
Nonlinear Polynomial Systems: Multiple Roots and their Multiplicities

K. H. Ko
khko@mit.edu

T. Sakkalis
takis@deslab.mit.edu

Massachusetts Institute of Technology
Cambridge, MA 02139-4307, USA

N. M. Patrikalakis
nmp@mit.edu

Abstract

In this paper we present methods for the computation of
roots of univariate and bivariate nonlinear polynomial sys-
tems as well as the identification of their multiplicity. We
first present an algorithm, called the TDB algorithm, which
computes the values and the multiplicities of roots of a uni-
variate polynomial. The procedure is based on the concept
of the degree of a certain Gauss map, which is deduced from
the polynomial itself. In the bivariate case, we use a com-
bination of resultants and our procedure for the univariate
case, as the basis for developing an algorithm for locat-
ing the roots and computing their multiplicities. Our meth-
ods are robust and global in nature. Complexity analysis of
the proposed methods is included together with compari-
son with standard subdivision methods. Examples illustrate
our techniques.

Keywords: Cauchy index, Gauss map, univariate and bi-
variate polynomials, topological degree

1. Introduction

Polynomials are popular in curve and surface representa-
tions and many critical problems arising in Computer Aided
Geometric Design such as surface interrogation, are re-
duced to finding the zero set of a system of nonlinear poly-
nomial equations

f(x) = 0, (1)

where f = (f1, f2, · · · , fn) and each fi is a polynomial of l
independent variables x = (x1, x2, · · · , xl).

Several root-finding algorithms for multivariate polyno-
mial systems (1) have been used in practice. Newton type
methods, which are classified as local solution techniques,
have been applied to many problems since they are quadrat-
ically convergent and produce accurate results. They, how-
ever, require good initial approximations of the roots of the

systems, and fail to provide full assurance that all roots have
been found. These limitations can be overcome by global
solution techniques, which can be categorized into three dif-
ferent types [10]: (1) algebraic and hybrid methods, (2) ho-
motopy methods and (3) subdivision methods. Among those
types, the subdivision methods have been widely used in
practice because of their performance and efficiency. The
Interval Projected Polyhedral (IPP) algorithm [14, 10] is
one example, and it has been successfully applied to various
problems. Of particular interest is locating zeros of a uni-
variate polynomial. It is a critical problem in diverse fields
such as control theory and much literature has been devoted
to it [6].

Most of the root finding algorithms, however, experi-
ence difficulties in dealing with roots with high multiplic-
ity such as performance deterioration and lack of robustness
in numerical computation. For example, the IPP algorithm,
which belongs to the subdivision class of methods, slows
down drastically and suffers from proliferation of boxes that
are assumed to enclose roots. Moreover, since a root with
high multiplicity is unstable with respect to small perturba-
tion, round-off errors during floating point arithmetic may
change the topological aspect in such a way that a cluster of
roots could be formed around the root.

Solving univariate polynomials with multiple roots is an
important but difficult task. Rump [11] collected nine meth-
ods to bound multiple roots of polynomials and compared
them rigorously. He also proposed a new hybrid algorithm
which gives numerically nearly optimal bounds for multiple
roots of univariate polynomials. Even though those meth-
ods work well in most cases, it is not easy for a user to con-
trol the size of the bound of a root in general. Wilf [16] used
Sturm sequences to compute all roots of a univariate poly-
nomial, but his approach relies on the division of polynomi-
als to compute Sturm sequences. So, it is not numerically
robust unless exact arithmetic or symbolic computation is
used.

Literature on root multiplicity of a system of equations



is quite limited. Möller and Stetter [8] used an eigenprob-
lem method to calculate the solutions of systems of polyno-
mial equations and studied the case where the system con-
tains multiple roots in common. Eigenvalues of a matrix ob-
tained from an input algebraic equation system correspond
to roots of the system and the algebraic multiplicity of each
eigenvalue is equal to the multiplicity of the corresponding
root. Also Moritsugu and Kuriyama [9] proposed a practical
algorithm to compute roots and their multiplicity of a sys-
tem of algebraic equations based on the work by Möller and
Stetter [8]. However, their approaches require a step to find
a nonderogatory matrix, a matrix whose Frobenius normal
form consists of one companion block [9], using random
linear combinations of multiplication tables, which has to
be performed with trial and error. The same problem was
studied by Manocha and Demmel [5] in the form of finding
multiple intersections of parametric and algebraic curves.
Their approach uses elimination theory and resultants rep-
resented in matrix form, reducing the intersection problem
to computing the eigenvalues of a matrix. To handle high
multiplicity eigenvalues, they proposed a method which can
cluster the eigenvalues. This heuristic is based on a fact that
rounding errors involved in floating arithmetic will change
the topological structure of multiple eigenvalues such that
the eigenproblem will end up locating a cluster of eigenval-
ues and the average over the cluster is a good approxima-
tion of a multiple root.

