defined by:

B*(s(0)) = 0,9 7 o§<s(0)) (II.39)
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s

2
Wa(s(0)) = o, g 7 D (s(0)) (II.40)

where Sw’ °m 2re the water and mud densities, g the
acceleration of gravity and D° » Dy the riser tube outer

and inner diameters.

Likewise, the "effective weight per unit length" is

defined by:
We(s(0)) = wm(s(O)) + WR(s(O)) + Wb(s(O))-B*(s(O))~Bb(s(0))

(II.41)

T, 2 2
where: Wo(s(0)) = oSg 7(D;(s(0))-Dj (s(0))] (II.42)

W (s(0)) = o, g {-[Dg(s(on-og(s(om (II.43)

T, 2 2
Bb(S(O)) = 0,9 -;[Db(s(O))-D°

(s(0))]1] (IT.44)
where ps, fp are the steel and buoyancy module material
densities and Db(s(O) is the local module outer diameter.
The notation of equations (IX.38) - (II.44) implies that the
diameters at point A are not considered functions of time,

which is consistent with the degree of accuracy of

(I1.26)-(11.28), (II.30), and (II.33) as explained earlier.

The "effective"” tension has no real meaning, per se,
but it simplifies the notation, since it combines some of
the forces acting in the tangential direction at point A
(Bernitsas (1979)). A similar comment holds for the term

"effective weight per unit length".
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I1.2.2 Statement of the Equations of Motion

Equilibrium of forces acting on the element ds
ylelds:  (Pet)_ + (@®m), + (&%), + £5¢ + €% + £b + 4 -

- We(s(0))k = [m(s(0))]1a (11.45)

where Q" (s,t), QP(s,t) are the she;ring fotces in the n, b
directions, ft, £n, £° are the total local hydrodynamic
forces per unit length in the t, n, b directions
respectively, | me(s(O))] is the structural mass per unit
length tensor, A the structural damping force per unit
length and a the acceleration of point A with respect to

oxYz:

+ r s (II.46)

2
t 2, s, ¢ £ ¥ Eg %

als,t) = Zst %t 7 Iss

tt s

where subscript t denotes pa:tiél derivative with respect to
time t. If the inertial force (right-hand side of (II.4S))
is projected to the local £, n, b vectors, then the mass
tensor is diagonal with elements (Bernitsas, (1979)),

t

(1980)): m,® (s(0)) = g l[WL(s(0)) + W, (s(0))]  (II.47)

B (s(0)) = ma(s(0)) = g L[W (3(0)) + W_(s(0)) + W_(s(0))]
(II.48)

and the resulting three scalar equations of equilibrium of

the forces in the E,ﬁ,ﬁ directions can be reduced to the

following, respectively, after use is made of the Frenet



33

relations (II.l4)~-(II.16):
i

Pe, - K-Q" + £5 - We(s(0))x] = mS(s(0)) - (xg +2xl s,
(II.49)
2 i t
*Xgs Sp txg sl x5 -0
Qg + K+ Pe + 1 Qb + £° - We(s(O))K'lx:s =
(II.50)
n ; i i i 2 i -1.i n
me(s(O))[xtt + 2xst s, + XggSe * xsstt]K Xgg™ A

b : .
e = 1" + £ - We(s(0))y? = nl(s(0)) - [xpy + 2x s+

Q

(II.51)

i 2 i i b
T XggSp * XSl s YT - A

where summation notation is implied (over i=1,2,3), if there
is repeated upper index i in the terms of a product, and At,
An, Ab are tﬁe components of the structural damping force in
the €, n, b directions respectively.

Equilibrium of moments acting on the element ds yields:

A
. H _an
Mt ExE+ M+ 0=00 (II.52)
n b '
where F=1[0" o°, pel. U (II.53)
with u' = (4, b, 817 (II.54)

g# denotes the hydrodynamic moment per unit length on the
element 4s centered at point A and equal to MBGE. gé denotes
the angular momemtum per unit length of a differential

riser element ds with centroid point A, with respect to

point A. Q denotes a structural damping moment.
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AAA

Let w be the angular velocity of the body frame AZng
with respect to OXYZ. Given that axes A , A~ , A: are
principal axes of inertia of the element ds with centroid

A

point A, then it is convenient to analyze H" with respect to

its components in the frame A §ng :

g = %, 8", 85 . u" (II.55)
where g" = (£, n,c )T (II.56)

is the right-handed triad of unit vectors along AZ , An , A:

and

@®, 8", 85T = _(so 1w, W, W57 (II.57)

where
w = (w54, ue (II.58)

and [-Jc(s(O))] is a diagonal inertia per unit length

tensor:
13 (s(0))] = aiag(s®®, "M, 3% (II.59)

2 2,2
3%8(s(0)) = 3"M(s(0)) = gFlo 0} + o5 (D2-DD)? + o (D - DY) )

(II1.60)
44 i s, 4 4 4 4
J*?(s(0)) = 33(0” (D -D;) + Pp(Dyp-Dg) ] (II.61)
where the dependence of Do' Di' Db from s(0) was neglected
from the notation.
Let Qwabe the angular velocity of the frame AZng

with respect to Anbt and @y the angular velocity of the
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frame Anbt with respect to OXYZ. Then, using the fact that

angular velocities can be considered vectors (Crandall et

al, (1968)):

W= w_ +uw (IT.62)

The three systems U, U', U" are related by the following

rotations:

U' =C(s,t) * U (II.63)

U =Cy(s,8) - U (II.64)

where-C, Cl are 3x3 rotation matrices defined by

2 3
(gt 8 a3)

cs,) = | v v2 v3 (II.65)
Lal az 33)

sinf -cost 0
Cl(s,t) = { cosf sinf 0 (II1.66)
0 0 1l

First, if we let

- n b t .

the relations (Crandall et al, (1968)):

dn A db _ ~ae -

imply that;

(oM

UO
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where [w l] is a 3x3 skew-symmetric tensor defined by:

0 ut -wb
[wll = -mt 0 - (I1.70)
wb -0 0

From II.63) we find that:

o7

Ul

3% = [ct + cs st] - U (II.71)
where derivative of a matrix is ihe matrix of the
derivatives of the elements of the first. Given that C(s,t)

is a rotation matrix, then (Crandall et al, (1968)):

u=c U (I1.72)

which in conjunction with (II.69)-(II.71) imply that:

[w;1U' = [c, +C_ s IcTu’ (I11.73)
This relation implies that:

W = -Yi(at +alsp) (II.74)

wb = Bi(at + a; s,) (II.75)

W = Yi(Bt + Si s,.) (II.76)

where the usual summation notation is implied. Relations

(II.74)-(I1.76) express the components of W, in terms of the

1

coordinates x~ of point A with respect to 0XYZ2.

Finally, from the definition of £ (equations

(I1.20), (II.21)), it is easy to see that:



0 F (ft + £ S )t

Since cl is a rotation matrix
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(IZ.77)

(II.78)

and therefore (I11.58), (II.62), (XII.67), (I1.77), (11:78)

imply:

[wg'wn,w“-ft-fsstlg" = [wn,wb,wt]CEQ"

This implies that:

wE = wnsinf - wbbosf
w" = wcosf + wsinf
W& t

= ft + fsst + w

It is well known that:

Using (II.57), (II.60) and (II.22) we find that:

—

gg = Ho*twuxH

dn® EE, £ . € n

at—=J (wt+msst)+ww
an" M (" n 4

3t = (mt + wsst) + wlw
aH® | 508, WO )

dt t s t

& (356-%%)

(II.79)
(II.80)
(II.81)

(I1.82)

(IT1.83)

(II.84)

(II.85)

Using (II.78) we find that the projections of the rate of

change of angular momentum on n, b, t are

aun an’®

T - sinf It + cosf

(IT.86)
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b & A’

%%- = - cosf %%‘ + sin¢ 53 (II.87)
t z

a® _ an

i - (II1.88)

Using equations (II.S52), (II.53) and (II.l4)-(II.1l6) we
obtain three equations of equilibrium of moments in the h,

b, t directions respectively:

n

) dH
RS+ M - Q° + 0" = - -89

b
n, .b_ dH (I1.90)

Mts’ + Q" + 07 = b C

t

¢ . JHC t _ 4
Ms + M + 0 — (IT.91)
where o =r0e% o of y (I1.92)

The above provide a consistent set of governing
equations that can be a starting point for a rational study

of the dynamic behavior of risers.

II1I.2.3 Boundary Conditions

At the lower end s=0, due to the presence of the
ball joint, which presents negligible stiffness to local
bending (at least over a wide range of lower end slopes), we

may impose the following boundary conditions:

1, 2, 3 (IT.93)

EJ
[}
o
™
]

xR
[}
o
|
1]

1, 2, 3 (II.94)
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Equation (II.94) is derived from (II.7) and (II.34), From

the definition of geometric torsion (II.8) we £ind that at

=02

Relations (II.36), (II.37), (II1.94), (II.95)imply that
sufficiently close to s=0 the centerline is a plane curve

and can be approximated by a straight line. We further
assume that the ball joint exhibits negligible resistance to
structural torsion. This implies that at s=0:

£, = 0 (II.96)

as relations (11.25), (11.28), (IX.95) show.

At the upper ball joint, we assume that

xt (s(esn),e) = gt (e i=1,2 (I1.97)

i (i=1,2) are the deflections of that point in the X,

i

where g
Y directions respectively. Functions g may include a
constant and a time varying part assumed to be given a
priori. This essentially means that the motions of the
supporting structure are assumed not to be significantly
affected by the upper end horizontal interaction force
between riser and structure. This can be verified by
comparing this force to the inertial force of a typical

oscillating platforn.
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Assuming nearly perfect function of the upper ball

joint,we find that:

x;s =9 i=1, 2, 3 (I1.98)

to ensure zero curvature at that point.

The final condition expresses the fact that the slip
joint eliminates any static or dynamic tension variation at
the upper ball joint. This implies using equation (II.33)

that

€(s(t;L),t) =0 (IT.99)

where, of course, the static term T(s(0;L),0) at the
deflected position is assumed to be equal to the tension at

s=L in the vertical static equilibrium condition.

Conditions (II.98) imply that T =0 at the upper ball
joint. If this is assumed to exhibit negligible rigidity in
torsion, we find that we may apply a condition similar to
(IT1.96):

fs (s(t;L), t) =0 (II.100)

The above set of boundary conditions is consistent
with the order of the differential system (II.49)-(II.51)
and (II.89)-(II.91). We may observe that the highest space

derivative terms it includes are of the form xlssssfor.i =
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1,2,3 and £__. Therefore four boundary conditions are

required for each xl, i=1,2,3 and two for £. The existence

3
ssss

large amplitude extensional and flexural oscillations.

of terms of the form x indicates a coupling between
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Chapter III
A SYSTEMATIC ANALYSIS OF THE GENERAL GOVERNING EQUATIONS OF
THE RISER

III.1 SIMPLIFICATION AND NON-DIMENSIONALIZATION OF THE
GOVERNING EQUATIONS

The purpose of this Chapter is to identify the basic
properties of the general differential system describing the
riser's dynamic behavior. Qualitative - order of magnitude
- arguments and the disparity of the time scales of the
various médes of a riser's motion are used to elucidate the
role of céupling and non-linear terms. Finally the leading
orier equations for each mode of the riser's motion are
derived systematically from the general differential system
described in Chapter II and some properties of the equations
describing flexural oscillations are identified and

discussed in detail.

The following assumptions are introduced at this
point in addition to the assumptions of Chapter II, article

1l:

1. The riser pipe diameters Dy Di are considered
constant along the length which is the usual practice for

risers. Variation of the outer diameter due to flanges and
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connectors is neglected, because its global influence is

very small.

-

2. The necessary buoyancy is provided by many,
short, compared to the length L, buoyancy modules of uniform
outer diameter Db' uniformly distributed along the length.
This is a good design practice, leading to small
concentrated buovancy forces from the modules on the riser
pipes (Bernitsas, (1980)). |
Under these assumptions and because we are
interested in the global dynamic behavior of the riser, the
effective weight, mass and inertia per unit length tensors
can be replaced by their mean values over the length. Let L
be the length of the riser between ball joints in its
vertical static equilibrium condition and Lb the total
length of the modules. We will use the following average

quantities instead of their local values:

L
- b -
We = Wy + Wy -B*+ 2 (w -3 (III.1)
ant— L
€, -l 5
mt = g™t (W v T W) (III.2)
- b _ -1 Ly
m =m =g (WR + Wm + T Wb) (ITI.3)
7%= L 1% pdndy & "o (0-p
32 )° o “i T ‘Pp o) (I1I.4)
_nn_ 4 2,5 222
Foog 64{pmol+p (o 1:l +=2 o, (02-p2) } (III.5)
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To simplify the notation we may assume that the time
t=0 corresponds to the vertical static equilibrium

condition. Therefore:

x! = X(s,t) = u(s,t) (III.6)

v(s.t) ' (III.7)

x2 = Q(s,t)

x> = 2{s,t)

11}

Z + w(s,t) (II1.8)

where (0,0, 2)° U is the original (t=0) position of point A.

Conversion of the governing equations to a suitable
non-dimensional form described below facilitates the purpose
of this analysis. All lengths are non-dimensionalized by L,
all forces by Pe(0,0), the effective overpull at t=0, 2=0,
all moments by LPe(0,0). The following non-dimuensional

structural parameters are introduced:

_____2.5'1 (III.9)
E =
Pe(0,0)L
_WelL III.10)
W = 52(0,0) (
: o £e(0,0) (IIT.11)
(o] EAS
where aS =% (Dg-pi) (III.12)
GI
£ = — R (III.13)

T

Pe (0,0)L2




which with the aid of (II.29), (II.30) gives

ep = €(1 + v) =L (III.14)

A characteristic time scale of flexurai oscillations is:

T, = Lin"/Pe(0,0)]1/2 (III.15)
It is convenient to non-dimensionalize the time by !
t' = t/r° (III.16)

-

as well as all angular velocities. We also define:

A=mnt/m" (III.17)
33 tt
el = I = L (III.18)
To Pe(0,0) m® LZ
33 nn &5
cg = I = = (III.19)
T Pe (9,0) 5 Pe (0,0) n® LZ

Using these definitions and denoting non-dimensional
variables by the same symbol as corresponding dimensional

variables, we obtain the constitutive relations in the form:

M°(s,t) = . 2%(s,t) (III.20)

T
P (s,t) = ¢ K(s,¢t) (III.21)

T(s,t) = E(s,t)/E, +T(z,0)+0(§2/§°) (III.22)

ds - 42
dz

where I(s,t) =

(III.23)
and T(s,t) is related to the effective tension by:

Pe(s,t) = T(s,t) +B*(hw-Z)-Wm(hm-Z) (III.24)

where B%*, Wh, hm' hw' Z are, of course, non-dimensional.
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The equations of forces (II.49)-(II.51) take the

following non-dimensional form respectively:

n t 3 _ i i i 2 i it
Peg= KQW + £7= uxg = Alxy + 2x_ 8.+ x_ S+ x5, 1% - &
(III.25)
n b n -1 3 _ i i i 2
Qs+ K Pe+ TQ + £ ukK Xgg = [xtt+ 2xstst+ Xo oS¢ +
i -1 i n
xsstt] K xss A (II;.26)
b n b 3 _ i i | i 2 i i_.b
Qs Q°+ £ uy- = [xtt+ 2xstst+ XogSet Xg tt] Y A
(III.27)

where the usual summation notation is implied.
Using equations (II.83)-(II.88), (III.20), (III.2l)
and (III.l4), the equations of moments (II.89)-(II.91) can be

transformed to the following equations respeétively:

-1 b, 5n . 2,85, % N &, 2_ 2.,
eK[ (1+v) Q;+r]- Q+ 0" = sxnf[cz(gt+ msst)+ wow (cl-cz)]

cost [c3 (wP+ wls )+ o u®(c2-c?)] | (III.28)
eKs+ Qn+ eb= ~-COoSs f[cg(wi+ “ist)+ wnwc(ci-cg)] +

sin £ [c2@l+ wls )+ o wi(e3-ch1 (1129

ep 05+ M + 0% = <2 (Wit wis) (III.30)

Using (II.79)-(II.81), the above three equations can be

reduced to the following respectively:

-1,5 b n_ 2, n n b
eK[(1+Vv) “Q°+1] =Q"+ & = cz[mt+ wsst+ w (ft+fsst)] +

2 2 t b
(cl-cz) (w +ft+ fsst) w (III.31)

n, -b 2
EK+ Q'+ O = 5 [w:+ wgst- mn(ft+fsst)] - (Ci' c%)

t n

(w™ + ft* fsst) @ (III.32)
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s +f.  +2f s +f _s>+f£ s_.](III.33)

t
sTt "ttt st™t "ss™t "s"tt

B omBGLats ~27,t
€ Qg+M7°+0 cl[wt+m
The boundary conditions (II.93)-(II.100) are, of course, the
same. Using (III.6)-(III.8) and (III.23), the boundary
condition (II.99) may be shown to be equivalent to:

2

= [l - u, ]+1/2

. - v% -1 - at z=1 (III.34)

Y
In the following section, the smallness of a typical
flexural deflection of a riser's centerline with respect to
the length and the disparity of the time scales of flexural,
extensional and torsional oscillations are exploited
extensively in an attempt to understand the basic couplings
and fundamental properties of the differential system
(XII.25)-(IIX.27) and (IIX.31)=-(III.33) under the imposed

boundary conditions.

III.2 SYSTEMATIC PERTURBATION EXPANSION OF THE GOVERNING
EQUATIONS

The large deflection dynamic equations of the riser
are expanded here to a series of equations that can be
integrated sequentially. The expansion parameter ¢ is the
ratio of a typical horizontal (static or dynamic)
displacement of the riser's centerline over the length L.

We assume therefore that 2=0(l), while u,v are of O( &) with
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€ << 1. It is also assumed that D /L is of O(e). As we

will verify a posteriori, it is permitted to assume that

for e << 1:

wa=0 (£2 (III.35)

In this thesis we will be concerned with the leading order
consistent equations for each mode of motion.

We may observe from (II.6) and (III.6)~-(III.8) that
we can consider the coordinates xi, i=l,2,3 of point A with
respect to 0XYZ as functions of two independent variables t
and Z alone. This is true for the remaining dependent.
variables. In addition, we may see that the assumption
that only the first few flexural modes are excited,
effectively implies that space derivatives up to a certain
order do not change the order of the quantities themselves.
We will need to make this assumption up to the fourth
derivative.