In this paper, we restrict our scope to finding real and
complex roots for univariate polynomials, and real roots
for bivariate polynomial systems. We provide definitions
of root multiplicity for both cases and algorithms to com-
pute roots and their multiplicity. We analyze the behavior
of the IPP algorithm around a multiple root and propose a
post-processing procedure which sorts out the intervals that
contain at least one root under a user specified tolerance,
and provides explicit information about root multiplicity ro-
bustly.

The paper is structured as follows: in Section 2 defini-
tions for the multiplicity of a root are provided. In Section
3, a root computation procedure based on the notion of local
topological degree is proposed with comparison to the IPP
algorithm. An algorithm for solving a univariate polynomial
equation, called the TDB algorithm is proposed in Section
4 and Section 5 is devoted to the multiple roots of bivari-
ate polynomial systems. Concluding remarks are made in
Section 7.

2. Multiplicity of Roots

Let f(x) be a polynomial of a single variable with co-
efficients in the set of real numbers, R. We denote by
f ′(x), f ′′, · · · , f (m)(x) the first, second, · · ·, m-th deriva-
tive of f(x), respectively. A number a ∈ C, where C is the

set of the complex numbers, shall be called a root of f(x)
if f(a) = 0. We say that a root a of f(x) has multiplic-
ity k, if

f(a) = f ′(a) = · · · = f (k−1)(a) = 0, and f (k)(a) 6= 0.
(2)

Now suppose that we are given two polynomials
f(x, y), g(x, y) with real coefficients in the two vari-
ables x and y. Consider the system

f(x, y) = 0,
g(x, y) = 0.

(3)

Define

Vf = {(x, y) ∈ C | f(x, y) = 0} and
Vg = {(x, y) ∈ C | g(x, y) = 0}.

Definition 2.1 A root of the system (3) shall be a pair of
numbers z0 = (x0, y0) such that f(x0, y0) = g(x0, y0) =
0. Moreover, z0 shall be called isolated if there exists an
open ball B(z0, r) centered at z0 of positive radius r, so
that z0 is the only root of (3) in B(z0, r).

We may define the multiplicity k of z0, as a root of the
system (3) as follows (Lemma 2, p. 407 of [12]): Without
loss of generality, we may assume, after a linear coordinate
change, that f, g have the form

f(x, y) = a0y
n + a1(x)y

n−1 + · · · + an(x),

g(x, y) = b0y
m + b1(x)y

m−1 + · · · + bm(x),
(4)

where a0, b0 are non zero constants. We shall call such f
and g regular in y. Suppose now that z0 is the only com-
mon point of Vf and Vg lying above x0. Consider h(x) =
Resy(f, g), the resultant of f, g with respect to y. Then,

Definition 2.2 The multiplicity of z0 = (x0, y0) as a root
of (3) is the multiplicity of x0 as a zero of h(x).

It is convenient to associate to f and g the vector field

F : R2 → R2, F (x, y) = (f(x, y), g(x, y)).

In that respect, a common zero z0 = (x0, y0) of f and g is
nothing but a zero of F . In addition, we shall call z0 a real
zero if z0 ∈ R2.

3. Univariate Case

In this section we will give a procedure, that is based on
the computation of the local degree of a vector field aris-
ing from f(x), for the computation of the multiplicity of a
root of f(x). We start this section by explaining the Gauss
map, which is used as a basis for the development of root
multiplicity computation.



3.1. The Gauss Map

Let p(x, y), q(x, y) be real polynomials without common
factors, and let us consider the vector field

F : R2 → R2, F (x, y) = (p(x, y), q(x, y)).

Let A be a rectangle in the plane defined by a1 ≤ x ≤
a2, a3 ≤ y ≤ a4 so that no zero of F lies on the bound-
ary ∂A, and p ·q does not vanish at its vertices; we call such
an A compatible with F . Then, we can define the Gauss
map

G : ∂A→ S1, G =
F

‖F‖ ,

where S1 is the unit circle. Since ‖F‖ 6= 0 on ∂A, G is
continuous. Assume that both ∂A and S1 carry the counter-
clockwise orientation. Then the degree d of G is an integer
that, roughly speaking, tells how many times ∂A is wrapped
around S1 by G, see Figure 1.
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Figure 1. A schematic diagram of the degree
of Gauss map

A univariate polynomial f(x) can be converted into a
complex polynomial f(z) by replacing x by z = x + iy.
If we solve the complex polynomial equation f(z) = 0 in
the complex domain, we can find real and complex roots of
f(x) = 0 simultaneously. Our procedure for the univari-
ate case is based on the following Proposition, whose proof
can be found in [12].

Proposition 3.1 Let h(w) be a complex polynomial in the
variable w. Write h(w) = R(w) + iI(w), and consider
F = (R, I), where R, I are the real and imaginary parts

of h(w), respectively. Then, if A is compatible with F , d is
equal to the number of roots z (along with their multiplici-
ties) of h(w) that lie inside A.

3.2. Computation of d

In this paragraph we will give two methods of the com-
putation of d. The first is based on the notion of the Cauchy
index of a rational function, and the second is a more di-
rect one.

3.2.1. Cauchy Index Method

Definition 3.1 Let R(x) be a rational function and [a, b] a
closed interval, a < b, with R(a) 6= ∞, R(b) 6= ∞. Denote
by N+

− (N−
+ ) the number of real poles x of R inside (a, b)

so that

lim
t→x−

R(t) = −∞, and lim
t→x+

R(t) = ∞,

(

lim
t→x−

R(t) = ∞, and lim
t→x+

R(t) = −∞
)

respectively. Then the Cauchy index Ib
a R of R on [a, b] is

defined as
Ib
a R = N+

− −N−
+ .

By convention, Ib
aR = −Ia

b R.

Example 1 Let p(x) be a real polynomial. Then, I b
a

p′

p
is

equal to the number of distinct real roots of p that are in-
side (a, b).

If R(x) = r(x)/s(x) and [a, b] are as above, then we
may compute the Cauchy index Ib

aR by using the Euclidean
algorithm [12] and Sturm’s theorem [7]. Indeed, if deg s ≥
deg r we may define a sequence f1, f2, · · · , fm of polyno-
mials as follows: f1 = s, f2 = r and fi = qifi+1 − fi+2

with deg fi+2 < deg fi+1, and fm = GCD(r, s). Then,

Theorem 3.1 [Sturm] Let f1, · · · , fm be as above, and let
V (x) be the number of sign changes in the sequence of num-
bers f1(x), f2(x), · · · , fm(x), x ∈ R. Then,

Ib
aR = V (a) − V (b).

Finally, we define

IAF = Ia2

a1

q(x, a3)

p(x, a3)
+ Ia4

a3

q(a2, y)

p(a2, y)
+ Ia1

a2

q(x, a4)

p(x, a4)

+ Ia3

a4

q(a1, y)

p(a1, y)
.

Then, we have

Theorem 3.2 (Proposition 1, [12], p. 540)

d = −1

2
IAF.



Example 2 Suppose

f(z) = (z − 1

2
)5 = 0. (5)

Obviously, the only root of f(x) is 0.5 with multiplicity 5.
We are going to use the above method to compute the mul-
tiplicity of the root.

Let z = x+ iy. Then we can rewrite equation (5) as fol-
lows:

f(z) = (x+ iy − 1

2
)5 = p(x, y) + iq(x, y), (6)

where

p(x, y) = − 1

32
+

5x

16
− 5y4

2
− 5x2

4
+ 5xy4

−15xy2

2
+ 15x2y2 +

5y2

4
+

5x3

2
− 5x4

2
+x5 − 10x3y2,

q(x, y) = −5y

16
− 5y3

2
− 10yx3 +

15yx2

2
+ y5

+5yx4 − 5xy

2
− 10y3x2 + 10y3x.