Using équatians (IX.6) and (III.6)=-(IIX.8) we

obtain:

2 2 2

s;(t,2) = 1+ 2w+ Wyt Ut vz]]'/2

(III.36)

Using the above order of magnitude assumptions we find that:

S,(t,2) = 1 + w,+ %—(ui-ﬂ- vi) + 0(eh (III.37)
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and integrating:

Z
3 [[ué(t.z')+ v2(t,an1dz'+ o)
0 (III.38)

s = s(t,2) = Z+w(t,Z)+

Inversely we may consider that

z = z(t,s) (III.39)
which implies that:
-1 2 2 ~4
zs = s, = ] -vy - 1/2(uz + v, ) + 0(e’) (III.A40)
~4
and zss = =, uzuzz vzvzz + 0(e") (III.41)
Equation (III.40) and the relations x'_ = x1,2_, i=1,2,3
imply that:
al = u = u, + 0023 (III.42)
al = vy = vy + Of e3 | (III.43)
3.3 .,.1,.2 .2 4
a xs l-I(uz+ vz)+ O(e") (IIT.44)
, i i .2 i .
We obtain similarly from x s = % zzzs +x7, zss' i=1,2,3
that:
~3
uss = uzz + 0( e7) (III.45)
v _ =y, +0(e) (III.46)
SsS Z2 °




50

vap + 0CEH  (111.47)

i i 3 i i
Finally from x"___ = X',,,2." + 3x°,,2. 2 + x7,2__  for

i=1,2,3 and:

2 2 ~4
2ggs = ~(Wzzg* Bgz* Viz* Yglggzzt VzVzzzgl *t O(€7)

we find that:

~3
Ugeg = Yzzz * o( %) | (III.48)
Vess ® Vggz * OCED) (TII.49)
3 el -2 roeh (III.50)

Xgas 2z~ Vzz~ Yz%zz2” VzVzzz

These relations imply that the curvature and geometric

torsion are given by:

K(t,2) = &uzzz + vzzz) /2 , o( €3) (III.S51)

T(6,2) = K 2 (UggaVyy = Upy¥pps) + O(E2)  (ITI.52)
where from now on we denote by K the first term of the

right-hand side of (III.51), unless otherwise stated.
Relations (III.37) and (III.23) imply that the
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centerline strain is given by:
~ 2 ~4
E(t,2) = w, + l/2(uz2 + v;7) +0(2) (III.53)

From equations (III.45)-(III.47) and (III.51) we obtain:

al= K'luzz+ 0(e?) (III.54)
8= K'lvzz+ 0(e2) (III.55)
832 k" L(u u._+ v.v._ )+ O(E3) (III.350]

7292z V2Vzz .30,
Yl=-K'1vzz+ 0(e2) (III.57)
v? = K'luzz+ 0(£%) (III.58)

3_ -1 _ ~3

Yy = K (uzvzz vzuzz)+ 0(e”) (III.59)

Next we expand the components of the angular velocity @y -
Using equations (I1.74)-(IX.76), (III.42)-(III.44) and

(IIT1.54)-(III.59) and estimating that both S, and Sy, are of

0( £%) (see equation (III.38)) we find that:

n_ gl - e3 III.60)
w =K (vzzuZt uzzvzt) + 0(e7) (

b _ gl u..+ v, v, ) + 0() (III.61)
wo= zz%z¢” Vzz'ze

t -2 - o2 III.62
wo = K “(UyaVyge= Vagllggy) + O(E7) (III.82)

From the last three equations we find that both W, mb are

of O(¢) while «® is of O(l). 1In addition, from equations

(III.3)-(III.5) and (III.18)-(III.19) we £ind that both c, -
and c22 are of 0[(DO/L)2] and therefore of O( £2). We
assume that £ is at most of O(l). These estimates imply

that (III.3l) and (III.32) may give respectively:
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b 1

QP =eR[(14v) 1% +1] + 0P+ 0(c3) (III.63)

n

Q b

= -ek - 0%+ 0(&?) (III.64)
Using (I11.33), (IIr.14), (rrr.9), (rrr.1is), (r1.29), and
(11.30) we obtain:

[ -1 Hg t 2, t t 2
Qs + e T(l+v) (M"P+ Q7)== c3(wt+ wsst)+ c3(ftt+

2 (III.65)
2fstst+ fssst+ fsstt)
where
c32 = cl2 eT'l = (be(o,m/m“)/(czp jEff> (III.66)

4 is proportional to the ratio -of the velocities of
propagation of flexural to torsional waves and it is a very
small number for typical risers. In fact, since e.:]_2 a 0(¢ 2),

2 @ 0(2%P) yhere ¢ is considered quantity

we find that Sy
of O( ¢P) with 0 < p<l. Values of p close to zero
correspond to medium length buoyed risers with typical
values of U (i.e. 4=-8). Values of p close td one correspond
tb long or medium length but highly tensioned risers (e.q.
risers with u< 1). The time scales of the hydrodynamic

moment MHc

(caused e.g. from an oscillating wake) are
typically large enough to coincide with the time scales of
resonant flexural oscillations, which are very long compared
to the time scales of resonant torsional oscillations.
Furthermore, the magnitude of the term (l+u);'1MHc=(1+v)L2M'HC/
EI, where M'H; is the dimensional hydrodynamic moment pef

unit length about the ; axis is expected to be small,
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because Mﬁi; ig small. This discussion shows that torsional
oscillations can be treated quasistatically, i.e. equation

(III.65) can be effectively replaced by:
Q2 =0 (III.67)

more precisely by Q:= o(t2P, ¢ "PuB%) . Equations (II.25)
and (III.67) and boundary condition (II.96) imply that
or that

fzz = -Tz (III.68)

Therefore, using boundary conditions (II.96) and (II.1l00), the
angle £ between n snd' g is given by :
. . | |
£(t,2) = - OJr v(t,2')dz’ (III.69)

The errors of gquation(::I.&B) and (III.69) are of the same
order as the error of equation (III.67). The fact that Q;=0,
was verified in the experiment described in Chaptez V of
this thesis using a riser type flexible model.

Using the fact that Qt=0 ’ eéuation (III.63)

reduces to:

Q° = etk + o7 (III.79)
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where the errors are of 0O( 23,3 MH;

). It is interesting
to compare this equation with (II.37).

Finally, equation (III.25) contains terms of O(l)
expressing equilibrium of the vertical static forces. From

equations (III.22), (I1I.24) we find that:

Pe(s,t)= Pe(z,0)+ &/E_+ w(Z,t)(Wh-B*)+O(EZ/E°) (III.71)

and applying (III.25) in the condition of vertical static
equilibrium we f£ind that:

Pe(Z,0) = uz + 1 (III.72)

Assuming that &/ &_ = Of £2), which we will verify a
posteriori as consistent with the solutions of the.
simplified equations under the imposed boundary conditions,
we find that:

Pe(s,t) = uz + 1 + O( £2) (III.73)

Using equations (III.45)-(III.47), (III.54)-(III.59),
(IIr.70), (Irr.64), (rrr.3s8), (rrr.26), and (II1r.27) we find
that the leading order equations for the forces in the f, b
directions can be reduced to the following respectively:

-e(KzzQKtz)+K(uz+1)+uK-1(uzu +v, v z)+fn=K-l(u u,,+v, . v z)-An

22 "2'2 tt"2z2 "ttt Z
(III.74)
1 b

e[(rx)zz+1xz]-uK' (uzvzz-vzuzz)+fbax_l(v u >=A

et92z2 %%tVzz
(III.75)

3

with errors of 0(3 ,.EMHC), where the structural damping
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b

forces per unit length An, A - were redefined to include

b n
the terms 8,7, ©,".
Finally, equation (III.25) is also converted to the

following leading order dynamic force equation in the t

direction:
- <t
Wygt Uglgpt VoVap*t (Wy=BY=u)€ w + £7€, +
- 2 t
eKKzeo = °4(“tt+ “tt“z* vttvz) - A eo. (IXI.76)
with errors of O( &%), where:
- - - g, T
c 2 = €A = (Pe(0,0)/n™) /(EA%/m) (1I1.77)

The term c, is proportional to the ratio of the velocities
of propagation of flexural to extensionél waves and it is a
very small number for typical risers. In fact, since A=0(l)
and Eo can be considered as a quantity of O( £2) (see
(III.11)), we £ind that c,2 = O( £%). In addition, the term
et Eo is expected to be very small for typical risers and is
assumed to be of O 24). This discussion shows that
éxtensional oscillations can be treated quasistatically
compared to flexural oscillations (see also Stoker and

Lubkin (1943) and Carrier (1943)) and equation (I;I.76) can
be effectively replaced by :

WyztUzUzztVzV22 & o( € %) ~ (III.78)

This relation in conjunction with boundary condition

(III.34) implies that:



n
[}

2= wy + 1/2(uy24v, %) = 0(E ) (I11.79)

This verifies the assumption that €/ Eo = Of §2) and gives:
R 2 ~4
w(t,2) = -5 I [uz(t,Z')+vz(t,Z')]dZ'+ O(e”) (III.80)
0
which verifies the original assumption that w = Of €2) when

N

e<< 1.

Subsequently, equations (III.74) and (III.75) are
combined to give the equations of forces in the X,Y
directions. The contribution of the tangential dynamic
force equation to the equations of forces in the X,Y
directions can be shown to be of O( € 7).

First, using the Frenet relations one may show that

for i=1,2,3:

i 3

_ g2y pi_ i
Xesss™ Ki™)R [(KT)S+TKS]Y (III.81)

3,2 i,
2(K )Sa +\Kss K

where K is given by (II.7), (Eisenhart, (1947)).

Using (II.72), we find that for any vector ) = (XX,

AY,AZ)Q = (Aq,xg xt)g' the following relations are valid:
o= glany b, It (III.82)
AY 2 g2 4 yADP 4 (2t (III.83)
A2 = gl 4 3P oAt (III.84)
Equation (III.81) implies that
~3
Uzzzz = (Kgz~K t?) gt - [(KT) g+ TKy] yr+o(e?) (111.85)



Va222 = (Kzz=K ) 82 - [(Rr)p* TRy 1 v2+0( €7) (111.86)

Using (III.82)-(III.86) and the estimates of al, gi, yi
(i=1,2,3) given by (1II.42)-(III.44), (III.54)-(III.59),
equations (III.74) and (III.75) can be combined to give:

X

X
-euzzzz+[(uz+1)uz]z+ £%=a uy .- A (IX1.87)

tt

Y

Y _ -
-evzzzz+[(uz+1)vzlz+ £r= v .- 4 (III.88)

where the errors are small, more precisely of 0(323, Mt )

and fx, £¥ are the hydrodynamic forces per unit length in
the X, Y directions and Ax, oY are structural damping
forces. Boundary conditions (II.93), (II.94), (11.97),

(I1.98) give to the same degree of approximation:

u(0,t)=v(0,t)=u,, (0,t)=v,, (0,t)=u, (1,t)=v,, (1,t)=0

(III.89)
. 1 2
u(l,t) = g=(¢t) , v(l,t) = g (¢) (III.90)

The structural dissipation mechanism can be
described by an expression which allows variation of the
dissipation level as a function of the excited modes and is
linear with respect to the velocity of each mode. This
simple model is expected to give reliable information about
the glob#l influence of the structural dissipation mechanism
for relatively small amplitudes of flexural oscillations.

The structural dissipation force per unit length in the X
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direction can be written as:

X

T n
A% = ] e o (Z) ug(t) (III.91)

n=1
where Sn is the non-dimensional structural damping
coefficient of the nth mode, ¢n(Z) is the nth eigenfunction

defined by:

s, e - 2
-€¢ +[(ug+l)¢n 17 + 0,6, =0 (III.92)
$,(0) = ¢, (1) = ¢77(0) = ¢/"(1) =0 (III.93)

where % is the nth eigenvalue, ()' denotes derivative with
respect to Z and uB(t) is related to the total dynamic

response in the X direction ug(2z,t) by:

uy(Z,t) = Zgé(t) + nzl 6, (21" (8) (III.94)

where gdl(t) is the dynamic part of gl(t). Similar
relations are valid for AY. The non-dimensicnal damping

coefficient S, is related to the dimensional structural
dgmping coefficient cn' by:

e, = ciLn"Pe(0,0)]7/2

, n=1,2,.. (ITII.95)
It is understood that the structural damping force per unit
length is the smaller component of the total damping force

per unit length.




59

III.3 BASIC CHARACTERISTICS OF THE LEADING ORDER EQUATIONS

Equations (III.87), (IXI.88) under boundary
conditions (III.89)~(III.90) are the basic equations used in
subsequent parts of this thesis. These equations, even
though linear as far as their structural stiffness and
inertia terms are concerned, are non-linear coupled partial
differential equations due to the non-linear dependence of
the exciting hydrodynamic forces fx, EY on both flexural
responses. As we have seen in the previous section, the
solutions of these leading order equations describing the
flexural response can be used to estimate the extensional
response to its leading order. The same is true for the
torsional response, which as we saw, is very small. It is
also important to note that the leading order flexural
response is essentially independent of both extensional and
torsional responses under the basic assumptions of the

previous and present chapter.

Equations (III.87) and (III.88) under boundary
conditions (III.89), (III.90) and suitable initial
conditions describe forced biharmonic oscillations in two
perpendicular planes. For long or medium length but highly
tensioned risers, we have seen that ¢ is typically a small

number. PFor e<< 1, a dominant balance argument, (Carrier
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and Pearson, (1968)), reveals that the bending terms are of
equal importance as the tension terms only over short edge
1/2)

from each edge. PFor this case of localized rapid variation,

(or boundary) layers close to Z=0 and Z=1 of width O(¢

simple boundary layer theory can be used to construct
uniform in 2 approximations of the solutions of (III.87),
(I11.88) for given forces fx, £Y. fThese approximations are
éxpected to work well for a figed excited wavelength as.e+0.
They include: a) A component slowly varying in space.

b) Two exponentially evanescent parts, when moving away from
the ends toward the middle of the rod. These are important
within distances of O( 31/2) from each end.

Approximations of this form are not expected to work
well for higher modes, for which the solution has a :apidl&
oscillatory behavior over the whole space from Z=0 to l.

For this case,bending effects tend to become at least as
important as the effects of the effective tension over the
whole length of the riser. WKB theory (Bender and Orszag,
(1978)) can be effectively used to construct uniform in 2
approximations of the solution for the case of a highly
oscillatory behavior in space. It is understood that WKB
theory requires linearized dependence of the hydrodynamic
forces on the response. This is not required by boundary
layer theory.

Both methods, if appropriately used, provide simple
and useful approximations of the solutions of (III.87) and

(II1.88) under boundary conditions (III.89) and (III.90) for



given forces fX and fY.
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Chapter IV
A THEORETICAL PROCEDURE FOR THE PREDICTION OF THE

DYNAMIC RESPONSE OF A MARINE RISER

IV.l1 INTRODUCTION

The solution of equations (III.87) and (III.88)
requires the explicit modelling of the local hydrodynamic
force. For a number of idealized excitation conditions,
there exists information from rigid cylinder experiments
that allows the formulation of an approximate mathematical
model for the local hydrodynamic force. Such experiments
may be subdivided into two broad categories. The first
category involves measurements of the hydrodynamic force
acting on rigid cylinders in an a priori defined flow. A
model for the local hydrodynamic force derived from such
experiments, even though approximate, provides a useful
insight into the dynamic behavior of risers in an
efficient manner. However, as it is apparent from the
definition of rigid cylinder experiments, such a model

implies the following assumptions:

l. Any force component measured in a rigid cylinder
experiment which will make a flexible cylinder

respond in a different form than the one used to
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conduct the rigid cylinder experiment must be

neglected.

2. Rigid cylinder experiments cannot provide
information on the spanwise correlation of local

hydrodynamic forces.

The second category of rigid cylinder experiments
involves cylinders which are mounted on elastic springs
and dashpots. These experiments attempt to relate force
to response of different form than the imposed motion by
representing the flexible cylinder with an idealization
which has only a small number of degrees of freedom and by
allowing the idealized system to respond to the force it
experiences. The respounse in existing spring mounted
rigid cylinder experiments is a one degree of freedom

translation.

In order to provide a quantitative estimate of the
limitations of theoretical estimates of the response of a
riser based on rigid cylinder experiments, we conducted
experiments using a flexible riser type cylindrical model.
The results of these experiments are presented in the last
two chapters of this thesis. The difference between the

response of the flexible system and its theoretical



estimate based on rigid cylinder results is due to
nydroelastic and correlation length effects. The term
hydroelastic effects, as used in this thesis, denotes the
impact of the motion of the flexible cylinder upon the
local hydrodynamic force. The term correlation length
denotes the extent of two-dimensionality of the flow in a
flexible cylinder. Correlation length effects are coupled
with hydroelastic effects because the extent of
two-dimensionality of the flow around a flexible cylinder
depends also upon its motion.

This chapter continues by providing a brief
description of the environmental excitations likely to
govern the global dynamic behavior of risers in normal
operating conditions. This is followed by a review of the
main rigid cylinder experimental results from which a
model for the local force acting on risers has been
derived for a number of idealized excitation conditions.
This review also includes an analysis of the usefulness
and the limitations of such experiments. ~finally, four
idealized excitation conditions are employed to illustrate
how to use rigid cylinder experimental results to estimate
the static and dynamic response of marine risers. These
examples also help us identify areas in which the
limitations of rigid cylinder experimental results are

likely to be magnified.




IV.2 BRIEF DESCRIPTION OF THZ ENVIRONMENT

The exciting forces governing the global dynamic
behavior of risers, in normal operating conditions, arise
from currents, surface and internal waves and the motion

of the upper end.

a) Currents: The current speed, variation with time and
vertical distribution is very much site dependent. In
general, the current speed changes very slowly in time so
it can be treated quasistatically for the purpose of our
analysis. Time averaged current speeds can range anywhere
from zero to two knots or even higher. The current speed
attenuates to practically zero with depth at a rate which
is site dependent. Design values for these parameters for
the Florida current may be found in Richardson, Schmitz,
and Niiler (1969) and Lee, Brooks and Duing (1977). Using
typical values for current speed and vertical current
profile, preliminary calculations show that a current can

exert significant static and dynamic forces cn the riser.

b) Surface Waves: They are best described by a mean

square spectrum S(w,8), which is a function of fregquency @
and direction of propagation 8. Surface waves have a
twofold impact on the riser:

1. They exert forces through the supporting

platform, which.responds dynamically and gives rise
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to a motion of the top end of the riser.
2. They exert steady znd unsteady forces on the
upper part of the riser directly.

Typical values for the range of w and estimates for the
value of S(w,8) can be found in Hogben and Lumb (1967)
and Hegben (1974). Suggestions for analytic expressions
for S(w,8) can be found in Chryssostomidis anc¢ Oakes

(1974) .

c) Internal Waves: Their generation requires special

conditions so their occurrence is not as frequent as that
of surface waves. Their generation and propagation
characteriséics are described, for example, in Phillips
(1980) . Thé maximum particle speeds associated with waves
of this form are comparable to that of surface currents,
see, for example, Boyce (1975) and Osborne et al (1977),
while their wavelengths are of the order of a few
kilometers. Their frequencies are low compared to the
frequencies of surface gravity waves. Horizontal particle
velocities due to internal waves decay slowly from the
ﬁaximum value occurring at the main thermocline and
reverse sién across its surface. The property of slow
decay of particle velocities belcw the main thermocline
might be of concern for drilling operations both in
moderate and deep water. The above discussion shows that

internal waves can be treated as currents for the purpose

of our analysis.
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d) Top End Motion: The motion of the supporting platfecrm

includes two components:
1. A fast small amplitude first order component at
the frequencies of the incident surface waves.
2. A slow amplitude coﬁponent due to the wave second
order drift forces, the wind and ocean currents. To
permit actual operations, the slow component of
motion is kept within appropriate bounds by the
action of the dynamic positioning and/or the mcoring
'system of the supporting platform. For a discussion

of this subject, see Triantafyllou (1979) and (1982).

Order of magnitude calculations show that the spectrum
of the exciting forces overlaps with the frequency range
of the dynamic response of typical risers. Therefore, |
dynamic effects must be considered in the design
procedure. Because of the virtually unknown non-linear
dependence of the local hydrodynamic force upon both the
outside excitation and the riser's own motion, excitation
from currents, surface waves, and the motion of the top
end must be treated simultaneocusly.

Existing rigid cylinder experiments may be used to
provide insight into the dynamic behavior of risers for a
limited number of idealized excitation conditions. The
basic idealization employed in rigid cylinder experiments

is the replacement of a random wave field or oscillatory
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motion of a cylinder by a single sinusoid. Experiments
using such an idealization have a relatively good
resolution with respect to some of the most important
non-dimensional parameters. For the case where the
sinusoid motion is combined with a current, only the cases
where the direction of sinusoid motion is parallel or
orthogonal to the current have been investigated in

detail.

IV.3 A REVIEW OF RIGID CYLINDER EXPERIMENTS
IV.3.1 INTRODUCTION

As stated at the beginning of this Chapter,
information derived from rigid cylinder experiments
provides a useful insight into the dynamic behavior of
risers because it permits an explicit modelling of the
local hydrodynamic force. The review of rigid cylinder
experiments developed in this section provides the
necessary background needed to develop such a model; in
understanding its limitations when used to predict the
response of a flexible cylinder; and in identifying areas
in which such limitations may be significant.

Rigid circular cylinder experimental results
useful for the prediction of the local hydrodynamic force

in single tube risers are associated with the following



tyoes of icdealized flows:
e Uniform stream orthogonal to the axis of a fixed
rigid cylinder.
e Harmonic stream orthogonal to the axis of a fixed
rigid cylinder.
¢ Flow created by harmonic oscillation of a rigid
cylinder orthogonal to its axis and at a certain
arngle with respect to a uniform stream flcwing
orthogonally to the axis of the cylinder.
® Flow created by the dynamic response of a rigid,
f£lexibly mounted, cylinder in a uniform stream
orthogonal to its axis.
® Flow created by the dynamic response of a rigid,
flexibly mounted, cylinder in a harmonic stream
orthogonal to its axis and to the plane of the
response motion.
A brief review of the main experimental works
investigating such types of flow are presented in the

following five articles.

IV.3.2 UNIFORM STREAM ORTHOGONAL TO A FIXED RIGID

CIRCULAR CYLINDER

This type of flow has been studied, for example,

by Roshko (1953), (1954), (1961), Bishop and Hassan
(1964a) , Achebach (1968), (1971), Jones et al (1969).

The non-dimensional hydrodynamic force per unit length for
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this type of flow depends upon: the Reynclds number,
Re=VcD/v ; the roughness ratio, k/D; the aspect ratio,
A = L/D, (together with the end geometrv); and the
non-dimensional time, T =Vc t/D, where V, is the stream
velocity far from the cylinder, D, L, the cylinder
diameter and length respectively, kx a typical roughness
height, and v the kinematic viscosity of the fluid. A
brief review of the flow changes around a smooth rigid
circular cylinder as the Reynolds numkber increases is

given below (see also Bernitsas (1979b).

a) Re<<l: The flow is symmetric both in the
upstream-downstream and in the left and right directicns.
b) Re=4: The upstream-downstream symmetry is lost. Two
vortices appear behind the cylinder which remain attached
up to Re=40 (Tritton, (1977)).

¢) 40<Re<l50: The symmetry about the diameter of the
cylinder parallel to the incident stream is also lost.
Vortices are generated alternatively from the two sides of
the cylinder and form an antisymmetric pattern Xnown as
the Karman street. The Strouhal number, defined by
Sttst/Vc, where fs =l/'1‘s and Tq is the period of shedding
of a pair of vortices varies approximately between 0.12
and 0.17 and is a characteristic property of the flow.
Compiled experimental results for the Strouhal number as a
function of Reynolds number is shown in Figure 2, borrcwed

from Chen (1973). The average drag coefficient, Cps
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defined as Cp = average drag/O.SpDch, where p is the
density of the fluid, decreases approximately from 1.67 to
1.28 as the Reynolds number increases. A complete picture
of the average drag coefficient Ch as a function of
Reynolds number is given in Figure 3, borrowed from Bishop
and Hassan (1964a). This picture also includes some
experimental data for the inverse of the Strouhal number
and the maximam lift coefficient as a function of Re
number, defined as cL=maximum amplitude of the
hydrodynamic force orthogonal to the stream/O.SpDch. An
extensive compilaticn of experimental results for ¢, as a
function of Re number is shown in Figure 4, borrowed from
Chen (1973).

d) 150<Re<400: This is the so-called Tritton transition
region, ir which the flow loses its regularity. The
Strouhal number exhibits some scatter and the flow in the
vortex turns from laminar to turbulent. The average drag
coefficient is a decreasing function of Reynolds number
reaching 1.12 aro'ind Re=400, see Figure 3.

e) 400<Re<3xl05: The flow becomes reqular again and the
Strouhal number takes an almost constant value
approximately equal to 0.21. The drag coefficient
continues to be a decreasing function of Re up to Re=2100,
where it reaches the value of 0.9. After that point it
increases slowly with Reynolds reaching a value = 1.2 at
Re=21000, after which it remains constant until

approximately Re=6x105, see Figure 3.
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FIGURE 2: Strouhal Number, St, Versus Reynolds Number, Re,
for a Uniform Stream Orthogonal to a Fixed Rigid Circular
Cylinder, Chen (1973).
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£) 3xlOs<Re<5xlOS: This is a critical regime in which
the flcw loses its regularity and becomes fully turbulent
around leOS. The point of separation moves to the rear
face of the cylinder with significant decrease in the
average drag coefficient which reaches a minimum value =
0.35 at Re=5x10°.

g) Re>5x105: The flow is fully turbulent and the drag
coefficient in this region is smaller than the drag
coefficient of the subcritical regime, increasing slowly

from 0.35 at Re=5x105 to 0.80 around Re=3.2x106

after
which it remains constant. There is appreciable scatter
in the experimental data cancerning the lift force and
Strouhal number for Re>3x105, see Figures 4 and 2. This
may be partially explained from three-dimensionality
effects.

For subcritical Reynolds numbers, the lift and
oscillatory drag forces have an almost periodic character
with circular frequencies ms=2vfs and Zws respectively.
For nigher Reynolds numbers, a spectral description of the
oscillatory lift and drag forces is required. A complete

account of experimental and theoretical results for this

type of fiow is given in Chen (1973).
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IV.3.3 HARMONIC STREAM ORTHOGONAL TO A FIXED RIGID

CYLINDER

This type of flow has been studied, for example,
by Keulegan and Carpenter (1958) and Sarpkaya (1977b).
The non-dimensional hydrodynamic force per unit length for
this type of flow depends upon: the Reynolds number,
Re =wSD/Vv; the Keulegan-Carpenter number, KC=271S/D; the
roughness ratio, k/D; the aspect ratio, A=L/D, (together
with the end gecmetry); and the non-dimensional time,
T awt, where w, S are the circular frequency and amplitude
of harmonic motion of a cylinder with diameter D. If the
cylinder is stationary, then S=Um/w where Um is the
maximum velocity of the incident harmonic stream U(t) far
from the cylinder, with U(t)=Umcos(wt). The above
investigators measured hydrocdynamic forces acting on
moderate aspect ratio cylinders. The experimental
procedure used by all investigators menticned above
provided a measurement of the overall force. Therefore,
the hydrodynamic force per unit length reported in the
above works corresponds to a spanwise average hydrodynamic
force. Purther, they provided no information to determine
the degree of spanwise correlation of the hydrodynamic

force.

Keulegan and Carpenter (1958) performed pioneer
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research on this type of £low. They measured and analyzed
the hydrodynamic force acting on a cylinder parallel to an
incident harmonic stream and have shown that it exhibits a
strong dependence upon the ratio of a representative
amplitude of fluid motion to the diameter. Sarpkaya
(1977b) explained the scatter of the experimental results
for the above force by assessing the importance of
Reynolds number and roughness ratio. Both investigators
have used an equation introduced by Morison et al (1950)
to represent the hydrodynamic force Fx parallel to the
stream of the form:

Fy(t) = cypA Uy + 0.5c40D U[U|
where subscript t denotes derivative with respect to time,
AoanD2/4 and Cys Sq are inertia and drag coefficients
respectively. These are functions of the non-dimensional
parameters.listed above. Fourier representations of Cy
and cq were introduced and it was found that keeping the
time average values of Cy and cq gave a satisfactory
agreement between the force calculated using the above
equation and the instantaneous force measured
experimentally, except in the range of Keulegan-Carpenter
numbers between 6 and 20. In this range of KC, the error
between the maximum calculated and measured force can be
as large as 12%, Sarpkaya (1975). This is a region of
"drastic change”", coinciding with shedding of the first
few vortices within one cycle, see Bernitsas (1979b).

Experimental results for the time average values of Cy and
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C3 for smooth cylinders as a function of Re and KC numkters
are given in Figures 5 and 6, respectively, borrowed £from

Sarpkaya (1977b).

Sarpkaya (1977b) also gave estimates of the
maximum lift, the force orthogonal to the stream, by
presenting the lift coefficient Cp, = maximum amplitude of

2 as functions of Re, KC

lift force per unit length/O.SpDUm
numbers. A plot of the maximum lift coefficient for
smooth cylinders with respect to the KC number
parametrically with respect to Re number is shown in
Figure 7, borrowed from Sarpkaya (1977b). This Figure
also includes the dependence of Cp, upon the frequency
parameter defined by B=fD2/v, where £ = w/2m, which could
replace Re in the presentation of results. The resulting
maximum lift forces are as large as the hydrocdynamic
forces parallel to the direction of oscillation. Lift
forces are particularly large in the range of "drastic
change” defined above. Maximum measured lift coefficients
reached values as hich as 3.7 in the KC range between 6
and 20. In additiun, Sarpkaya gave estimates of the ratio
E: of the shedding frequency divided by the oscillation
frequency as a function of Re and KC numbers, see Figure 8
(from Sarpkaya (1977b)), and recognized the random
character of the lift force.

These results show that, depending on the KC

number, the basic spectral character of the lift forces
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Carpenter Number, K, for a Harmonic Stream Orthogonal to a
Fixed Rigid Smooth Circular Cylinder, Sarpkaya (1977b).
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remains unchanged for quite disparate Reynolds numbers.
For the smaller KC number tested (=6), this is true for Re
between leO3 and 6xlO4 and as the XKC number increases,
this range extends and reaches Re=3x105 around KC~x80Q. The
maximum lift coefficient is a decreasing function of
Reynblds number reaching values=0.6 for Re=10S for the
smaller KC numbers (10-20). This value decreases to 0.2
for Re>2x10° and KC=100. Finally, the reader is reminded
that there is no assurance about the degree of spanwise
correlation of the results. This is due to the
measurement procedure as explained earlier. Such effects
could have an impact on the maximum sectional hydrodynamic

force experienced by a rigid cylinder.

IV.3.4 HARMONIC OSCILLATION OF A RIGID CYLINDER AT A
CERTAIN ANGLE WITH RESPECT TO AN INCIDENT UNIFORM STREAM,

BOTH ORTHOGONAL TO THE AXIS OF THE CYLINDER

This type of flow has been studied, for example,
by Bishop and Hassan (1964b), Mercier (1373), Sarpkaya
(1977a), Bernitsas (1979a, 1979b), Verley and Moe (1979)
and Moeller and Leehey (1982). The non-dimensional
hydrodynamic force per unit length depends upon: the
Reynolds number, ReaVcD/\z ; the amplitude ratio, a =5/D;
the reduced velocity (or frequency) of oscillation,

U*=Vc/fD, where f=w/2m; the angle of oscillation 6 with
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resgect to the stream; the aspect ratio, A =L/D, (together
with the end geometry); the non-dimensional rcughness

ratio, k/D; and the non-dimensional time, T=wt.

Bishop and Hassan (1964b) were the first to
conduct experiments of this type with 8=90 degrees. They
demonstrated the possibility of the lock-in phenomenon and
the impact of three-dimensionality effects on the

character of the forces.

Mercier (1973) studied large amplitude harmonic
oscillation of a smooth rigid cylinder at 6=0 and 6=90
degrees with respect ;o a uniform incident stream and gave
an analysis of the ovérall hydrodynamic forces parallel
and orthogonal to the stream. Mercier was mainly
interested in the dependence of the hydrodynamic forces
upon the reduced velocity and amplitude of oscillation.

In his experiments, Mercier varied the value of S/D for

8 =0 degrees between 0.3 and 3, while for 6=90 degrees
between 0.3 and 2.5. The value of U* was varied between 0
and 10 and the value of Re between 4000 and 32000, with
most experiments performed at Re=8000. The values of A
used in his experiments were 7 and 14. In addition,

circular plates were attached to the ends of his model.

For the case of 6=90 degrees, coefficients for the

hydrodynamic forces parallel to the oscillation are given

for values of S/D between C.3 and 1.3 only. Systematic
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presentation of the results as a function of Reynolds
number was not always made. However, he reported that the
differences between results at different Re are, for the
most part, larger than the scatter of the data for a
particular Re. The most important of his results are
summarized below.

a) The average drag coefficient, cdefined as
Cp=average drag/O.SpDch, is largerx than the one measured
in an experiment with the same current but no oscillation
and is a function of S/D, U* and 9 at least.

b) For 0=90Q0 degrees, the oscillatory drag
coefficient, Cqr defined as Cq = amplitude of the drag

232, is negative

force parallel to the oscillation/0.5pDw
around U*=3 and for S/D less than about one, indicating a
lock-in situation, see Figure 9 borrowed frcm Mercier
(1973) . The inertia coefficient cy, defined as
Cy=amplitude of inertia force/(pAom25)+l, exhibits
substantial fluctuations around U*=5 and S/D less than.
about one, see Figure 10 borrowed from Mercier (1973).
The non-dimensionalization of the force parallel to the
oscillation with respect to the amplitudes of the
oscillatory velocity and acceleration accentuates the
sharpness of the variation of Sy and 4 for small S/D. A
picture of the average drag coefficient Sy for 8=90
degrees is given in Figure 11, Mercier (1973). For
frequencies of oscillation which are sufficiently below

the Strouhal frequency, determined from Figure 2, the roll
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FIGURE 9: Drag Coefficient Cq = Amgl;tude of Drag Force
Parallel to the Oscillation /0.5pDw" %" as a Function of U*
Parametrically with Respect to the Non-Dimensional Amplitude
X/D for Harmonic Oscillation at 6=90 Degrees with Respect
to a Current, Mercier (1973).
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up of tne shear layers occurs quite independently of the
cylinder oscillation, leading to a double peaked force
transverse to the stream. One peak occurs at the
frequency of oscillation and the other at the Strouhal
frequency defined above. As the frequency increases,
there is a point, which depends upon the amplitude of
oscillation, at which the frequency of shedding locks on
the frequency of oscillation. This phenomenon persists
for a range of frequencies which is also a function of the
amplitude of oscillation and is usually referred to as the
rang2 of synchronism. When the frequency of oscillation
falls above the range of synchronism, the rate of vortex
shedding can no longer keep up with the oscillation and
the resulting flow is quite irreqular. The range of
synchronism does not exhibit sharply defined boundaries.
In fact, these boundaries are disturbance sensitive, while
hysteretic effects for increasing or decreasing frequency
may appear. Finally, when vortex shedding is synchronized
with the oscillation, the fluctuating drag parallel to the
stream occurs at twice the frequency of oscillation and
becomes of the same order of magnitude as the drag force
transverse to the stream for large S/D and U*. For the
largest S/D tested (=2.5) and for U* around 5, an
additional component of the fluctuating drag parallel to
the stream occurs at four times the oscillation frequency,
and reaches the same order of magnitude as the component

at twice the oscilating frequency.
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c) For 8=0 degrees, no critical range for the
nydrodynamic forces parallel to the stream was observed.
The lift force character, however, changes at a value of
the reduced velocity which is a weak function of the
amplitude ratio. For values of the reduced velocity below
approximately 3, significant lift components at
frequencies 2, 3, and 4 times the oscillation frequency
are apparent. The strongest component occurs at twice the
oscillation frequency. The magnitude of the lift forces
is comparable with the magnitude of the dynamic force
parallel to the stream. The second regime occurs for
values of U* approximately between 3 and 8. 1In this
regime, significant lift components occur at 1/2, 3/2, 5/2
the oscillation frequency. An important component at 7/2
the oscillation frequency was found for S/D>2. The
magnitude of these forces is comparable with the magnitude
of the dynamic force parallel to the stream. Flow
visualization tests for the second regime revealed that
two strong vortices were shed in two successive periods
from opposite sides of the cylinder. The shedding of
these two strong vortices occurs when the oscillatory
velocity adds to the stream velocity. This observation
provides a phenomenological explanation of the presence of
the harmonics of half the oscillatory frequency in the
lift force.

Finally, Mercier observed the existence of forces

transverse to the direction of oscillation at the
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frequency of cscillation for bcth 9=0 and 90 degrees.
However, he chose not to report them tecause he felt that
they were not sufficiently larger than the effects that
arose from the inaccuracies of his experimental set up to

allow him to assess their significance.

Sarpkaya (1977a) studied small amplitucde harmonic
oscillations of a smooth rigid cylinder at 8=90 degrees
with respect to a uniform incident stream and gave an
analysis of the overall hydrodynamic force parallel to the
oscillation and the overall static force parallel to the
stream. The dynamic force parallel to the stream he
estimated to be less than 7% of the average force and gave
no further detail regarding this force. Sarpkaya was
mainly interested in the dependence of the hydrodynamic
forces upon the reduced velocity and amplitude of
oscillation. In his experiments, Sarpkaya varied the
value of S/D from 0.13 to 1.03 and the value of U* between
2.5 and 8. Coefficients for the average drag force are
given for values of S/D between 0.25 and 0.84. The
Reynolds numbers, based on the stream velocity, varied
approximately between 3300 and 11000. ~No systematic
presentation of the results as a function of Reynolds
number was undertaken. The values of A used in his
experiments from which the average drag force was

calculated, were approximately 3.9 and 5.6. In these

experiments, he did not use end plates. It is not clear
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what values of A were used in the experiments during which
the dynamic force orthogonal to the stream was measured.
However, if the same diameter cylinders were usea, the
resulting values of A are 10.2 and 14.6. In these
eXperiments, end plates were used but they were not
attached to the cylinder.

The average drag coefficients reported by Sarpkaya
(1977a) are larger than those reported by Mercier (1973)
for S/D between 0.25 and 0.75, but their curves agree in
shape. The difference in magnitude is as high as 39%.
This difference may be partially due to the difference in
the end conditions and the difference in the values of
aspect ratios and Reynolds numbers used by the twq
investigators.

Sarpkaya (1977a), like Mercier (1973), observed a
sharp variation of the added mass and drag coefficients,
describing the force orthogonal to the stream, around
U*=5., Sarpkaya also observed another critical range
around U*=3,7 at which the drag coefficients become
negative for S/D smaller than approximately 0.6. The lack
of experimental resolution in Mercier (1973) led him to
fair his experimental data in a misleading way. (Compare
Figures 9 and 12.) The difference in the magnitude of 4
and Cy v where both investigators have conducted
experiments, may be partially due again to the difference
in end conditions and the difference in the values of

aspect ratios and Reynolds number as stated earlier,.
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The only thing absent from Sarpkaya (1977a) is the
mass of his mocdel. This does not allow the calculaticn of
the ratio of the mass inertia force divided by the
hydrodynamic force orthogonal to the stream, which is
essential in determining the accuracy of the calculated

values of Cqr when C3 is small.