Since the root of equation (5) is known, we can create a rect-
angular domain A which encloses (0.5, 0) as follows:

A = [0.49, 0.51]× [−0.01, 0.01] . (7)

The boundary of the domainA, ∂A, consists of four straight
lines, from which we can obtain the values a1 = 0.49,
a2 = 0.51, a3 = −0.01 and a4 = 0.01 that are used for
the Cauchy index computation. Then, we have four polyno-

No. Roots
1 0.4692231646
2 0.4927345747
3 0.5000000000
4 0.5072654253
5 0.5307768354

Table 1. Roots of p(x, a3) = 0

mial equations p(x, a3) = 0, p(x, a4) = 0, p(a1, y) = 0
and p(a2, y) = 0. The roots of each equation can be ob-
tained by using Maple or Mathematica. Table 1 summarizes
all roots of p(x, a3) = 0. We choose three roots, no. 2, 3 and
4 from Table 1 since they lie within a1 and a2. From the al-
gorithm for the Cauchy index calculation, we find that the
corresponding Cauchy index, Ia2

a1
R3, is −3. Similarly, we

can find Ia4
a3
R2 = −2, Ia1

a2
R4 = −3 and Ia3

a4
R1 = −2.

Therefore, the sum of all Cauchy index values is

IAF = Ia2

a1
R3 + Ia4

a3
R2 + Ia1

a2
R4 + Ia3

a4
R1 = −10, (8)

and the degree of the Gauss map becomes

d = −1

2
IAF = 5, (9)

which is the known multiplicity of the root x = 0.5.

3.2.2. Direct Computation Method The topological de-
gree computation using the Gauss map and the Cauchy in-
dex explained in Sections 3.1 and 3.2.1 are mathematically
sound. However, the algorithms may not be easily imple-
mented for practical purposes since they require symbolic
manipulation to extract real and imaginary parts p(x, y) and
q(x, y) as in equation (6). In addition, roots of polynomi-
als along the boundary that are required in the Cauchy in-
dex calculation have to be found robustly, which is a prob-
lem that we are trying to solve in this paper. Any symbolic
computation routines such as Maple and Mathematica could
be used in the implementation but the performance of those
programs is not promising. Therefore, a different approach
has to be considered for the implementation.

Instead of using the Cauchy index to compute the de-
gree of the Gauss map, we opt to compute the degree of the
Gauss map directly from the map F defined in Section 3.1.
We can calculate the degree of the Gauss map by under-
standing the behavior of the map F . Obviously, the number
of times that the map F (x, y) surrounds the origin (0, 0) as
(x, y) is moving along the closed loop ∂A which encloses
a zero in the xy domain is equivalent to the degree of the
Gauss map. This allows us to compute the degree without
the help of the Cauchy index computation. We will denote
this algorithm as the direct computation method.

We define a map F as given in Proposition 3.1 and sam-
ple points on the closed loop ∂A in the xy domain, which
are mapped onto vectors through F . How many points
should be sampled is a critical issue in this process. The
number of sampling points is large enough to capture all
small loops of the map F surrounding the origin in the vec-
tor field. This problem is similar to computation of zeros of
analytic functions using the principle of the argument. An
estimate of the number of sampling points can be obtained
based on the results of [3, 1, 17].

Suppose we have two consecutive sample points m,
m+1 on ∂A. The corresponding vectors are Fm and Fm+1,
respectively as shown in Figure 2. The angle between the
vectors is calculated by ∆φm+1 = arg(Fm+1)−arg(Fm),
where arg(F) is an angle from a fixed axis. The total sum
of ∆φm+1

φtotal =

n
∑

i=0

∆φi+1 (10)

will give the total angle change of a vector of the map F
during one loop along ∂A. The rotation number, i.e. the de-
gree of the Gauss map can be calculated by d = φtotal

2π
.
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Figure 2. A diagram for the direct computa-
tion method

An example polynomial in complex numbers is f(z) in
equation (6). At sampled points (x, y) along the boundary
∂A, the polynomial f(z) is evaluated at a complex value
z = x+ iy. Two hundred points are sampled along ∂A and
their corresponding points of the map F are plotted in Fig-
ure 3. Each side of the rectangle in xy plane is mapped by F
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Figure 3. A plot of (p(x,y),q(x,y))

onto a curve which wraps the origin one and a quarter time,
namely, the rotation angle in the Gauss map is 2π + π

2 as
shown in Figure 3. Therefore, the origin is wrapped around
five times by the map F , which corresponds to the result of
the direct calculation method.

Applications and Examples To understand the behavior
of the IPP algorithm [10, 14], let us consider a univariate
polynomial defined as follows:

y = f(x) =

(

x− 1

2

)2m

, m = 1, 2, 3, 4 (0 ≤ x ≤ 1).