Bernitsas (1979) studied oblique harmonic
oscillations with respect to a uniform incident stream at
15 degree intervals between 6=0 and 6=90 degrees, with
S/D=0.375, U*=10.25, Re=7410 and XA =10 with end plates of
diameter 4D. His oscillation frequency was 1 Hz and the
Strouhal frequency determined from Figure 2 was
approximately equal to 2 Bz. As in Mercier (1973), the
overall forces were measured. The hydrodynamic force per
unit length F was analyzed based on a modified Morison
tyﬁe equation of the form:

E(t)=c pA 2 + O.ScdpD§]§|+ 0.5c, 0DkxA|A|

L
where Cqr Cp¢ Sp are drag, lift, and inertia coefficients

respectively, A is a relative velocity defined by:

—
"

A=vi-g

t
where r is the oscillatory (vector) displacement given by:

r = 3 sin(uwt) (1 cose + J sine)
where 3, 3, k form a right-handed trial of unit vectors
with 1 and k parallel to the mean stream and the cylinder

axis respectively. The term a denotes a relative

acceleration of the water with respect to the cylinder
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defined by 2=-r,,, Wwhere subscript t denotes derivative
with respect to time. 1If the analysis is perfcrmed in the
manner described above, the inertia coefficient does not
depend significantly on time and its mean value varies
between 1.14 and 1.25, while the time average of the drag
coefficient, as defined by Bernitsas (1979), varies
between 1.18 and 1.25 as 8 varies petween 0 degrees and 90
degrees. The most significant oscillatory force
components are at féle and at 2f (approximately the
frequency of vortex shedding in a steady stream).
Oscillatory force components at 2f are more significant at 9
=90 degrees. Higher harmonics exist and are usually more
important at intermediate angles rather than at 8=0 .

degrees and 90 degrees.

Verley and Moe (1979) studied harmonic
oscillations of a smooth rigid cylinder at 8=0 degrees
with respect to a uniform incident stream and gave an
analysis of the overall hydrodynamic force parallel to the
stream. In their experiments, Verley and Moe varied S/D
between 0.05 and 6.5, U* between 0.6 and 47 and 8 from 200
to 3000. The values of the aspect ratio used in their
experiments were 6.5, 10 and 16. End.plates were always
employed to increase the two-dimensionality of the flow.
No systematic preséntation of the results as a function of 3

or of Reynolds number was undertaken. Verley and doe used

two different forms of the Morison's equation to present



93

their results for the hydrodynamic force parallel to the
stream. The first form used is identical with the form
employed by Bernitsas (1979) for 6=0:

Fy(t) = cppAja + 0.5c40D A|A|
where A=Vc-rt Tt and r=Ssinwt.

The second form is the following:

2

Fy(t) = 0.5c,pDV “+c oA a - 0.5cd'pDrt|r

el

where Sp is an average drag coefficient and Cqr cd' are
drag coefficients aﬂd Sn is an added mass coefficient.
The second form was also used by Mercier (1973). Verley
and Moe found that the first form leads to smaller
variations of the time averaged values of the hydrodynamic
coefficients with respect to S/D and U* and therefore
concluded that it is a better model for the hydrodynamic
force than the second form. The dependence of the time
average values of ¢,=c +l and c4 upon S/D and U* is shown
in Figures 13 and 14 respectively. The values of 8 used
to construct the plot for cq vary between 200 and 500.
For U* between 2 and 3 for S/D smaller than approximately
1/8 the drag coefficient becomes negative indicating the
occurrence of a lock-in type phenomenon. The results of
Mercier (1973) and Verley and Moe (1979) compare well. A
random check revealed no difference in magnitude larger
than 20%. This difference may be partially due to
differences in the values of aspect ratio and Reynolds
numbers used by the two investigators. The experimental

procedures enploved by all investigators mentioned above
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provided a measurement of the overall force, i.e. of the
spanwise average hydrodynamic force. Further, they
provided no information to determine the spanwise

correlation of the hydrodynamic force.

Moeller and Leehey (1982) have recently presented
measured spectra of the local hydrodynamic force acting on
an instrumented section of a circular cylinder in the
direction parallel to its oscillation, which is orthogonal
to a uniform stream. The tests were conducted at a
Reynolds number equal to l.93x104, at amélitudes of
harmonic motion ranging between 0.05 and 0.5 diameters and
for reduced velocities between 3.33 and 10. The aspect
ratio used was 26 and end plates were used to increase the
two-dimensionality of the resulting flow. Lock-in
boundaries as a function of the frequency of oscillation
non-dimensiocnalized with respect to the Strouhal
frequency, and the amplitude of oscillation
non-dimensionalized with respect to the diameter have been
Getermined. The Strouhal frequency used in the

non-dimensionalization above is determined from Figure 2.

The above concludes the review of rigid,
non-flexibly mounted, cylinder experiments in an a priori
defined flow. All investigators reviewed above used the
forced oscillation tachnique except Verley and Moe (1979),

who used a free oscillation technigque. However, their
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experimental set-up was such that it assured that the

amplitude of oscillation remained practically constant for

the duration of each of their experiments.

IV.3.5 SUMMARY

The review presented above has been kept
intentionally brief. General reviews of the main
experimental and theoretical results concerning separated
flows around circular cylinders have been, for example,
compiled by Berger and Wille (1972), Chen (1973), Sarpkaya
(1979) and Patrikalakis (1980).

As stated at the beginning of this Chapter, the
two major limitations of the hydrodynamic force model used
to translate forces measured in rigid cylinder experiments
to motion of a flexible cylinder are: a) Force
components that would make a flexible cylinder respond in
a focm other than the one used to conduct the rigid
cylinder experiment must be neglected. b) Rigid cylinder
experiments cannot provide information on the spanwise
correlation of local hydrodynamic forces. The first
limitation, for example, implies that we cannot use
measurements of the lift, the dynamic force orthogonal to
the direction of oscillation, to predict motion in that
direction. Similarly, we cannot use measurements of

dynamic force components parallel to the direction of
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oscillation at frequencies other than the frequency o:&
oscillation to predict motion at those frequencies. Such
a situation arises, for example, when the oscillation is
orthogonal to the stream and the combination of amplitude
and frequency of oscillation is such that synchronization
of vortex shedding with the oscillation does not occur.

In an attempt to relate force to a response of
different form than the imposed motion, experiments using
rigid cylinders, which are mounted on elastic springs and
dashpots, have been conducted by a number of
investigators. These experiments attempt to represent a
continuous system with an idealization which has only a
small number of degrees of fresedom and allowing the
idealized system to respond to the force it experiences.
The response in existing experiments of this type is a
one degree of freedom translation. This is particularly
restrictive when studying the dynamics of moderate and
deep water risers as will be explained in detail in
Section 1IV.4.

Existing flexibly mounted cylinder experiments are
briefly reviewed in the next two sections, because under
specialized conditions they provide some information about
the dynamiqs of risers. The two flow conditions that have

been studied are:

1. Flexibly mounted cylinders responding

crthogonally or parallel to -a uniform stream.



99

2. Flexibly mounted cylinders responding

orthogonally to a harmonic stream.

IV.3.6 FLEXIBLY MOUNTED RIGID CYLINDERS RESPONDING
DYNAMICALLY TO VORTEX SHEDDING IN A UNIFORM INCIDENT
STREAM

Results of experiments of the above form have, for
example, been presented by Vickery and Watkins (1964),
Wootton (1968), King (1977a) and Dean et al (1977).
Extensive reviews of experiments of this class have been
compiled by King (1977b) and Dean and Wootton (1977). A
brief review of the flexibly mounted rigid cylinder-fluid
interactions are éresented below.

The characteristics of vortex shedding for a
fixed, rigid cylinder in a uniform stream, briefly
described in section 1IV.3.2, change significantly when
the cylinder is permitted to move. Under certain
conditions, appreciable oscillations of the cylinder
caused by vortex shedding can be excited in the directions
parallel or nrthogonal to the stream. Oscillations
parallel to the flow direction are excited at velocities
much lower than the velocities necessary for oscillations
orthogonal to the stream.

The non-dimensional hydrocdynamic force,

g?=§/0.5pDLVc2, where F is the overall hydrodyvnamic force
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acting on a flexibly mounted rigid cylinder depends uncn:
the ratio « of a representative hydrodynamic force to the
spring restoring force, « =O.SpLch/K; the ratio m of the
rigid body inertial forces to the fluid inertial forces
m=M/(anzL/4); the Reynolds number, Re=VCD/v; the ratio 8
of the dashpot damping force to the rigid body inertial
force, e=c/(KM}l/2; the aspect ratio, A=L/D, (together
with the end geometry); the non-dimensional roughness,
k/D; the free streaﬁ tutbulénce and a non-dimensional time
r=t(K/M)l/2, where K is the spring constant, M the mass of
the cylinder and c the dashpot damping coefficient. The
dashpot damping force is assumed to depend linearly upon
the velocity of the cylinder. This is acceptable for the
range of amplitudes of practical interest. The
instantaneous non-dimensional motion of the cylinder
depends upon the same parameters as the non-dimensional
hydrodynamic force.

In an attempt to limit the number of experiments
required to study all the above parameters,
experimentalists have tried to correlate their data on the
basis of the following two parameters: a reduced
velocity, U*n=Vc/Dfn and a stability parameter,

Ks= 26Me/p02L, where fn is the in-water "natural
frequency” of the system, defined by fn=(K/Me)l/2/2n; § a
iogarithmic decrement, defined by 6=ﬂc/(KMe)l/2; and Me an
"effective mass", defined as Mg=M+M_, where M_ is an

"added mass" of the cylinder in water, defined by
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2
Ma'ch"D L/4. The parameters U*n and K_ are related to
the first list of non-dimensional parameters by
ur =n 2 (26 (e ))/? ane g =1%&(m(m+c_))1 /2. Using

: s m

only U*n and Ks to present the data leads to scatter
because, as explained above, a much larger set of
parameters is needed to describe the phenomenon under
~ consideration. For example, it was reported that changes
in paraﬁeters such as the aspect ratio, together with
end conditions, the non-dimensional roughness and the free

stream turbulence have noticeable effects on the results.

In addition, because the value of ¢

- used is not always

the same, care must be exercised when comparing results
from different investigators.

Vortex excited oscillations of flexibly mounted
rigid cylinders orthogonal and parallel to a uniform
stream and correlation length changes in such cylinders

are briefly discussed in tne next three sections.
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IV.3.6a VORTEX EXCITED OSCILLATIONS ORTHOGONAL TO A

UNIFORM STREAM

A typical behavior of a rigid cylinder suppocrted
by elastic springs and dashpots allowed to oscillate
orthogonally to a uniform incident stream is shown in
Figure 15 derived from the experimental data of Dean et al
(1977). The in-water "natural frequency" fn employed in
this Figure is determined using an added mass coefficient

plotted in

max min
m and fs

c_ equal to one. The values of ES
Figure 15 correspond to the envelope of experimental data
for the vortex shedding frequency for a fixed rigid
cylinder in a uniform stream derived from Figure 2 for the
corresponding Reynolds number. From Figure 15, it is seen
that for the spring mounted cylinder, the vortex shedding

frequency, f for values of U*n=Vé/an less than 4.5 and

s’
bigger than 7.5 approximately is given by the relation
fsacht/D, where St is the Strouhal number as determined
from Figure 2. For values of U* between 5 and 6.5
approximately,fs is approximately equal to fn' Between
U*n 6.5 and 7.5 the value of Es changes smoothly from fn
to VcSt/D. It should be noted, however, that the value of
Es for 4<U*n<8 is not known accurately because there is
considerable experimental scatter. The range where fs
remains approximately equal to En is referred to as the

lock-in range.

The response frequency, f:. has only been reported
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FIGURE 15: Plots of the vortex shedding frequency, £,
the response frequency, fr' and the non-dimensional

response half amplitude, Y/D, for a Smooth spring mounted
rigid cylinder oscillating orthogonally to a uniform water
stream. Data derived from Dean et al (1977). Model
characteristics: fn=2'15 Hz, D=25.4 nm, m=2.93, A=13,
6=o.147,Ks=o,91,Re=2680 to 10370.
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for 3.7¢< U*n<3.5. In this rance cf U*n the response isg
almest periodic in character (at least fcr the Reynolds
number range studied) with frequency apprcoximately equal
to fs. In this range of U*n large amplitudes of
oscillation are observed as shown in Figure 15.

" King (1977b) defined lock-in as the range of
significant response orthogonal to the direction of tie
current and reports it to occur for 4.5<U*n<lo. He also
indicates that the range of U*  where the response is
maximum is between 6.5 and 8.

Sarpkaya (1977a) has calculated the maximum
response amplitude of a rigid, flexibly mounted,
cylinder permitted to respond orthogonally to a uniform
stream using his experimental data from forced rigid
cylinder experiments. He has also compared his numerical
estimates with measurements of the response amplitude of

flexibly mounted cylinders at synchronization. The
calculated values underpredict the measured maximum

amplitudes by no more than 21%.

IV.3.8b VORTEX EXCITED OSCILLATIONS PARALLEL TO A UNIFORM

STREAM

When a cylinder is spring mounted so as to allow
response in the plane parallel to the stream, vortex

excited oscillations appear in that plane for two separate
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regions of U*n. The first region is defined approximately
oy 1.25<U*n<2.5, with maximum amplitudes occurring arcound
U*n=2.l. The second region is defined approximately by
2.7<U*n<3.8 with maximum amplitudes occurring around
U*n=3.2. For very small Ks' the maximum half amplitudes
of motion may reach values as high as 0.2 diameters.
Maximum amplitudes of motion are a decreasing function of
Ks and become nearly zero for KS around 1l.3.

The first of these two regions of vortex excited
nscillations parallel to a stream is associated with
symmetric shedding while the second with alternate
shedding. In the first case the arrangement of symmetric
vortices in the wake isiunstable.. So soon after the
vortices are shed theyztake the familiar staggered
arrangement. Up to the beginning of the first
"instability" region the cylinder is virtually motionless
and the freQuency of shedding of a pair of vortices
follows the line £D/V_ = St=0.2. Up to that point
shedding is alternate. Within the first "instability"
region the cylinder oscillates at its "natural frequency”.
The value of the shedding frequency in this range seems to
only assume values whiéh are rational fractions of the
"natural frequency". King reports that in this range of
U*n the ratio of the "natural frequency" to the shedding
frequency decreases from 4 at U*n= 1.25 to 2 at U*n = 2.5.

Within the second instability region the shedding

frequency of a pair of vortices remains constant at
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approximately one half the "naturzl frequency" while in
Setween regions and after the end of the second it follows
the line st/Vc = St=0.2 defined earlier. The frequency
of cylinder motion within the second "instability" region
of oscillation parallel to the stream is equal to the
"natural frequency" of the cylinder. The term "natural

frequency" is defined the same way as in Section IV.3.6b.

IV.3.6c CORRELATION LENGTH, ASPECT RATIO AND THRESHOLD

AMPLITUDES

When a steady stream flows around a smooth large
aspect ratio fixed rigid cylinder three-dimensionality
effects start appearing for very small Reynolds numbers.
For example, for subcritical Reynolds numbers, vortices
are shed in distinct cells from fixed cylinders. The flow
within each cell is in phase. The length of the cell is
called correlation length. For higher Reynolds numbers
this heuristic definition of correlation length is no
longer plausible. A definition of the correlation length,
valid for all Reynolds numbers, may be obtained through
measurements of the local lift force L(2Z,t), as explained
below.

The space-~time correlation of the random lift
force, which is assumed stationary, is given by:

Ry (21,25,T) = E(L(Z),t)L(Z,,t+T))



107

where Z denotes averaging across the ensemble. If, in
addition, the process L(2,t) is assumed ergodic, the
space~tinme correlation can te evaluated by time averaging:

Rp (2),25,T) = %}&1/21‘ _{rTL(Z,t)L(Zz,t-i-r)dt
It has been found that for finite length rigid cylinders
of large aspect ratio and for locations Zl’ Z2 away from
the ends the space~time correlation depends primarily upon
z=zz-zl>o and not upon the individual Zl' zz. - Such a
process is called homogeneous and we can write:

Rp (Z,T) = R (Zy, 2,,T)

The correlation coefficient is defined by:

R(Z) = RL(Z,O)/RL(O,O)
and the correlaticn length by

lc = JLR(Z)dZ
where L is the length of the cylinder.

A review of correlation length measurements is,
for example, given in Graham (1966) and King (1977b). The
correlation length on a fixed smooth cylinder in a uniform
stream decreases from approximately 20 diameters at Re=40
to 2-3 diameters at Re=300 and remains approximately
constant up to Re=5xlo4. Measurements of lc in the
critical region show scatter. For Reg_los, the
correlation length is of the order of 1/2 diameter.

When the length of the cylinder is much larger
than the correlation length, a reduction of the magnitude
of the overall oscillatory force is observed. End and

intermediate circular plates orthogonal to the cylinder at
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spacings larger than the correlation length increase the
overall oscillatory force by increasing the two-
dimensionality of thne flow. This technique has been used
in most rigid cylinder experiments.

Ring (1977b) reported that when a rigid cylinder
in a uniform stream is spring mounted and oscillates at or
above a threshold amplitude the correlaticn length
increases. The threshold amplitudes are approximately 10%
of the diameter for oscillations orthcgonal to the stream
and 13 to 2% of the diameter for oscillations parallel to
the stream. These observations imply that the
reorganization of the vortex shedding process depends upon
the particular cylinder motion. Finally, Ring (19775)
also observed that roughness decreases the spanwise

correlation of the hydrodynamic force.

IV.3.7 FLEXIBLY MOUNTED RIGID CYLINDERS RESPONDING
DYNAMICALLY TO VORTEX SHEDDING IN A HARMONIC STREAM

ORTHOGONAL TO THE PLANE OF THE RESPONSE MOTION

Experiments of the above form have been presented
by Sarpkaya (1980), Sarpkaya et al (198l1), McConnell and
Park (1982) and Verley and Johns (1982). The response
motion depends upon the non-dimensional parameters given
in Section IV.3.6, where Vo should be replaced by the

maximum velocity of the harmonic stream U, and in addition
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upon the Keulegan-Carpenter number RC = 2wS/D = ZﬂUm/mD.
As for the case of a uniform stream,

experimentalists have tried to correlate their results cn

the basis of a reduced velocity U*n = Um/an = XC f/fn andé

2

a response parameter Rp = Mz/ pD°L cLo, where f=w/2T,

)1/2 o]

z = 0.5¢/ (KM , and < is the maximum lift coefficient
for the same cylinder in the same incident flow but with
the cylinder held fixed.

It has been found that R, can be used to correlate
the data for the maximum amplitudes of response orthegonal
to the harmonic stream, Sarpkaya (1980). The
non-dimensional maximum response half amplitude is a
decreasing function of R_ and for the smallest value of Rp

P

studied, R =0.1, it reaches a value approximately equal to

P
six tenths of a diameter. Maximum response amplitudes ancé
lift coefficients have been encountered for reduced
velocities around 5.3 at which synchronization of the
response frequency with the "natural frequency" cccurs,
Sarpkaya (1980). A plot of the non-dimensional response
amplitude (half height), YM/D, at synchronization as a
function of Rp is given in Figure 16 taken from Sarpkaya
(1980).

It has been reported, Sarpkaya et al(198l1), that
the response orthogonal to the stream is not monoharmonic
in general, however, no detailed spectral results are

available. Plots of the main frequency of response

orthogonal to a harmonic stream, cefined as the frequency
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FIGURE 16: Plot of the Non-Dimensional Response Amplitude
(Haif Height) Orthogonal to a Harmonic Stream, YM/D, at
Synchronization,as a Function of the Response Parameter, Rp,
for Spring Mounted Smooth and Rough Cylinders, Sarpkaya (1980).
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FIGURE 17: Plot of the Ratio fr/(f~KC) Versus the Ratio
fn/f Parametrically with Respect to the Non-Dimensional
Amplitude, A/D, of the Forced Oscillation, where KC=27A/D,
McConnell and Park (1982).
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FIGURE 18: Plot of the RMS Response Amplitude Orthogonal
to a Harmonic Stream Divided by the Diameter as a Function

of £,/f for RC = 25 for a Smooth Spring Mounted Rigid
Cylinder, McConnell and Park (1982).
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FIGURE 19: Typical Plot of the Maximum Response Amplitude
Orthogonal to a Harmonic Stream Divided by the Diameter as
a Function of Up for a Sand-Roughened Cylinder with

k/D = 0.01, Sarpkaya (1980).
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of the highest peak of the lift spectrum, have been
recently presented by McConnell and Park (1982). The
ratio f/fn enployed in their experiments was not larger
than 1/2. The KC numbers studied in their experiments
were larger than 25. Their conclusion is that the main

response frequency, f£_, as defined above, equals the

r
"natural frequency" of the system in water, except near
lock-in regions where the ratin of the main response
frequency divided by the driving frequency, f, has a
strong tendency to be an integer number especially fcr XC
numbers less than 63 and when the ratio of the in-water
"natural frequency" to the driving frequency is an
integef. What.value this ratio takes depeands on the value
of KC and the tgtio fn/f, see Figure 17 taken from
!cConnell and Park (1982). This type of consistent
behavior was not cbtained for KC larger than approximately
63. The term "natural frequency" as used by McConnell and
Park (1982) was obtained from a decay test of their system
oscillating in still water, when the rms amplitude of
oscillation was approximately equal to one tenth of the
cylinder diameter. A plot of rms response amplitude
orthogonal to the harmonic stream divided by the diameter
as a function of fn/f for KC=25 is shown in Figure 18
taken from McConnell and Park (1982). A typical plot of
the maximum response amplitude divided by the diameter as
a function of U*n is shown in Figure 19 taken from

Sarpkaya (1980).
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IV.4 APPLICATION OF RIGID CYLINDER RESULTS FOR THE
PREDICTION OF THE RESPONSE OF A MARINE RISER UNDER

IDEALIZED EXCITATION CONDITIONS

BExisting rigid cylinder experiments can be
employed to obtain some information about the dynamic
behavior of risers for the following four idealized
conditions:

a) Riser excitation by a uniform incident stream.

b) Harmonic oscillation of the top end of a riser in an
otherwise quiescent fluid.

c) Harmonic oscillation of the top end of a riser in a
direction orthogonal to an incident stream.

d) Harmonic oscillation of the top end of a riser in a
direction parallel to an incident stream.

The following four sections illustrate how to use
rigid cylinder results to acquire some informnuot.ion about
the dynamic behavior of risers. The limitations and
difficulties of their use in predicting the response of
' risers is also discussed in more specific terms. Finally,
a brief review of previously existing experimental results
of flexible, large aspect ratio, cylindrical models in

current or waves is also included.
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IV.4.1 RISER EXCITATION BY A UNIFORM INCIDENT STREAM

In Section IV.3.6, using fl:xibly mounted rigid
cylinder experiments, the importance of motion was
established in determining the frequency of vortex
shedding from a rigid cylinder in a uniform stream.
Existing flexibly mounted rigid cylinder experiments,
however, can only provide reliable information when the
response of the riser is in the first mode primarily.
Typical risers are expected to respond in more than one
mode and usually not the first. Therefore, if we use
existing spring mounted rigid cylinder experimental
results to predict the response amplitude at these higher
modes we should not expect the same accuracy in our
predictions, as in the case where the response is
primarily in the first mode. In addition, available
spring mounted cylinder experiments cannot model the
interactions between dynamic motions of a flexible
cylinder in more than one plane. For example, as it is
apparent from the discussion of Sections IV.3.4 and
IV.3.6b, a typical moderate to deep water riser may be
excited primarily at its fourth flexural mode in the plane
orthogonal to the stream and at its sixth or seventh mode
or both in the plane parallel to the stream for likely
values of the current speed. Therefore, using available
results to predict the amplitude of the response in such

cases can at best be approximate.
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The following two examples illustrate in what way
we can use rigid and spring mounted rigid cylinder results
to acquire information about the dynamic response of

risers.

Example 1
Suppose the current speed is such that U*l = Vc/le, where

fl is the first "natural frequency" in water of a riser,
is in the range 1.25 to 2.5. Given that for a typical
riser f2>2fl, where f2 is the second "natural frequency"
in water, the first mode parallel to the stream will be
excited primarily, as the discussion of Section IV.3.6b
suggests, and the resulting responﬁe parallel to the
stream will be at a frequency very close to fl’ when U*l
varies within 1.25 and 2.5 (King, 1977a). If the response
frequency is known, we may use the results of Verley and
Moe (1979) to calculate the static and dynamic response
ahplitudes parallel to the stream. An alternative method
of direct evaluation of both the frequency and the
amplitude of response based on rigid cylinder results alone
is now under investigation. An inspection of Figure 14
reveals that the drag coefficients become negative in the
above range of reduced velocities and for amplitudes of
oscillation smaller than approximately 1/8 diameters and
sharply increase for larger amplitudes of motion. Given
that the energy generated or dissipated per unit length is

roughly proportional to the cube of the local dynamic
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amplitude and the drag coefficient, a maximum calculated
amplitude (half height) only slightly above 1/8 of the
diameter is expected for negligible structural damping.
This, for example; has been observed in experiments using
a cantilever flexible pile (King, 1977a).

If the reduced velocity U*l is between 2.7 and 3.8
‘then for typical moderate and deep sea risers the reduced
-velocity U*z, defined using f,, is likely to be between
1.35 and 1.9, which means that possibly both the first and
the second mode will be excited in the plane parallel to
the stream. Such a situation cannot be modelled by
available flexibly mounted rigid cylinder experiments,
unless we are willing to make an additional assumption.
Similar difficulties are encountered when the stream speed
is such as to excite response parallel to the stream at
higher modes.
Example 2

More interesting is the case in which U*l is
between approximately 4 and 10. Larger vortex-excited
oscillations orthogonal to the stream at frequencies close
to fl and primarily in the first flexural mode are
expected. In order to use spring mounted cylinder
experiments (with direction of permitted motion orthogonal
to a stream) we must again neglect the measured dynamic
force components parallel to the stream as we did for
rigid cylinder experiments with forced motion. If we do

this, we may say that for a certain Vc, we estimate that
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the ratio f/fl, where f is the response frequency of the
flexible cylinder from a spring mounted cylinder
experiment with the same U*1 (see for example Figure 15).
Specifically, we assume f/fl = fm/fn,m' where fm is the
response frequency and fn,m the in-water "natural
frequency" of a spring mounted cylinder. At this point,
we must remind the reader of the limitation of performing
such an estimate_if the remaining non-dimensional
parameters described in Section IV.3.6 are not scaled
properly between spring mounted model and flexible
cylinder. For example, the "natural frequency" of the
flexible cylinder and of the flexibly mounted rigid
cylinder must be determined using the same method.
Estimates of fm/fn,m for various valués of m and various
levels of structural damping for a range of Re between
2800 and 10000 approximately may be found, for example, in
Dean et al (1977). Once we know £, we may use the
results, for exgmple, of Mercier (1973) for 6=90 degrees,
Sarpkaya (1977a) or Dean et al (1977) to determine the
hydrodynamic force drthogonal to the stream as a function
of U* = Vc/fD and S(2)/D at least and calculate the steady
state amplitudes S(Z)/D orthogonal to the stream. An
alternative method of direct evaluation of both the
frequency and amplitude of response based on the rigid
results alone is now under investigation. In addition, we
may use the results of Mercier (1973) for 6=90 degrees, or

Sarpkaya (1977a) for the static force parallel to the
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stream as a function of the previously calculated dynamic

amplitudes orthogonal to the stream for each elevation Z.

Similar calculations can be performed for reduced
velocities based on higher "natural frequencies", leading
to flexural response orthogonal to the stream primarily in
a single higher flexural mode. Energy arguments based on
the variation of Cq for a certain U* as a function of S/D
show that a maximum calculated amplitude (half height)
somewhat above one diameter is expected for cases of
negligible structuvcal damping. Such an argument is
corroborated from measurements of maximum amplitudes of
various flexible cylindrical models orthogonal to a stream
as in Figure 20, taken from Dean et al (1977).

Comparisons of the fundamental mode response
orthoéonal to a stream of a horizontal flexible and
tensioned cylinder of aspect ratio equal to 240 with
theoretical predictions based on their data from spring
mounted cylinder experiments have been presented by Dean
et al (1977). The theoretical calculation overpredicts
the amplitude of response of the flexible cylinder by an
amount as large as 130%. Smaller overprediction (14%)
occurs at the peak of the curve ofAresponse amplitude
versus reduced velocity (based on the "natural
frequency"), occurring around U*l=6. It is difficult to
draw conclusions from this comparison because, it appears,
that a number of parameters have not been scaled. For

example, Reynolds number, Re, and mass to displaced
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volume, m, have not been scaled, see also Griffin (1981).
In addition, it is unclear whether the response frequency
for the flexible cylinder was assumed to be its "natural
frequency" regardless of the valued U*n or the frequency
implied by the spring mounted rigid model. The term
"natural frequency" as employed in the above statement is
measured from a decay test in water with original
amplitude of oscillation of the order of one diameter. We
feel that the variation of response frequency for changes
of the reduced velocity between 4 and 8 should not be
neglected. To do this, reliable estimates of the resporse
frequencies for the spring mounted cylinder are required.
The effective bandwidth for estimation of the response
frequency must be kept very small in comparison to the
bandwidth of the spring mounted system when this undergoes
vortex excited oscillations. The term bandwidth denotes
the difference of response frequencies of the spring
mounted system corresponding to amplitudes equal to- the
peak value divided by 21/2. The bandwidth for Figure 15
is 0.4Hz. The reader must also be reminded thalt the value
of the "natural frequency" employed must correspond to
similar experimental conditions for both the spring
mounted rigid and the flexible cylinder. If this is not
done consistently ambiguities prohibit an independent
interpretation of the results. Finally, it should be
mentioned that for horizontal flexible cylinder

experiments the effects of sag, coupling of extensional
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and flexural oscillations, depending on the boundary
conditions, must be taken into account, so as to allow
independent interpretation of the experimental results.

McGlothlin (1982) has also presented experimental
results from a flexible, tensioned, horizontal cylindrical
model excited by a uniform stream. His results for the
response orthogonal to the stream are in agreement with
previous investigators. In addition, McGlothlin (1982)
has reported estimates for the dynamic response motion
parallel to the stream. The frequency of this response is
in agreement with the results of Mercier (1973). He also
observed that the resulting amplitude of the dynamic
response parallel to the current was of.comparable
magnitude to the response orthogonal to the stream.

The difference between measured response of a
flexible cylinder and theoretical predictions using rigid
cylinder experimental results, assuming no experimental
errors, is due to the combined hydroelastic and
correlation length effects. This is the fundamental
limitation of existing predictive codes reviewed, for
example, in Griffin (1981). There is, however, a
practical limitation when using these codes to study the
dynamic behavior of deep sea risers, because the "natural
frequencies" near which response is likely to be excited
for typical values of the current speed, are very close to

each other. This leads to ambiguity in selecting the

"natural frequency" of the riser on the basis of which the
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response frequency is calculated using results from
flexibly mounted rigid cylinder experiments.

Existing codes can also be adapted to deal with
the case where there is a uniform current extending only
over a fraction of the length of the riser without any
additional assumption. However, it is not apparent how
existing codes can be extended to deal with the case of a
sheared current without top end motion. A review of some
experimental results from sheéred flows and correlation
measurements in the wake of flexible cylinders is given in

Griffin (1981).

IV.4.2 HARMONIC OSCILLATION OF THE TOP END OF A RISER IN

AN OTHERWISE QUIESCENT FLUID

Forced harmonic oscillation of the top end of a
moderate to deep water riser at typical wave frequencies
leads to flexural dynamic response parallel and orthogonal
to the direction of imposed motion. The response parallel
to the direction of the top end oscillation is
concentrated primarily at the frequency of the imposed
oscillation. For amplitudes of oscillation of the top end
of the order of one to two riser diameters (which is
representative of typical first-order platform motions),
the corresponding local Keulegan-Carpenter numbers over a

large fraction of the length of the riser are larger than
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five. Rigid cylinder results with rectilinear harmonic
motion suggest that, for such Keulegan-Carperter numbers,
substantial lift force components at frequencies twice or
higher integer multiples of the fregquency of excitation
might be present, see Figures 7 and 8, Sarpkaya (1977).
The maximum lift coefficient reported from rigid cylinder
experiments of the above form is a denreasing function of
Reynolds number. However, for the range of KC numbers of
interest (KC<25 approximately)the resulting lift force
maintains a value comparable to the force parallel to the
direction of oscillation even for Re as high as 1.5x105.
This value of Re is representative of prototype
conditions. The frequency at which the lift force
measured in rigid cylinder experiments is maximum, also
suggests that the lift response of a riser excited with a
harmonic oscillation at its top end is primarily
concentrated at higher flexural modes than the response in
the direction parallel to the imposed oscillation. For
example, if a deep sea riser responds primarily at its
third mode parallel to the direction of oscillation of the
top end, then lift response at its fifth to eighth modes
might be present.

In order to use rigid cylinder results with forced
harmonic motion, we must again neglect the 1lift force
measured in such experiments. If we do this, we may use
the following expression for the sectional hydrodynamic

force parallel to the direction.of oscillation of the top
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end to estimate the dynamic motion u(2,t) in the same
direction:

Fy(2,t) = -c oA - 0.5pDc

oltt aYel Yl
where Cp = cy-1 and cq are determined from rigid cylinder
experiments. For smooth cylinders, the values of cy and
Cq are primarily functions of the local KC and Re numbers,
see Figures 5 and 6. As already stated in Section IV.3.3,
the instantaneous force calculated from the above
expression is only approximately equal to the force
measured in a rigid cylinder experiment when KC is between
6 and 20. It should be mentioned also that such a model
for the estimation of the hydrodynamic force Fx(z,t) does
not take into account hydroelastic and correlation length
effects. For example, it does not take into account the
effect of motion of the flexible cylinder in the lift
direction upon the force Fx.
In Section IV.3.7, using flexibly mounted rigid
cylinder experiments, the importance of the ratio fn/f was
established in determining the characteristics of response
orthogonal to the harmonic stream. As stated earlier,
only small values of KC are of interest for the type of
riser excitation considered in this section. For the
smallest KC number for which data is available, KC=25,
McConnell and Park (1982) report that there exists
appreciable response orthogonal to the direction of
oscillation when the ratio fn/f is an integer less than 6,

see Figure 18. We remind the reader that in the McConnell
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and Park experiménts the ratio fn/f was not smaller than
3. It is, however, reasonable to expect another peak at
fn/f=2 as the small KC results of Sarpkaya (1977) might
suggest. For XC=25, the highest peak occurs for fn/f=4
which corresponds to U*n=6.28. There is some disagreement
with the results of Sarpkaya (1980), who reports that the
highest peak occurred at U*n=5.4. Differences in the
value of KC, Re and roughness between the two experiments
might expldin the above disagreement. Figure 18 also
indicates that smaller peaks occur at fn/f=3 and 5
(UF =8.38 and 5.03 respectively).

McConnell and Park (1982) also found that the
response amplitude orthogonal to the stream tends to
increase as the KC number decreases at least within the
range of Re studied. It should also be noted that for
large KC number the multiple peaks of the response
disappear. However, we wish to remind the reader at this
pointlthat the KC numbers, which are encountered in risers
excited by first order platform motions, are smaller than
25 approximately. The above results can also be used to
analyze the case where surface waves are also present.
The only additional assumption needed is that the effect
of the vertical wave velocity must be neglected.

The above discussion and the distributions of the
in-water "natural frequencies" of typical moderate and
deep water risers imply that appreciable response

orthogonal to the direction of the top end oscillation at
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more than one frequencies and modes might be present.
This response is expected at more than one integer
multiple of the frequency of excitation, see Sarpkaya
(1977). An extrapolation of the results of McConnell and
Park (1982) suggests that when these frequencies are close
to the "natural frequencies" of the system in water an
increase in the lift response should be expected. Such a
situation cannot be adequately described by one-degree of
freedom idealizations of the flexible cylinder, as we also
saw in Section IV.4.1. Therefore, spring mounted rigid
cylinder experimental results cannot be expected, in
general, to provide accurate quantitative information
about the behavior of the flexible system. The above
comments also imply that the relative position of the
"natural frequencies" of the system in water is an
important factor in determining the response in the lift
direction. The relative position of the "natural
frequencies" plays an important role in scaling prototypes
to small scale flexible models. This subject is discussed
in some detail in Chapter V. Finally, we should also
mention as in Section IV.4.1, that available spring
mounted rigid cylinder experiments do not model the inter-
actions between the dynamic motions of a flexible system
in more than one plane.

In order to acquire an estimate of the highest

peak of the spectrum of the lift response of a riser

excited by a harmonic oscillation of its top end, we must
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identify which of the first few harmonics of the frequency
of excitation is closest to one of the in-water "natural
frequencies"” of the riser. Having estimated this "natural
frequency", we will assume that the lift response is
concentrated in the corresponding flexural mode. On the
basis of the structural damping ratio of the riser in air

corresponding to this mode and an average lift

coefficient, CLMO' derived on the .basis of the calculated
response parallel to the excitation of the top end, we may

estimate an average value of the response parameter

Rp = M;n/pnchuo. The value of cLMo is obtained as

the spanwise average of the maximum sectional lift
coefficients derived on the basis of the local calculated
KC and Re numbers, from Figure 7, as suggested in Sarpkaya
et al (198l1). We may also define an average reduced
VelOCitY,E:;;B;/an,where fn is the "natural frequency"
near which the peak of the lift response is assumed to

exist and Um the spanwise average of the calculated

velocity of the riser parallel to the excitation. From

the values of Rp and U* and Figures such as 16 and 19, we

may estimate the response amplitude of the corresponding
mode. We must remind the reader at this point that
Figures 16 and 19 do not correspond to fixed KC and Re
numbers. In addition, Figure 19 corresponds to results
from a rough rigid spring mounted cylinder experiment with
roughness ratio equal to 0.01, while Figure 16

incorporates results from various smooth and rough
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cylinders, Sarpkaya (1980). A procedure such as the one
shown above, based on spring mounted rigid cylinder
experiments cannot take into account local effects, nor
can it give estimates of non-resonant response. The
feasibility of a procedure based on rigid cylinder results
with forced motion for the prediction of the frequency and
amplitude of the lift response of a flexible cylinder in
harmonic flows, with proper treatment of local effects and
phase, is now under investigation. .
Research, related to the type of excitation
studied in this section, using flexible cantilevered
cylindrical piles excited by surface regular waves have
been presented, for example, by Verley and Every (1977),
Sawaragi et als (1977), 2edan and Rajabi (1981) and
Sarpkaya et al (198l1). The first two works have been
briefly reviewed in Sarpkaya (1980). ?he work of Sarpkaya
et al (1981) includes references to previous associated
research. The experimental results presented in Sarpkaya
et al (1981) imply that the first flexural mode of the
cantilevered pile was excited for both the drag and lift
directions, while the wave frequency was kept smaller than
the first in-water "natural frequency" of the pile. This
is in agreement with the geometry of typical offshore
piles and typical wave spectra. Lift force components at
the first three integer multiples of the wave frequency
were found. The dominant lift contribution was at twice

the wave frequency for the KC numbers studied. Secondary



129

lift contributions at fw and 3fw were more pronounced when
these frequencies were closer to the "natural frequency"
of the pile in water, where fw denotes the wave frequency.
Lift response at 2fw and 3fw encountered in these
experiments were expected from rigid cylinder experiments,
Sarpkaya (1977).