(11)
Two tolerances for the IPP algorithm are chosen to solve
equation (11): 10−4 and 10−7. These tolerances relate to
the maximum size of the intervals not discarded by the IPP
algorithm as not containing roots.

The number of roots before consolidation for each m is
summarized in Table 2, based on IEEE double (64 bit) pre-
cision rounded interval arithmetic. The consolidation is a
process of taking the union of intersecting intervals, and
merging them into a single interval. Due to the high de-

m 10−4 10−7

1 1 1
2 1 2048
3 48 49151
4 222 196607

Table 2. Number of roots of (11) before con-
solidation under double precision for two in-
put tolerances

gree of contact of the graph y = f(x) of (11) with the x
axis at the root, the IPP algorithm yields a series of inter-
vals reported as roots as shown in Table 2. The consolida-
tion may generate one interval which encloses roots but its
size can be much larger than the input tolerances so that the
consolidated interval may not be useful in practice. More-
over, the intervals produced by the IPP algorithm cannot
be guaranteed to contain a root because the algorithm pro-
ceeds by discarding the intervals that do not for sure en-
close the root. This means that some intervals do not have
a root even though they are not discarded by the IPP al-
gorithm. This phenomenon deteriorates when the degree of
contact increases as indicated in Table 2, which can be ex-
plained as follows: The graph y = f(x) is transformed to a
polynomial in Bernstein basis and provided as input to the
IPP algorithm. The IPP algorithm uses the control points
of the polynomial to discard the regions which do not con-
tain roots with the convex hull property of Bernstein poly-
nomials. Near a root with high multiplicity, the polynomial
is very close to the x axis, even though it does not touch it.
However, the control points of the polynomial could cross
the axis due to the limited precision of a computer (i.e. dou-
ble precision) and rounded interval arithmetic. When this
happens, the IPP algorithm cannot distinguish between two
distinct states: either the polynomial itself really crosses the
axis or only the control polygon crosses the axis. Therefore,
the IPP algorithm will mark as a root the interval where the
control polygon crosses the axis even though the real poly-
nomial does not. Hence, each individual interval needs to be
verified to make sure it contains at least one root, and the in-
tervals which do not enclose a root should be discarded.

Such problems inherent to the IPP algorithm can be han-
dled by using the procedure in Section 3. The choice of a
domain A which encloses a root can be arbitrary. Since the
IPP algorithm produces intervals, we can use them to con-



IPP Tol. 10−4 IPP Tol. 10−7

m
Intervals Red. (%) Intervals Red. (%)

1 1 0 1 0
2 1 0 1 99.9512
3 2 97.9167 2 99.998
4 2 99.5495 2 99.9995

Table 3. Number of remaining intervals and
reduction ratios for the roots of (11)

struct a rectangular domain A. The height of the domain
may be chosen equal to the size of each interval for simplic-
ity. Then, the direct calculation method is applied to each
rectangular domain. If the direct computation method pro-
duces zero, which means that there is no zero inside the box,
then the corresponding interval is discarded. A value more
than one indicates that the box encloses at least one zero.

Table 3 shows the number of intervals left after the direct
computation method has been applied to each case shown
in Table 2. A workstation with a 1.6GHz CPU and 512MB
RAM under Linux was used in this test. Two intervals are
sorted out as the root of the polynomial of high degree cases
m = 3, 4. Both intervals enclose a root x = 0.5 and inter-
sect with each other. We cannot choose one of them as a
root. Instead, we can consolidate them to one interval (i.e.
take their union), whose size is a little larger than the in-
put tolerance.

Accuracy and Complexity Analysis The time complexity
of the direct computation method is linearly proportional to
the number of sample points along the boundary ∂A, ns,
and the number of input intervals produced by the IPP al-
gorithm, nI . Therefore, the time complexity of the method
becomes O(nsnI). However, the reduction of the number
of intervals containing roots is significant. Hence it is ex-
pected that the processing time for subsequent procedures
is reduced accordingly.

The topological degree computation algorithm guaran-
tees that at least one root exists inside an interval. But it
is not obvious how many isolated roots are in that interval.
There could be either one isolated root with a multiplicity
d or there are d isolated roots in the interval which are very
closed to each other, or a combination of roots of both types.
The distinction of the three cases cannot be made unless ad-
ditional precision is used for evaluation.