Finally, Patel and Sarohia (1982) recently
presented a preliminary analysis of experimental results
obtained using a flexible riser type model of length 6.93m
excited by harmonic motion of its top end and surface
waves propagating in the direction of the top end motion.
Their results are in the form of half-envelopes of
response motion and stresses parallel to the direction of
wave propagation. They also presented preliminary
comparisons of these results with theoretical predictions
based on constant values of the drag and inertia
coefficients, independent of the wvalues of KC and Re
numbers encountered in their experiments. Lift response
at twicc the wave frequency was reported, however,

spectral analyses of the results were not presented.

IV.4.3 HARMONIC OSCILLATION OF THE TOP END OF A RISER

ORTHOGONAL TO AN INCIDENT STREAM

Harmonic oscillation of the top end of a moderate

to deep water riser at typical wave frequencies
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orthogonally to the direction of an incident stream leads
to flexural dynamic response parallel and orthogonal to
the stream. The response orthogonal to a uniform incident
stream, as Sections IV.3.4 and IV.3.6 suggest depends upon
the amplitude of oscillation and the relative position of
the frequency of excitation with respect to the "natural
frequencies" of the flexible system and with respect to
the vortex shedding frequenéy: Depending on the value of
these parameters, the response transverse to the stream
may contain:

1. One component at the frequency of oscillation of
the top end and another at the vortex shedding
frequency, or
2. One component at the frequency of oscillatian of
the top end.

In the last case, vortex shedding is synchronized
with the oscillation. When there is no synchronization,
the vortex shedding frequency may be estimated from spring
mounted rigid cylinder experiments as explained in Section
IV.4.1. Such a prediction is expected to be reliable only
when some very specialized conditions are true. For
example, when the frequency of oscillation is much lower
than the first "natural frequency" of the riser in water,
the vortex shedding frequency can be estimated from Figure
15, as long as it is much larger than the frequency of the
imposed oscillation. 1In addition, as the discussion of

Section 1IV.3.4 suggests, there is evidence that
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appreciable oscillatory drag force parallel to the stream
exists at twice the frequency of imposed oscillation.
This happens when vortex shedding is synchronized with the
oscillation orthogonal to the stream and for reduced
velocities, U*, larger than about two, Mercier (1973).
The oscillatory drag parallel to the stream, measured in
rigid cylinder experiments, reaches amplitudes comparable
to the force orthogonal to the stream for large amplitudes
S/D of the oscillation orthogonal to the stream and large
U*, Mercier (1973). For the largest S/D reported by
Mercier (1973), S/D=2.5, an additional component of the
oscillatory drag parallel to the stream at a frequency
equal to four times the frequency of imposed oscillation
exists and is comparable to the component of the
oscillatory drag at twice the frequency of oscillation.
For amplitudes of oscillation of the top end of a riser of
the order of one to two diameters, which is representative
of first order platform motions and for typical wave
frequencies, the resulting average amplitude of
oscillation orthogonal to the stream is expected to be
appreciable of the order of one or two diameters. This
means that significant dynamic response parallgl to the
stream may also be pfesent for typical values of the
current speed.

In order to use rigid cylinder results with
direction of oscillation orthogonal to a stream, we must

again neglect the dynamic forces parallel to the stream
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and responses in any frequency other than the frequency of
imposed oscillation. If we do this we may use the
following expression for the sectional force orthogonal to
the stream to predict the motion v(Z,t) in the same
direction:

FY(Z,t) = -CpPAVie ~ 0.5 cdpDVtIth
where cm=c -1 and ¢

M M’
Figures .10 and 9 as functions of the local response

g are estimated, for example, from

amplitude orthogonal to the stream divided by the
diameter, S(2)/D, and the reduced velocity
U*(2) = 2mW_(Z)/wD, where w is the circular frequency of
the oscillation of the top end. For the special case
where VC(Z)=constant, the frequency .of imposed oscillation
is much lower than the first "natural frequency" of the
riser in water, and the vortex shedding frequeny is much
larger than the frequency of imposed oscillation, then a
better estimate of the dynamic response o.thogonal to the
current can be made as follows. First, the response at
the frequency of imposed oscillation is determined with
the above equation. Next, the same equation with
homogeneous boundary conditions is used to determine the
response at the frequency of vortex shedding. Of course,
such a procedure does not yield any phase information
between the response at the vortex shedding frequency and
the response at the frequency of imposed oscillation.

The static component of the response can be

estimated using a sectional static force:
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- 2
Fx,static(z) = O.SCDDDVc

where Cp is again a function of U*(Z) and S(Z)/D. For
example see Figure 1l. However it is impossible to use
rigid cylinder results to determine the dynamic force
components in the X direction at w and 2w for the reasons
given in the previous section.

The above procedure can be extended to handle the

case where a surface wave propagating orthogonally to the

current is also present.

IV.4.4 HARMONIC OSCILLATION OF THE TOP END OF A RISER

PARALLEL TO AN INCIDENT STREAM

As in the previous two excitation conditions,
harmonic oscillation of the top end of a moderate to deep
water riser at typical wave frequencies parallel to the
direction of an incident stream leads to flexural dynamic
response parallel and orthogonal to the stream. The
dynamic response parallel to the stream is concentrated
primarily at the frequency of the imposed oscillation.
Lack of spectral analyses of the force parallel to the
stream, measured in rigid cylinder experiments, with
oscilation parallel to the stream, does not permit us to
evaluate other frequency components of this force. For
V _=constant, depending on the reduced velocity and the

c
amplitude of oscillation, the lift force measured in a
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rigid cylinder experiment may contain:

1) One strong component at twice the frequency of

imposed oscillation, or

2) Strong components at the first few integer

multiples of one half the frequency of the imposed

oscillation.
The lift force measured in a rigid cylinder experiment is
also comparable to the dynamic force parallel to the
direction of oscillation. In addition, the spectral
character of the lift force measured in a rigid cylinder
experiment suggests that the lift response of a riser will
be at higher or at both lower and higher modes than the
dynamic response parallel to the stream depending on the
reduced velocity and amplitude of oscillation.

It should be mentioned at this point, that the
statements concerning the magnitude and character of the
hydrodynamic forces for the excitation conditions studied
in the previous and present sections, are based on rigid
cylinder experiments performed at Reynolds numbers smaller
than typical prototype values. For example, Mercier
(1973) performed his experiments in the range of 4x103 to
3.2x104. However, most of his experiments were conducted
at Re equal to 8x103. It is perhaps worth noting that,
the few figures of Mercier's work that exhibit Reynolds
dependence, show that, for a smooth cylinder and Re in the
above range, there is no appreciable change of the

character of the hydrodynamic forces with Reynolds number.
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In addition, some of the changes of the magnitude of the

hydrodynamic coefficients observed in his experiments for
different Re might be partially due to changes of the
aspect ratio employed.

In order to use rigid cylinder results to estimate
the static and dynamic response of a riser, u(Z,t),
parallel to the stream, we must again neglect the lift
forces measured in these experiments. If we do this, we
can employ the following expression for the séctional

-hydrodynamic force parallel to the stream:

2 = -
F‘p(-l't) CmpA

oUpy + 0.5 cgpD(V_(2)-uy) |V(2)-u |

where cm=cM-1 and CM’

and 14 as functions of the local reduced velocity

Co may be estimated frcm Figures 13

U*(Z)=VC(Z)/fD and the non-dimensional local dynamic
amplitude of motion in the X direction, S(2)/D.

The above procedure can be extended to handle the
case where a surface wave propagating parallel to the

stream is also present.



Chapter V

EXPERIMENTAL ESTIMATION OF HYDROELASTIC EFFECTS ON THE

DYNAMIC RESPONSE OF MARINE RISERS

V.l INTRODUCTION

In an attempt to provide a gquantitative estimate
of hydroelastic and correlation length effects on the
global dynamic behavior of marine risers we performed
experiments using a flexible and tensioned cylindrical
model. The non-dimensional parameters of our model were
carefully selected to allow us to answer the question
whether hydroelastic coupling in riser type systems is
strong enough to alter the character of the surrounding
flow and give rise to a dynamic behavior which is
significantly different from the'one estimated using rigid
cylindér results in a stripwise manner as explained in

Chapter 1V.

The present Chapter includes the following:
a. The scaling procedure.
b. A description of the model.
c. Presentation of experimental results, and
quantitative comparisons of experimental and

theoretical predictions.
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V.2 SCALING PROCZDURZE

In addition to the assumptions leading to
equations II1I.87 and III.83 and boundary conditions III.89
and III.90, the following assumption is made concerning
the geometry of the surface of the riser model. The outer
surface of the riser is modelled as a smooth cyvlindrical
surface. No variations of the outside geometry due to
buoyancy modules, flanges, kill and choke lines are taken
into account. This is partially justified given that the
kill and choke lines are embedded in the buoyancy and
hodules for most of the length of a typical deep sea
#iser. The.effect of the modules is taken into account as
a uniform buoyancy distribution, but their contribution to
the bending rigidity is neglected. This is justified
because the Young's modulus of the buoyancy material is
several orders of magnitude less than that of steel.

For the purpose of our experiments, the following
additional assumptions are made regarding the environment

idealization and platform motion:

l. The environment is idealized by a current Vc
éonstant along the length of the riser, which can be
easily constructed in a towing tank where our experiment
was performed. The constant current is an

over-idealization of the environment but it still allows
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the study of the hydroelastic interactions. Since this is
our principal objective, this limitation was accepted.
The case of zero current speed is also studied in this

work.

2. The platform motion is simulated by a sinusoid
motion of amplitude A, circular frequency w and direction 6
with respect to the current. This idealization was
accepted for the same reason given above. It should also
be noted that under such idealized excitation conditions,
comparisons between experimental results from the flexible
model and theoretical calculations based on existing rigid
cylinder results is possible. The design of the mechanism
providing the motion of the top end of the model is such
that it will permit the creation of other top end motion.
For example, if a model of a 500 m or longer riser were to
be tested, slow drift platform oscillations would have to
be included because they might cause dynamic response.

The design of a top end mechanism allows this type of
motion to be simulated. In theory, our top end mechanism
should be able to simulate any prescribed motion we
desire.

The presence of surface waves is not taken into
account in this study in order to keep the number of
experiments manageable. Even if only regular waves were
to be studied, it would have been necessary to add three

new independent parameters: amplitude, phase with respect
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to the top end motion and direction of propagation with
respect to the current. The absence of surface waves
still permits us to fulfill cur principal objective.

The presence of ambient turbulence is also
neglected in our experiments. In addition, the effect of
surface roughness is another factor that is not studied in
these experiments.

If the above assumptions are made, the local
horizontal sectional hydrodynamic force F(Z,t) depends
primarily upon:

a) The bending stiffness EI, where E is the Young's
modulus of the material and I the cross-sectional moment
of inertia about the neutral axis.
b) The average effective weight per unit length We. The
use of the spanwise average value of the effective weight
is permitted, because we are only interested in the global
dynamic behavior of the riser.
c) The effective overpull at the lower ball joint Pe(0).
d) The length L between ball joints.
e) The outer effective diameter De‘ For the prototype De
is defined as:

De = (Lb/L)Db + (l-Lb/L)Do
f) The average mass per unit length M, which includes the
mass of the riser tubes, flanges, kill and choke lines,
mud, buoyancy modules and drill string.
g) The current velocity Vc.

h) The amplitude A, circular frequency w and direction 8
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with respect to the current direction of the applied top

end motion.

i) The physical constants, density ¢, and kinematic
viscosity, v, of the water and the acceleration of
gravity, g.

j) The elevation Z of a section from the lower ball joint
and the distance Z,, 2, of the upper and lower ball joints
from the surface and bottom respectively.

k) The structural damping coefficients Chr n=1,2,... for
the nth flexural mode defined by equation (III.91). These
may be estimated experimentally by decay oscillation tests
in air for the first few modes.

1) The time t.

The above nineteen dimensional parameters may be

arranged in sixteen non-dimensional parameters:

Ce = f—'l—-‘—-z-%)— LAY
- 7DV
Pe(0)L
o= gzLo) (V.3)
1 2
pD_LV
« = 2_e'°¢ (V.4)

Pe(0)
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In the prototype m is determined as:
M
m = -
L L
u b .2 b, 2
7P |T Pp* (1 - )0 |
2tV
U* = <
wDe
a = A
De
v D
_ Cc e
Re = Y
F = w(/9)?
Z = 2Z/L
Z1 = Zl/L
Z2 = ZZ/L
8
T = wt
c, = clL [MPe (0) ] 1/2
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(V.5)

(V.6)

(V.6a)

(V.7)

(Vv.8)

(V.9)

(Vv.10)

(V.1ll)

(Vv.12)

(V.13)

(V.14)

(V.15)

(V.16)
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In the case of no current Equations (V.1l), (V.4), and (V.9)

take the form:

= (z2,t)
Ef ‘IJ;———E—i (v.la)

5 P DeA w
%— o] DeLAzwz
K = Pe (0) (V.4a)
A wDe
Re = —_ (V.9a)

The remaining non-dimensional parameters are the same
except for (V.7) and (V.14) which are of course absent.
Equation (V.l) gives a measure of the ratio of the total
local hvdrodynamic force per unit length to the static
drag per unit length. Equation (V.la) gives the same
measure but this time with respect to a representative
dynamic drag force per unit length.

Equation (V.2) gives a measure of the ratio of
bending to effective tension forces.
Equation (V.3) gives:
a. The rate of change of the effective tension
“stiffness" with respect to depth, and
b. The ratio of the total effective riser weight to
the effective tension at the lower ball joint.
Equation (V.4), the Cauchy number, gives the ratio of
the static drag forces to the effective tension. Equation
(V.4a) gives the ratio of a representative hydrodynamic

force to the effective tension.




Equation (V.5), the aspect ratio, gives proper
scaling of the three-dimensionality of the flow.

Equation (V.6) ensures proper scaling of the
structural inertia to the fluid inertia forces.

Equation (V.7), the reduced frequency or velocity,
ensures kinematic flow similarity.

Equations (V.8), (v.ll), (V.12), (V.12) and (V.1l4)
ensure geometric similarity.

Equation (V.9) or (V.9%9a), the Reynolds number,
give a ratio of inertial to viscous fluid forces.

Equation (V.10), the Froude number, gives the
ratio of the inertial to the gravitational fluid forces.

Equation (V.15) gives the time as a fraction of
the period of the imposed top end oscillation.

Equation (V.16) may be seen to be proportional to
c;/Mw if (V.4), (V.5), (V.6), (V.7) are kept constant and
therefore ensures proper scaling of the ratio of the
structural damping forces to the structural inertial
forces.

All non-dimensional parameters (V.2) to (V.16)
must be kept constant between model and prototype to
ensure kinematic and dynamic similarity of the physical
phenomena between them. If equations (V.2) to (V.16)'are
kept constant, then equation (V.l), the non-dimensional
total local hydrodynamic force is automatically kept
constant between model and prototype. They also imply

that the non-dimensional horizontal displacement in each
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direction x, y as a function of the non-dimensional
elevation Z will be equal point by point between model and
prototype for the same non-dimensional time, because the
non-dimensionalized partial differential equations of
motion (III.87) and (I1I.88) and boundary conditions
(III.89) and (III.90) will be identical between model and
prototype.

In risar model experiments, it is very difficult
to achieve Reynolds number similarity betwee; model and
prototype. This is also the case with the present
experiments. However, the present experiments permit us
to evaluate our thecretical capabilities tc estimate the
static and dynamic response of a riser type structure at
the model scale at the Reynolds numbers tested, using
rigid cylinder experimental results. It is perhaps worth
noting that rigid cylinder results suggest that the
spectral character of the lift forces remains virtually
unchanged for quite disparate Reynolds numbers. For
example, for a rigid cylinder in a steady stream, the
Strouhal number, Stsste/vc, where fs is the vortex
shedding frequency, is approximately equal to 0.2 for Re
between 400 and 3x105, see Figure 2, Chapter IV. 1In pure
harmonic flow and for constant moderate KC numbers (=15),
the Strouhal number, St=(fs/f)/KC, is not a function of Re

3<Re<6x104, see Figure 8, Chapter IV. However,

for 5x10
prototypes excited by surface waves and first order

platform motions usually have at least part of their
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length operate at Reynolds above 6x104 and therefore rigid

cylinder results suggest that scaling of model results to
prototype behavior might not be very successful in this
case.

The Froude number does not have to be kept
constant between model and prototype, because free surface
effects are unimportant in our problem.

The model selected for the proposed experiments
does not correspond to a specific prototype. However, all
its non-dimensional parameters are carefully selected to
allow us to achieve our main objective, which as stated
earlier, is the evaluation of our theoretical capabilities
to predict the static and dynamic response of a riser type

structure based on rigid cylinder experimental results.

V.3 A DESCRIPTION OF THE MODEL

Our model is made up of an aluminum tube covered

externally with a sealing material. The overall model

Length between ball joints - (L) = 3.000 m
Aluminum tube I.D. - (D;) = ' 10.92 mm
Aluminum tube 0.D. - (D) = 12,61 mm
External sealing diameter - (De) = 15.3 mm
Average mass per unit length - (M) = 0.327 kg/m

Average effective weight per unit

length - (We) = 1.378 N/m
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Effective overpull at the lower

ball joint - (Pe(0)) = 1.72 N
Bending stiffness of a cross section - (EI) = 37.6 Nm2

The inside of the aluminum tube is filled with a
glycerin solution in water of density approximately equal
to 900 Kg/m3. At the ends of the model there are ball
joints which minimize the end bending moments, while above
the upper ball joint there is a slip joint, which is
designed to minimize tension variations due to flexural
motions. The riser model also was designed so it could be
tensioned to the desired fension. The first two "natural
frequencies" of the model in water are approximately equal
to 1.57 and 6.06 Hz, respectively. These have been |
determined theoretically using c, =1 and have been verified
from a decay test in quiescent water with original

amplitude of the order of 1/10 of the effective diameter.

The model is instrumented at ten equidistant
locations, 1-10, each with two strain gage full bridges
installed on the outer surface of the aluminum tube,
designed to isolate bending from tension and to measure
bending strains on two orthogonal directions A and B. 1In
the vertical static equilibrium condition, planes A ard B
are parallel and orchogonal to the centerline of the
towing tank, respectively. The actual location of each

branch of the bending bridges is at approximately 9.80
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cdegrees from planes A and B. The numbering of the bridges
begins at the upper end, while their elevation is measured
from the axis of the lower ball joint. The first and last
bending bridges are L/11 from the axes 6f the top and
bottom ball joints respectively, and the separation
between thg bending bridges is L/l11. For example, bridge
A6 measures bending strains created by deflections in
plane A at an elevation Z=5L/11 from the axis of the lower
ball joint. 1In addition, the model is }nstrumented at two
extra positions Tl and T2, 101 mm from the axes of each
ball joint, by specially designed full bridges isolating
tension from bending. Tension bridge T2 is at the lower
end of the model. Finally, the model is instrumented at
an additional location, Ql, 1773 mm from the upper ball
joint, by a full torsion bridge. The mass per unit length
of a single wire is 0.198 grams/m, while the total mass of
all wires for all 23 full bridges is 2.73% of the total
model mass. Their total volume is approximately equal to
5.32 cm3. The four wires of each bridge are braided to
avoid interference and are sent internally to the lower
end of the model.