3.3. Summary

In this section, we introduced a procedure to compute the
multiplicity of a root of a univariate polynomial using the
Gauss map and the Cauchy index, and developed a practi-
cal method called, the direct computation method, for mul-

tiplicity evaluation. In the next section we will propose an
algorithm for solving a univariate polynomial equation us-
ing the direct computation method.

4. An Algorithm for Solving a Univariate
Polynomial Equation : Topological De-
gree Bisection (TDB) Algorithm

In this section, a modified algorithm is proposed, which
is more simple and efficient for finding all roots of a univari-
ate polynomial than the IPP algorithm, and extracts all real
and complex roots of the polynomial as well as their mul-
tiplicities. This algorithm is motivated by the work of Wilf
[16]. In his work, Sturm sequences [7] are computed in cal-
culating the number of zeros of a polynomial inside a do-
main. But the use of Sturm sequences is prone to numerical
errors in floating point arithmetic. The proposed algorithm
avoids Sturm sequences in the degree computation and is
based on a quadtree decomposition technique with the di-
rect computation method proposed in Section 3.2.2. Un-
like other subdivision methods such as the IPP algorithm,
the proposed method can generate boxes which are guaran-
teed to contain roots and produce multiplicity information
of each root.

4.1. TDB Algorithm

The input of this algorithm is prepared as follows: We
replace the variable of a univariate polynomial with a com-
plex variable z = x+ iy. Then we take a rectangle S in the
complex domain which encloses all real and complex roots
of the polynomial. This rectangle can be determined by us-
ing the coefficients of the polynomial and we verify that the
number of roots in the rectangle (including multiplicities) is
equal to the degree of the polynomial.

A pseudo-code of this algorithm is presented in Table 4.
Let us consider a rectangle S = [a1, b1] × [a2, b2] in R

2,
where [ai, bi] is a closed interval in R and denote TOL as
the user-defined tolerance.

The input of the TDB algorithm is a rectangle S and a
univariate polynomial. The rectangle is the domain where a
problem is defined. The output is a list of rectangles which
contain roots. Here, the input polynomial is assumed to con-
tain isolated roots only. In line 1, the total number of roots
in S is computed by using the direct computation algorithm.
This number should be equal to the degree of the input poly-
nomial since both real and complex roots are counted. If the
computed number of roots and the degree of the polyno-
mial are different, we increase the sampling rate for the di-
rect computation method until both numbers match. If there
is no root, then the routine terminates. Lines 3 and 4 check
if the length of each side of the rectangle S is less than
TOL. If so, then S is reported as a rectangle containing



Iteration(S)
1 : deg = degree(S);
2 : if(deg == 0) then return;
3 : size x = |b1 − a1|; size y = |b2 − a2|
4 : if(size x < TOL AND size y < TOL) then

report S; return;
5 : subdivide(S,s1,s2,s3,s4);
6 : deg1 = degree(s1);deg2 = degree(s2);

deg3 = degree(s3);deg4 = degree(s4);
7 : total degree = deg1 + deg2 + deg3 + deg4;
8 : while(total degree < deg)
9 : adjust(s1,s2,s3,s4,TOL);
10 : deg1=degree(s1);deg2=degree(s2);

deg3=degree(s3);deg4=degree(s4);
11 : total degree = deg1 + deg2 + deg3 + deg4;
12 : end
13 : Iteration(s1); Iteration(s2);

Iteration(s3); Iteration(s4);
end

Table 4. TDB algorithm

a root. If not, the rectangle S is subdivided into four rect-
angles s1, s2, s3 and s4 at the mid points of each side of
S. The numbers of roots in si (i = 1, 2, 3, 4) are com-
puted in line 6. Theoretically, the sum of the numbers of
roots in si (i = 1, 2, 3, 4) should be equal to the number of
roots in S. However, it frequently happens that a root lies
on a side of a subdivided rectangle, which violates the as-
sumption made in the Gauss map computation discussed in
Section 3.2. Therefore, in such a case, the sum of the num-
bers of roots over each si (i = 1, 2, 3, 4) is different from
that over S. If this happens, then lines 7 through 11 are per-
formed. In line 8, each rectangle si is adjusted such that the
size (width and height) of si is increased by 0.01 × TOL.
After this adjustment, each new rectangle si overlaps with
its adjacent rectangle. Then, the total number of roots over
all si is computed as in lines 9 and 10. This process is re-
peated until the total number of roots over the si is equal to
or larger than the number of roots in S. When the iteration
stops, each rectangle si is provided as an argument to the
routine itself recursively. Due to the adjustment process, the
algorithm often generates different rectangles which con-
tain the same root. So, all rectangles are checked such that
any two rectangles which overlap are merged into a single
rectangle which encloses them.

4.2. Examples

In this section, the proposed algorithm is tested with two
concrete examples. The workstation identified in Section 3
is used and the algorithm is implemented in C++ and com-
piled with GNU g++.

Roots d

[0.0499999995,0.0500000001]+i[-5.820766091e-10,5.770766091e-10] 1
[0.0999999995,0.1000000001]+i[-5e-12,5.770766091e-10] 1

[0.1499999996,0.1500000001]+i[-5.820766091e-10,5.770766091e-10] 1
[0.1999999996,0.2000000002]+i[-5e-12,5.770766091e-10] 1

[0.2499999996,0.2500000002]+i[-5.820766091e-10,5.770766091e-10] 1
[0.2999999997,0.3000000003]+i[-5e-12,5.770766091e-10] 1

[0.3499999997,0.3500000003]+i[-5.820766091e-10,5.770766091e-10] 1
[0.3999999998,0.4000000004]+i[-5e-12,5.770766091e-10] 1

[0.4499999998,0.4500000004]+i[-5.820766091e-10,5.770766091e-10] 1
[0.4999999999,0.5000000005]+i[-5e-12,5.770766091e-10] 1

[0.5499999999,0.5500000005]+i[-5.820766091e-10,5.770766091e-10] 1
[0.6000000000,0.6000000006]+i[-5e-12,5.770766091e-10] 1

[0.6499999994,0.6500000001]+i[-5.820766091e-10,5.770766091e-10] 1
[0.6999999995,0.7000000001]+i[-5e-12,5.770766091e-10] 1

[0.7499999995,0.7500000001]+i[-5.820766091e-10,5.770766091e-10] 1
[0.7999999996,0.8000000002]+i[-5e-12,5.770766091e-10] 1

[0.8499999996,0.8500000002]+i[-5.820766091e-10,5.770766091e-10] 1
[0.8999999997,0.9000000003]+i[-5e-12,5.770766091e-10] 1

[0.9499999997,0.9500000003]+i[-5.820766091e-10,5.770766091e-10] 1
[0.9999999998,1.0000000001]+i[-5e-12,5.770766091e-10] 1

Table 5. Roots of equation (12)

A first example is Wilkinson’s polynomial in which
twenty real roots are equally distributed on [0, 1]:

p(t) =

20
∏

i=1

(

t− i

20

)

= 0. (12)

The condition numbers of many of the roots of equation
(12) are very high so that finding all roots is difficult [10].
This equation is provided to the proposed algorithm with
a tolerance of 10−9 and 2000 sampling points for the di-
rect computation method. It takes 103 seconds for compu-
tation. All roots are summarized in Table 5 together with
their multiplicities d. All numbers are rounded at the 11th
digit below the decimal point for display. The maximum
width of the real part of the intervals representing the roots
is 5.87×10−10. The maximum width of the imaginary parts
is 1.16× 10−9 and all imaginary parts contain zero.

The algorithm is also tested with a polynomial with real
and complex roots with multiplicities d as follows:

p(t) = (t2+t+1)2(t−1)4(t3+t2+t+1)3(t−2)(t−4)4 = 0.
(13)

By inspection, the exact roots and multiplicities d are given
in Table 6. A tolerance of 10−9 and 2800 sample points are
used in the TDB algorithm. The resulting roots and multi-
plicities are summarized in Table 7. All real numbers are
rounded at the fourth digit below the decimal point for dis-
play. The execution time of the computation is 60 seconds.
Comparing with Table 6, we see that the obtained roots from
the TDB algorithm enclose the exact roots and the multi-
plicities are the same.

4.3. Analysis and Comparison

It is impossible to know a priori how many rectangles
will be tested by the direct computation method in gen-



Roots d
i 3
1 4
4 4

− 1
2 + i

√
3

2 2
-1 3

− 1
2 − i

√
3

2 2
-i 3
2 1

Table 6. Exact roots and multiplicities of (13)

Roots d
[-5.956e-10,5.956e-10]+i[1,1] 3
[1,1]+i[-5.956e-10,5.956e-10] 4
[4,4]+i[-5.939e-10,5.939e-10] 4