The oscillation of the top end of the model was
created by a DC motor driven by a signal generator and
controlled by a tachometer measuring angular velocities
and a linear variable differential transducer, LVDT,
measuring displacements. The rotational motion of the

motor was converted to linear motion via a specially
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designed rack and anti-backlash pinion system.

During the experiments, measurements from a number
of strain bridges and the LVDT were made simultaneously
and were recorded digitally. Using the torque bridge, it
was observed that the structural torsion was negligible,
which was expected from the analysis of Chapter III. It
was estimated analytically and also confirmed by the
tension bridge measurements that the tension variation
during the experiments was small (5%) in comparison to the
effective tension. In addition, even for the lowest
excited mode, the ratio of the change of restoring force
due to tension variation to the overall restoring force is
very small (0.3%). This means that the assumption of
constant effective tension with time is an acceptable
approximation for theoretical estimates of the response.
From calibration experiments in air, it was estiméted that
the structural damping ratio ¢ was approximately equal to
0.016 and 0.010 for the first and second flexural modes,
respectively. This implies that typical fluid drag forces
are much larger than our estimates of the structural
damping forces. Our experiments in air also revealed that
when the upper end of the model is oscillated in air in a
certain plane, some flexural response orthogonal to this
plane exists. This happens because our model was not
rotationally uniform. It was estimated that the flexural

response orthogonal to the direction of excitation was not

larger than approximately 12% of the response in the plane
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of applied oscillation. It was felt that such an
imperfection would not substantially affect the
experimental results in water and therefore the model was

accepted.

V.4 PRESENTATION OF EXPERIMENTAL RESULTS

The experiments presented in this study involve
harmonic excitation of the top end of the riser model at
an amplitude approximately equal to two effective
diameters for the conditions shown in Table V.l. They are
subdivided in three 5road categories. The first does not
involve currént, while the second and the third involve
harmonic oscillations of the top end parallel and
orthogonal to a uniform current respectively.

The experimental results reported here include:

1) The root mean square dynamic bending response strains
as a function of the response frequency. The root mean
square response is the square root of the product of the
power spectral density of the response times the effective
bandwidth Be employed in the Fourier analysis of the
results. The root mean square rather than the magnitude
of the power spectral density was selected for
presentation because in most cases the experimental
response was practically periodic. The logarithmic
representation of the power spectral density was not

selected because it tends to exaggerate visually the



TABLE V.1

[(GX]

Direction of Excitation Current Frequency of
8 of Top End w.r.t. Speed Excitation f_
Centerline of the Tank v c .
in Degrees c of Top End in Hz
in mm/s
0 0 0.75, 1, 1.5, 2.92
0 120 1, 1.5, 2.3, 3
0 240 1, 1.5, 2.3, 3
0.5, 0.775, 1.5,
20 120 1.95, 2.925
90 240 0.5, 0.775, 1.5,

1.95, 2.925

(@8]
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significance of smaller components which are not important
in this problem. For each peak, the overall root mean
square of the response is shown numerically. This is
computed as the square root of the sum of the squares of
the rms response strains at discrete frequencies Be Hz
apart in the neighborhood of each peak. In addition, the
total dynamic root mean square of the response is shown

numerically.

2) The static bending strain parallel to the current

direction when this is not zero.

3) Maximum bending strains pgrallel and orthogonal to the

oscillation.

4) Maximum bending strains independent of direction.

The elevations of the points at which the above
results are presented can be found in each of the
following three sections. The nomenclature used in the
figures is defined below:

The experiment number corresponds to the numbering
system employed during the performance of the experiments.
BE is the effective bandwidth Be employed in the Fourier
analysis in Hz. THETA is the angle of oscillation of top
end with respect to the longer side of the towing tank in

degrees. VC is the current speed Vc in mm/s. FE is the
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nominal frequency of excitation fe of the top end in Hz.
A/DE is the ratio of the measured amplitude A of
excitation of the top end divided by the effective

diameter De‘

V.4.1 HARMONIC OSCILLATION OF THE TOP END OF THE MODEL IN

AN OTHERWISE QUIESCENT FLUID

In all experiments described in this section, the
direction of oscillation of the top end was parallel to
the longer side of the towing tank (plane A). The
amplitude of oscillation was'approximately equal to two
effective diameters. The water temperature was 13 degrees
C. Bending strains in plane A at 2=3L/11, 5L/11 and 8L/11
and in plane B at 2=3L/11, 6L/1ll and 8L/11l were recorded
simultaneocusly together with the mction of the upper end.
For reasons of brevity, root mean square response strain
as a function of the response frequency at elevations
Z2=3L/11, SL/1l1 for plane A and Z=3L/11 and 6L/11 for plane
B. are only included. The Figures of root mmean square
response strain are referred to by the experiment
identification number and the bridge name. The Figures
showing maxima and theoretical predictions are referred to
by the experiment identification number and the plane
name. Figures showing the measured response strain in
plane A as a functicn of the measured response strain in

plane B are referred to by the experiment identification
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number and the letter S (strain). Figures showing the
measured displacement in plane A as a function of the
displacement in plane B follow the same rules as the S
Figures except that the letter D (displacement) is used
instead of S. In all Figures of type S and D, TIME
denotes the time span of the plot in seconds. A
collective description of the experiments analyzed in this
section is shown in Table V.2.

Table V.2 also includes information about the
theoretical prediction of tue response at f=fe in plane A
performed as described in Section IV.4.2. The way in
which Em and Ed'shown in Table V.2 have been derived from
the local Cm and C4 is explained in Appendix B. The
estimates of the local n and C4 employed in the iteration
procedure are based on extrapolation of rigid cylinder
results shown in Figures 5 and 6 of Chapter IV. Note that
the smaller Re for which rigid cylinder data is available
is equal to 104.

Table V.3 provides information about the
theoretical prediction of the lift response following the

method described in Section IV.4.2. The spanwise average

values of cLM° are based on the theoretically calculated
response in plane A and Figure 7 of Chapter IV. For most
of the KC numbers encountered in this study, the smallest
value of B reported in Figure 7 is 1107 and therefore
extrapolation for smaller B's was necessary. Linear

extrapolation was used. For the values of E; encountered
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CABLE V.2
EXPERIMENT NUMBER 14 17 20 23
Frequency of Excitation
£ in Hz 0.75 1 1.5 2.92
e
Measured A/De 2.04 1.98 2.05 2.01

Added Mass Coefficient

c. Used in Theoretical 0.07 0.07 0.08 0.48
Prediction

Drag Coefficient E

Used in Theoretica 2.37 2.35 2.31 2.11
Prediction

Maximum Calculated Re 1870 2420 3750 7150

Maximum Calculated KC 12.82 12.44 12.88 12.63

Mean Calculated Re 1110 1568 2550 2870

Mean Calculated KC 7.59 8.06 8.77 5.06
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TABLE V.3
EXPERIMENT NUMBER 14 20 23
146 291 566
" 3.02 3.48 2.17
p,1 0.007 0.006 -
First
amax/D
Flexural 1 e 0.97 0.97 -
Mode
Kc'fe/fl 3.63 8.38 -
1/De 0.23 0.55 -
p,2 - 0.004 0.006
Second
Flexural “‘a"‘/ne - 0.97 0.97
Mode
-£ /8, - 2.17 2.44
- 0.11
Z/De 0.10
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in our experiments, extrapolation of Figure 16 of Chapter

IV for R°<0.l must be performed to calculate the maximum

I

amplitude of motion, Y, , of the corresponding rigid,

M

flexibly mounted cylinder at synchronization. For Rp<0.2,

the following approximation of the curve of Figure 16 of

2,-1/2
D .
assumption used in Park (198l) to relate lift force with

Chapter IV is used: YM/D=0.124(0.033+R The

motion in the same direction is also used in our work.
max

The above assumption for sinusoidal modes leads to a;
/iYM, where aimax' i=1,2,..., is the maximum amplitude of
the ith flexural mode at synchronization. For the model
used in this work, the use of purely sinusocidal flexural
modes is adequate. Figure 19 of Chapter IV scaled up to a

MaX for the ith mode, provides an estimate of

max imum a;
the amplitude of motion a; in the ith mode for values of
57I different from the critical value. Extrapolation of
Figure 19 of Chapter IV for small values of E;I was
necessary to perform some of the estimates of Table V.3.
At this point, we must again remind the reader of the
limitations of using Figures 16 and 19 of Chapter IV to
perform estimates of the lift response as explained in
Section IV.4.2. Please also note that experiment 17 is
absent from Table V.3, because the lift response happens
to be at frequencies which are not close to the "natural
frequencies" of the model in water. This does not permit

use of Figures 16 and 19 of Chapter IV, which were

constructed on the basis of the assumption that the

.
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response was at the "natural frequency".

From all experiments of this class, it can be seen
that when the frequency of imposed cscillation is not very
close to one of the "natural frequencies" of the flexible
system (see experiments 14, 17, and 23) the strain
response in the A plane is primarily concentrated at f=fe.
However, some strain response exists at f=2fe, 3£e and 4fe
which, in general, is not insignificant in determining the
maxima of the measured response in plane A. When the
frequency of the imposed oscillation is close to a
"natural frequency" of the flexible system, (see
experiment 20), the strain response in the A plane is
almost exclusively at f=fe'. These results are summarized
in Figures 14A, 17A, 20A, and 23A, where the theoretical
and experimental dynamic response strain at f=fe and
maximum dynamic response strain in plane A are shown. The
theoretical maximum dynamic strain response and the
theoretical dynamic strain response at f=fe in plane A are
the same. From these figures we can see that the
theoretical prediction of the maximum dynamic response
strain is good when there is no significant response at
frequencies other than fe in plane A and no significant
response in plane B. Please observe that the maximum
dynamic response strain in plane A is larger in experiment
23 than in experiment 20 because the second mode was
excited in experiment 23.

In the lift direction, when the frequency of
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imposed oscillation is not close to a "natural fregquency"”
of the flexible system the dynamic strain response is
primarily at f=2fe, (see experiments 14, 17, and 23).

-

However, some strain response exists at r=fe which, in
general, is not insignificant in determining the maxima of
the measured response in plane B. When the frequency of
imposed oscillation is close to a "natural frequency" of
the flexible system, (see experiment 20), the dynamic
strain response in the B plane is at f=nfe where n is a
small integer (up to 6) and is so determined so that f is
close to a "natural frequency" of the flexible system.

The same conclusion was reached in run 903 reported in
Chryssostomidis and Patrikalakis (1982b) where the model
described in this thesis extended to 10.091 m was used.
The extended model was supported by a tension leg platform
stbjected to surface wave excitation. 1In this run the
frequency of excitation, fe' was close to f2 and 2fe was
close to f3. Lift response at both fe and 2fe was
obsefved. The lift response for experiments 14, 17, and
23 at f=2fe is comparable to the drag response at f=fe.
These results are summarized in Figures 14B, 17B, 20B, and
23B. In Figures 14B and 23B the following information is
shown: |

1) The experimental dynamic response strain at f=2fe

in plane B.

2) The theoretical dynamic response strain in plane
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B at f=fl for experiment 14 and f=f, for experiment
23, where fl' fz are the first two "natural
frequencies" of our model, respectively. For
experiment 14, fl is the "natural frequency" closer
to 2fe and for experiment 23, f2 is the "natural

frequency" closer to 2fe.

3) The maximum measured dynamic response strain in

plane B.

4) The maximum measured dynamic cesponse strain

independent of plane.

5) A theoretical estimate of the maximum dynamid
response strain independent of plane. This estimate
is obtained as the square root of the sum of the

squares of the response in planes A and B.

In Figure 17B no theoretical estimate of the dynamic
response strain in plane B is provided for the reason
given above. Therefore, the theoretical maximum dynaﬁic
response strain independent of plane in Figure 17B is' the
same as the theoretical prediction in plane A. Item 1
shown in Figure 17B is the same as in Figures 14B and'238.
For experiment 20, the experimental dynamic response

strain in plane B at f=f_is shown in Figures 20Ba and

e
20B¢c and the response at f=4fe is shown in 20Bb. The
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theoretical dynamic response strain in plane B at f=fl is
shown in Figure 20Ba, while the theoretical dynamic
response strain in plane B at f=fz is shown in Figure
20Bb. In addition, the theoretical estimate of the
maximum dynamic response strain in plane B obtained by

summing the responses at f=f, and f=£2 is shown in Figure

1
20Bc. Items 3 and 4 in Figures 14B, 17B, 20B and 23B are
the same. A theoretical estimate of the maximum dynamic
response strain independent of plane is shown in Fiqgures
203a, 20Bb, and 20Bc. This estimate is obtained as the
square root of the sum of the squares of the response in
plane A from Figure 20A, and of the response in plane B
from Figure 203c.

For the responses in plane B, unfortunately no
general conclusions can be drawn because of the need to
extrapolate Figures 16 and 19 of Chapter IV. Therefore,
Figure 20Bc, which indicates that the theoretical

predictions at f=f. and f=f2 can be added together to give

1
an estimate of the maximum response in plane B, should be
interpreted accordingly. For the theoretical estimate of
the maximum response independent of plane there is the
additional complication that the phase between the
response in the A and B planes is unknown. Therefore,
even when the prediction in the A and B planes are good,
the theoretical estimate of the maximum response

independent of plane is by necessity conservative (see

experiment 20). The "S" Figures of each experiment help
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the reader to visualize the importance of this additional
assumption. The "D" Figures of each experiment allows the
reader to visualize the difference between the assumed and
actual motion. The moticn shown in the "D" Figures has
been computed by expanding the response in each plane in
the first three modes, calculating the amplitude of each
mode and by summation of the contribution of each mode and

the top end motion.

V.4.2 HARMONIC OSCILLATION OF THE TOP END OF THE MODEL

PARALLEL TO A UNIFORM STREAM

In all experiments described in this section the
direction of oscillation of the top end was parallel to
the long side of the towing tank and the current (plane
A). The amplitude of oscillation was abproximately equal
to two effective diameters. The water temperature was 13
degrees C. Bending strains in plane A at Z2 = 3L/1l1l, SL/1l1l
and 8L/l1l1 and in plane B at Zz = 3L/11, 6L/1ll and 8L/1l1l

were recorded simultaneously together with the motion of

the upper end. The root mean square response strain as a

function of the response frequency at elevations 2
3L/11 and SL/1l for plane A and 2 = 3L/11 and 6L/1l1l for
plane B recently have been presented in Chryssostomidis
and Patrikalakis (1982a) and are not repeated here. A
collective description of the experiments analyzed in this

section is shown in Table V.4.
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Table V.4 also includes information about the
theoretical prediction of the static and dynamic response
at fe in plane A, performed as described in Section

IV.4.4. The way in which c_ and Ed shown in Table V.4

m
have been derived from the local Cm and C3 is explained in
Appendix B. The estimates of the local n and 4 employed
in the iteration procedure are based on rigid cylinder
results shown in Figures 13 and 14 of Chapter IV. 1In our
experiments, the frequency parameter g varied betweeen 194
and 582, which for the most part overlaps with the range
of B employed by Verley and Moe (1979).

From all experiments of this class, it can be seen
that the strain responée in plane A is primarily
concentrated at f=fe, see Chryssostomidis and Patrikalakis
(1982a) . However, some strain response in plane A at
frequencies other than fe exists and is not, in general,
insignificant in determining the maxima of the measured
response in plane A. Our inability to model components of
dynamic response in plane A at frequencies other than fe
is somewhat reflected in our theoretical prediction of the
maximum response in plane A. These conclusions are
summarized in Figures 2A, 1A, 3A, 4A, 9A, 10A, 8A, and 7A
where the following theoretical and experimental results
are included: the static response strain, the static plus
the dynamic response strain at f=fe in plane A; the
maximum response strain in plane A. The theoretical

static plus dynamic response strain at f=fe in plane A is
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also our theoretical estimate for the maximum response
strain in this plane.

In general, the responses in plane B are as
significant as the dynamic responses in plane A. This
can be seen from Figures 1 through 4 and 7 through 10 and
from the figures showing the rms response strain in the A
and B planes presented in Chryssoscomidis and
Patrikalakis (1982a). The frequencies at which there is
significant 1ift response depend upon the value of the
reduced velocity U*. When the value of the reduced
velocity U* is less than approximately 3, the lift is
concentrated at f=2fe with some response also at
f=fe, see experiment 4, where U*=2.61, and
Chryssostomidis and Patrikalakis (1982a). This is
consistent with rigid cylinder results for values of U*
less than approximately 3, Mercier (1973). When the
value of the reduced velocity U* is larger than
approximately 3, significant lift response is present at
multiples of fe/4 for the smaller of the Reynolds
numbers tested. For the larger of the two Reynolds
numbers tested and for values of the reduced velocity U¥
larger than 3, significant lift response occurs at
multiples of fe/2. Lift response at multiples of
fe/2 is consistent with rigid cylinder results, Mercier
(1973), for values of U* larger than aﬁproximately 3. The
Reynolds number corresponding to the larger of the two

speeds tested is closer to the range of Reynolds numbers
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studied in Mercier (1973). The Strouhal frequency, as
determined from Figure 2 of Chapter IV, may vary between
1.49 and 1.79 Hz for the smaller current speed and between
2.98 and 3.58 Hz for the larger current speed studied in
this work. The frequencies of lift response of our
flexible model, when no oscillation of the top end is

applied, are equal to fr =1.32 Hz and fr =2.14 Hz for the

smaller and the larger ctrrent speed, reipectively.
Except for experiment 10, for which fr2=3fe/2, no
appreciable response'at frl or fr2 is found. This
observation implies that currents and harmonic

" oscillations parallel to currents are coupled in a manner
in general leading to a different dynamic behavior of a '
flexible cylinder than the current or the oscillation
alone. The forces acting on rigid cylinders in a current
and harmonic oscillations at 6=0 degrees provide an
explanation of such a behavior.

Figures 2B, 1B, 3B, 4B, 98, 10B, 8B and 78
summarize the following results: the maximum experimental
dynamic response strain in plane B; the maximum
experimental static and dynamic response strain
independent of plane; our present theoretical estimate of
the maximum static and dynamic response strain independent
of plane. The latter is the same as our theoretical |
estimate of the static plus dynamic response strain at fe

in plane A, because no information is available to us to

make an estimate of the magnitude of the lift response.
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Suitable flexibly mounted rigid cylinder results will be
able to provide us with such an estimate.

From the A and B type Figures of this class of
experiments, and for reduced velocities of the order of
ten, the results of Bernitsas (1979) provide a partial
phenomenological explanation of why our predictions of the
static and dynamic response at fe in plane A are good even
though the motion in the B plane is substantial. Namely,
for angles of oscillation between 0 and 45 degrees with
respect to a current, the static force and the component
of the dynamic force parallel to the current at fe do not
depend much upon 6, at least for the amplitude studied by

Bernitsas (1979).

V.4.3 HARMONIC OSCILLATION OF THE TOP END OF THE MODEL

ORTHOGONAL TO A UNIFORM STREAM

In all experiments described in this section, the
direction of oscillation of the top end was orthogonal to
the long side of the towing tank and the current. The
amplitude of oscillation was again approximately equal to
two effective diameters. The water temperature was 1l4.1
degrees C. Bending strains in plane A at Zz=3L/11, SL/11
and 8L/11, and in plane B at Z=3L/11, S5L/11, 6L/1l1l and 8L/11
were recorded simultaneously together with the motion of

the top end. The root mean square response strain as a
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function of the response frequency at elevations 2=3L/11
and 5L/11 for plane A and B have been recently presented
in Chryssostomidis and Patrikalakis (1982a) and are not
repeated here. A collective description of the
experiments analyzed in this Section is shown in Table
V.5.

Table V.5 also includes information about the
theoretical prediction of the dynamic response at fe in
‘plane B and of the static response in plane A, performed
as described in Section IV.4.3. The way in which Em and
éd shown in Table V.5 have been derived from the local c_
and C4 is explained in Appendix B. The estimates of the
local Sn and S3 employed in the iteration procedure are
based on rigid cylinder results shown in Figures 10 and 9
of Chapter IV, respectively. These results are, for the
most part, based on experiments performed at Reynolds
number 8000. - The trend of available data for U*+0 is that
substantial increases of the drag coefficients are
expected for decreasing Reynolds number. No corrections
for Reynolds number have been included for the predictions
described in Table V.5. This implies that at least for
small U* and if the correct data are used, a better
agreement between theory and our experiment is expected.
As it can be also observed from Table V.5 and Figures 9
and 10, extrapolation for amplitudes larger than 1.3
diameters was necessary for the calculation of S and Cq-

The analysis of Appendix B implies that the larger

A
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amplitudes weigh heavily in determining appropriate
hydrodynamic coefficients. Linear extrapolation was
employed. Therefore, the theoretical predictions of this
section should be judged accordingly. To simplify the
calculations, the average drag coefficient employed was
estimated on the basis of the average calculated amplitude
in the B plane and Figure 11 of Chapter IV. Again, some
extrapolation was occasionally necessary. Until the
controversy of existing data is resolved, more complicated
calculation schemes are not warranted. All trends of
existing data show that when the complete set of revised
rigid cylinder experiments become available the
correlation between theory and our experiment will
improve.

From all experiments of the present class, it can
be seen that the response in the B direction shows two
distinct regimes. First, when the frequency of
oscillation of the top end is sufficiently smaller than
the Strouhal frequency then the response in the B plane
includes two components at fe and fr' The frequency fr is
not the same as in Figure 2 of Chapter IV. Due to the
motion in the lift direction, there is a change of the
response frequency fr from the Strouhal relationship of
Figure 2 of Chapter IV to a relationship similar to the
one described by Figure 15 of Chapter IV. 1In the second
regime, the vortex shedding frequency locks on the

frequency of oscillation and the response in the B plane
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is nearly monochromatic. This occurs when the frequency
of oscillation is sufficiently close to the Strouhal
frequency. Finally, some very low frequency response
orthogonal to the current is also encountered. This is
associated with slow variation of the spanwise correlation
of the lift force, see Mercier (1973).

A summary of our results for the response in plane
8 is shown in Figures 52B, 59B, 71B, 803, 83B, 51B, 60B,
70B, 81B, and 88B. These include the theoretical and
experimental dynamic response strain at fe and the maximum
dynamic response strain in plane B. Our present
theoretical estimate of the maximum response in plane B is
the saﬁe as our estimate of the dynamic response at fe in
plane 3. This is.expected to give realistic results for
the maximum in plane B when the response orthogonal to the
current is practically monochromatic. When the frequency
of imposed oscillation is much lower than the first
"natural frequency" of the cylinder and the Strouhal
frequency, the procedure suggested in Section 1IV.4.3 may
be employed to estimate the magnitude of the response at
the St;ouhal frequency. This procedure does not supply
any phase information between the response at fe and the
Strouhal frequency. In addition,it assumes that there are
no appfeciable interactions between force components at fe
and the Strouhal frequency.

The dynamic response in plane A is significant

when compared to the dynamic response in plane B. When
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the Strouhal frequency, £ is not synchronized with the

r'
frequency of oscillation, dynamic response in plane A

occurs at fe' £_ and E:ife. When the Strouhal frequency,

r

£ is synchronized with the frequency of oscillation,

r'
dynamic response in plane A occurs at nfe, where n is an
integer up to three, and is magnified when nfe is close to

a "natural frequency" of the model. Some low frequency

response in plane A is also encountered. This is associ-
ated with slow variation of the spanwise correlation of the
dynamic force parallel to the current, see Mercier (1973).
A summary of our results for the response in plane
A is shown in Figures 52A, 59A, 71A, 80A, 89A, S51A, 60A,
70a, 81A, and 88A. These include: the theoretical and
experimental static response strain; the maximum
experimental dynamic response strain; the maximum
experimental response strain independent of élane; and our
present theoretical estimate of the maximum response
strain independent of plane. The latter is computed as
the square root of the sum of the squares of the static
strain and of the maximum dynamic response strain in plane
B. No estimate of the magnitude of the dynamic response
in plane A is possible with the data currently available.
We expect to be able to estimate this response, when
appropriate flexibly mounted rigid cylinder experiments

become available.
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Chapter VI

CONCLUSIONS A:ND RECOMMENDATIONS

The overall objective of this thesis is to
evaluate our theoretical ability to predict the global
dynamic behavior of long tensioned flexible cylinders
using information from'available rigid cylinder
experimental results. The example we chose to investigate

in this work is a single tube marine riser.

The analysis of the second and third Chapter of
this thesis leads to the conclusion that a linearized
structural model of the riser idealized as a thin rod
under tension, although not the most general model
derived, provides a good description of the global dynamic
behavior of the riser. These simplifications are péssible
because of the low excited flexural modes, the small
transverse motions compared to the length and the presence
of the slip joint. The solution of the resulting system
of partial differential equations requires the modelling
of the local hydrodynamic force. This became the central

issue of this thesis.

The approach taken in this work is to employ avail-

able rigid cylinder experimental results for formulate an
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approximate mathematical model for the local hydrodynamic
force acting on the flexible cylinder, as shown in the
fourth Chapter of this thesis. Rigid cylinder experiments

are subdivided into two broad categories.

The first category involves measurements of the
force acting on rigid cylinders in an a priori defined
flow. As it iz apparent from the definition of such
experimeuts, a model for the local hydrodynamic force on a
flexible cylinder derived on the basis of rigid cylinder

experiments implies the following two assumptions:

1. Any force componeat measured in a rigid cylinder
experiment which will make a flexible cylinder
respond in a different form than the one used to
conduct the rigid cylinder experiment must be

neglected.

2. Rigid cylinder experiments cannot provide
information on the spanwise correlation of local

hydrodynamic forces.

The second catetory of rigid cylinder experiments
involves cylinders which are mounted on elastic springs
and dashpots. These experiments attempt to relate force
to response of different form than the imposed motion by

representing the flexible cylinder with an idealization
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which has only a small number of degrees of freedom, and
allowing the idealized system to respond to the force it
experiences. The response in existing spring mounted

rigid cylinder experiments is a one degree of freedom

translation.

Therefore, the first task of this work was to provide a
quantitative estimate of the significance of the above
idealizations. The approach we selected was

to construct a flexible cylindrical model and study its
dynamic behavior in idealized excitation conditions for
which rigid cylinder experimental data is available. The
comparison between our experimental results and our
theoretical prediction based on rigid cylinder experiments
showed that our theoretical procedure permitted us to
predict the important features of the response of our
flexible model with confidence, provided us with estimates
of the magnitude of the response and of the possible error

in our response prediction for the £flows examined.

The model employed in our experiments did not
correspond to a specific prototype. Its non-dimensional
parameters were, however, carefully selected so as to help
us evaluate our theoretical capabilities to predict the
dynamic behavior of a riser type structure using rigid

cylinder results in a stripwise manner under conditions
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likely to lead to pronounced violation of the assumptions
necessary for our theoretical predictions. The
experiments presented in this study correspond to harmonic
excitation of the top end of the model at approximately
two diameters. Experiments with and without current were
conducted. The major observations made in the fifth

Chapter of this thesis are summarized below.

1. The basic characteristics of the frequency
decomposition of the response of the flexible cylinder can
be explained from rigid cylinder experiments. At present,
both categories of rigid cylinder experiments, namely
rigid cylinders in a priori defined flows and spring
mounted rigid cylinders, need to be employed to provide
an explanation of the existence of various components of

the response.

2. The measured response at the frequency of excitation
fe and parallel to the direction of motion of the top end
is approximétely within 30% of the corresponding
theoretical estimate of the response. Part of this
difference might be attributed to the fact that during our
estimation we needed to use rigid cylinder data at
Reynolds number higher than the one implied by our
experiment. The trend of available results shows that if

the correct data becomes available the difference reported

above will reduce.
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3. The prediction of the maxima in the cdirection of
motion of the top end is good when there is no appreciable
dynamic response at frequencies other than the frequency
of excitation. The flexible riser responds primarily at
one frequency when the £frequency of imposed oscillation is
close to a "natural frequency" of our flexible system and
if the current does not introduce appreciable response in
another frequency in the same direction as the imposed

motion.,

4. The prediction of the dynamic response orthogoral to

the plane of excitation in the absence of a current and’at
one frequency based on flexibly mounted rigid cylinder
results is encouraging although nc definitive statements
can be made because of the need to extrapoléte existing
flexibly mounted rigid cylinder experimental data to
prgdict the response. When there is current, there is no
data currently available to us to estimate the magnitude
of the dynamic response orthogonal to the direction of
motion of the top end. However, we expect ﬁe will be able

to obtain an estimate of this response from suitably

conducted flexibly mounted rigid cylinder experiments.

5. The theoretical estimate of the static response is at
most within 40% of the corresponding measurement. No

further statements can be made on this subject until the
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controversy that exists with published data is resolved
with independent experiments. The likelihood is that the
difference reported above will reduce when the inprocved

data becomes availablie.

6. The prediction of the maximum independent of plane
does not contain any phase information between the
responses in the planes parallel and orthogonal tc the
direction of motion of the top end. Our prediction of the
maxima independent of plane provides an estimate of the
upper bound of the maximum response likely to be

encountered.

The above completes the discussion for the
specific problem addressed in this thesis. Now we wish to
address the more general problem of extending our research
to provide information useful to the design »>f actual and
proposed long flexible and tensioned cylindrical systems,
such as risers. Such an extension we feel is possible
because the system under investigation is highly damped
and because the structural part of our problem is linear.
These two conditions are likely to make our system's
response shape similar to the shape of excitation. This
similarity between the imposed excitation and the system
response permit us to envision a finite set of rigid
cylinder experiments describing more complicated

excitations suitable for design.
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The development of this approcach requires the

following additicnal work:

1) Perform an experiment using a flexible
cylindrical model where the imposed excitation is
some spectrum suitably selected to represent some
environmental condition of interest to test the
hypothesis of similarily between excitation and

response shape.

2) Perform rigid cylinder experiments where the
imposed excitation is describec by the same spectrum
used above. Repeat this experiment by keeping the
area under the spectrum the same but altering the
position of the peak of the spectrum. This will
serve to quantify the effect of distortion in our
results. Conduct experiments keeping the shape of
the spectrum the same but proportionately vary its
ordinates to cover the range of interest in system

responses.

3) Use the experimental results obtained from the
flexible model to evaluate theoretical predictions
obtained using the rigid cylinder experiments

described above.
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It should be noted that the £flexible model
described in this thesis is representative of shallcw
water risers. The 10 m model described in Chryssostomidis
and Patrikalakis (1982b) is typical of a deeper water
riser. These two models allow us to test if our proposed
method is extendable to deep water risers where the
response is likely to be a superposition of more than one

mode.

It might be of interest to note that if we decide
that flexible cylinder experiments at higher Reynclds
numbers are needed we feel that this can be accomplished
by foregoing the outer geometric similarity between mocdel
and prototype. The disproportionate scaling of the
diameter with respect to the length is not expected to
substantially affect the results for low excited flexural
modes, but it allows to increase Reynolds number. It is,
however, recommended to verify the maximum allowable

distortion experimentally.

Parallel research for a development of an
efficient method of direct evaluation of the hydrodynamic
force on circular cylinders primarily employing analytic
and numerical techniques with possible assistance from
experimental observations is also recommended. The
development of such a method will permit us to expand our

design capabilities without the limitations of our present



[\
[9]]
[e3]

theoretical prccecdures for the prediction of the response
of flexible cylinders. ork addressing this very subdject
is currently under way, see Faltinsen and Pettersen (1982)

and (1933)*.

* Paltinsen, O. M. and Pettersen, B., 1932, "Vortex
Shedding Around Two-Dimensional Bodies at High Reynolds

Numbers," Proceedings of the l4th Symposium on Nawval

Hydrodynamics, The University of Michigan, Ann Arbor,

August 1982.

Faltinsen, 0. M., and Pettersen, B., 1983, "Separated Flow

Around Marine Structures," SSPA Ocean =ngineering

Symposium, Gothenburg, March 1983 (To be presented).
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Appendix A

BRIEF DESCRIPTICN OF THE PHYSICAL SYSTEM

A typical offshore drilling system is shown in
Figure 1 borrowed from Bernitsas (1979), where an
extensive description cf the physical system is given. As
shown in the above Figure, the marine exploration riser is
part of that system, which also includes the following
additional elements:
a) The drill ship
b) The tensioning system
c) The upper slip joint
d) The upper ball joint
e) The tube connectors
f) The kill and choke lines
g) The lower ball joint
~ h) The marine connector
i) The blowout preventer
j) The well head
k) The buoyancy modules
1) The circulating mud
m) The drill string
For reasons of completeness, a brief description of the

above items and their functions is presented below:



The marine riser itself consists of cylindrical
steel tubes of average length of the order of 15 m, an
cuter diameter varying between 0.25 m and 0.65 m and a
tube thickness between 1 and 2.5 cm.

The drill ship holds the top end of the riser and
houses the tensioning system. It is controlled
automatically so that excessive offsets from the vertical
through the well head are avoided.

The upper slip joint practically eliminates the
transmission of the vertical motion of the drill ship to
the top end of the riser. This joint is designed to
eliminate any static or dynamic tension variation at the
top end of the riser due to its own motion and the
vertical motion of the ship.

The upper ball joint eliminates excessive bending
moments at the éop end of the riser, at least within a
range of top end slopes.

The marine riser connectors join the tubes
together and are able to withstand large tensions.

The kill and choke lines are high pressure pipes
controlling sudden variations of the well pressure. They
are mounted directly on the riser connectors on the
outside of the riser.

The lower ball joint has a similar function as the
upper ball joint.

The marine connector connects the riser and the

blow out preventer, which is attached rigidly to the well
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head.

The buoyancy modules are distributed along the
riser and decrease the required top end tension. This is
done at the expense of larger hydrodynamic forces. The
modules are usually made of synthetic materials and their
outer diameter usually varies between 0.6 m and 0.8 m.
The kill and choke lines are usually embedded in these

modules.

The drilling mud is forced down the drill string
and it returns to the surface through the space between
the drill string and the marine riser. Due to its motion
inside a deflected‘riser it exerts forces on the latter
which can be shown:to be very small compared to the static
and/or dynamic forbes acting Bn the riser. This happens
because the mud speed is small.

The riser itself provides protection of the drill

string from environmental excitations.
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Appendix B

THE SELECTION OF THE HYDRODYNAMIC COEFFICIENTS

As we saw in Chapter IV, the proposed method of
calculation of the local hydrodynamic force on a flexible
cylinder is based on rigid cylinder results. Assumption 1
of Chapter IV implies that rigid cylinder results can
provide information about the dynamic response parallel to
the motion of the top end at the frequency of excitation
alone. This means that the component of the dynamic
response parallel to the motion of the top end that we can
calculate on the basis of rigid cylinder results will be a
standing wave of the form:

o(2,t) = R(Z) cos (wt + ¢(2)) . (B.1)

where R>0, o(0,t) = 0 and o(L,t) = R(L)cos(wt),
where R(L) and w are given.

The integration of partial differential equations
(II1.87) and (III.88) in time with monochromatic
excitation at 2=L leads to a steady state response which
is almost exclusively determined from the fundamental
harmonic alone. This observation is associated with the
use of drag forces proportional to the square of local
calculated relative velocity of the water with respect to

the cylinder in the direction of dynamic motion of the
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cylinder and having the sign of the above relative
velocity. Typical calculations have shown that the
response at 3w is less than approximately 2% cf the
response at w. This is due to the highly damped behavior
of our system.

The theoretical predictions of Chapter V are based
on the time integration of the above partial differential
equations until steady state is reached. Furthermore, the
integration was performed by selecting apéropriate
constant hydrodynamic coefficients along the length, ed,

cm, for each iteration. Successive iterations were

performed by adjusting the magnitude of ed, c on the

m’
hasis of the variable local coefficients found from the
calculated local mdtion and rigid cylinder results. The
procedure for the selection of Sd for the nth iteration is
based on the amplitudes R(Z) from the previous iteration
and the drag coefficients obtained from rigid cylinder
experiments on the basis of the local calculated amplitude
R(Z) at iteration (n-l). The selection procedure is based
on equating the overall energy dissipated in one cycle
using the variable drag coefficients and the overall

A

energy dissipated using c For the case of harmonic

d.
oscillations of the top end in the absence of current or
for harmonic oscillations of the top end orthogonal to a
current the drag force parallel to the imposed oscillation

can be written as:

Fy(Z,t) = =0.50D c4(R(2)/D, Re(2), U*(Z)]0t|0t|
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where o(Z,t) is the dynamic motion parallel to the

oscillation of the top end, U*(Z) = ZnIVC(Z)I /wD, and

Re(2) = R(2)wD/V, when there is no current, or

Re (Z) =|Vc(Z)|D/v, when there is current. The drag force

is approximated by:
Fq(Z,t) =-0.50D840,[0,]

where Ed is determined from:

L 21/ W L 27/w
l dz |dt cht = sz ‘dt cht
0 0

This leads to: L L

A

&4 = [cd(Z)R3(Z)dZ/ J R3(2)az
0 0

For the case of harmonic excitation of the top end

parallel to a current with the drag force written as:
Fd(z,t)= 0.50D cd(R(Z)/D,Re(Z),U*(Z)) |VC(Z)-Gt|(Vc(Z)—ot)

where Re(2) = |VC(Z)| D/V, and using the same argument as
before the expression for 4 is:

L L

cy = J c4(2)¥ (r(2))R>(2)d2/ Jw(r<z>)a3(Z)dz
0 0

where r(2) = Vc(Z)/R(Z)w and
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Tr r>1

v (r)

1 2)1/2]

2[rsin” r+ %(2+r2)(l-r 1>r>0

Note that phase 0(Z) defined in equaticn (B.l) does not
affect any of the results derived above.

The added mass force is written as:
by = - * (2
1a(Z,t) voCm(R(Z)/D: u*(2), Re(Z))Ott

and is approximated by:

A

Ma(z,t) -vocmctt

so that:

L 21/ w

E = [ az Jdt [Ma-Ma]2
0 0

is minimum. This leads to:

L L ,
Icm(Z)Rz(Z)dZ / J R% (2)dz
0 0

Q>
n

The convergence of the above procedure is very rapid. For
a reasonable initial guess, performed by inspection of the
appropriate rigid cy'.inder results, two iterations are
usually adequate.

The above procedure after convergence is expected

to provide good initial estimates of the response if
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variable coefficients are to be used. We feel that such a
procedure will not yield appreciably different estimates
of the response than the procedure used here. For
oscillations orthogonal to a current and for the range of
U* for which rapid variation of C4r Cp is found, somewhat
laréer differences might arise. This cannot be estimated
until the controversy of existing rigid cylinder data for
this case is resolved with independent experiments and
larger amplitudes of oscillation orthogonal to current are

investigated.