[-0.5,-0.5]+i[0.866,0.866] 2
[-1,-1]+i[-5.956e-10,5.956e-10] 3

[-0.5,-0.5]+i[-0.866,-0.866] 2
[-5.956e-10,5.956e-10]+i[-1,-1] 3

[2,2]+i[-5.94e-10,0] 1

Table 7. Roots of equation (13)

eral. But we can analyze the algorithm for the worst case.
This algorithm is based on the quadtree decomposition tech-
nique. So it forms a tree with four children at each node dur-
ing execution. Let us assume that the algorithm has stopped
at a depth de and subdivision has happened at every node
up to depth de − 1. Then, the total number of nodes will
be

∑de−1
j=0 4j . For each node, the algorithm has complexity

O(mnp), wherem is the degree of an input polynomial and
np is the number of sample points used by the direct com-
putation method. Hence, the time complexity of the worst
case becomes O(4demnp).

The complexity of the IPP algorithm for a univariate
polynomial of degree m is O(m2) per step, whereas the
TDB algorithm has complexity O(mnp) per step. So we
cannot compare both methods directly since depending on
np, the complexity of the TDB algorithm could be signifi-
cantly different. When an input univariate polynomial con-
tains only simple roots, then the IPP algorithm outperforms
the proposed TDB algorithm. But when the input polyno-
mial has a root with high multiplicity, the performance of
the IPP algorithm progressively deteriorates with increas-
ing multiplicity as opposed to the TDB algorithm whose
performance remains proportional to the degree of the in-
put polynomial. Let us take equation (11) for this compari-
son. The same input tolerance of 10−7 is used for this test,
and 2000 sample points are used for the TDB algorithm.
The time comparison results are consistent with the above

analysis as shown in Table 8.

Degree IPP TDB Algorithm
6 8.76 1.34
8 52.32 1.70
10 193.9 2.06

Table 8. Elapsed time comparison (seconds)

The IPP algorithm has several drawbacks. First, in or-
der to use the IPP algorithm, the input equation has to be
transformed such that roots should exist within [0, 1]. More-
over, the input polynomial has to be represented in the Bern-
stein form. This conversion itself is an unstable process [2]
and special care must be taken not to lose accuracy of co-
efficients during the conversion, i.e. exact arithmetic is nor-
mally needed in this preliminary formulation step. Second,
no information on root multiplicity can be obtained from the
IPP algorithm. Last, the IPP algorithm cannot assure that all
intervals really contain roots. All of these difficulties can be
efficiently handled by the TDB algorithm.

5. Bivariate Case

In this section we will give a procedure for the compu-
tation of roots, along with their multiplicities, of a bivariate
polynomial system.

5.1. A Suitable Change of Coordinates

Let f(x, y), g(x, y) be two real polynomials without
common factors, of degrees n,m, respectively. We would,
first, like to bring f(x, y) and g(x, y) in the form (4). To
achieve that form, we shall define new coordinates (x̄, ȳ)
through the linear isomorphism:

x = x̄+ kȳ, y = ȳ (14)

Let then f̄(x̄, ȳ) = f(x̄+ kȳ, ȳ) and ḡ = g(x̄+ kȳ, ȳ). The
following result is similar to Lemma 2, p. 407 of [13]:

Proposition 5.1 We can choose a rational number k so that
f̄ and ḡ satisfy the following two conditions:

CR f̄ and ḡ are regular in y,

CU whenever two points (x̄0, ȳ0) and (x̄1, ȳ1) satisfy f̄ =
ḡ = 0, then ȳ0 = ȳ1.

Proof Let φn(x, y), ψm(x, y) be the homogeneous terms
of f, g of degrees n,m, respectively. Let also zi = (xi, yi)
be the roots of f = g = 0. Choose a rational number k so
that:

(i) φn(k, 1)·ψm(k, 1) 6= 0 and (ii) k 6= xi − xj

yr − ys

(15)



for all i 6= j and r 6= s. Now the ȳn in f̄ is then φ̄n(0, ȳ) =
φn(0 + kȳ, ȳ) = φn(k, 1) ȳn. That shows that f̄ is regu-
lar in y. Similarly, ḡ is also regular in y. Also, if we assume
that two points (x̄0, ȳ0) and (x̄1, ȳ1) with ȳ0 6= ȳ1 satisfy
f̄ = ḡ = 0, then the corresponding untransformed points
given by (x′, y′) = (x̄0, ȳ0) and (x′′, y′′) = (x̄1, ȳ1) clearly
satisfy f = g = 0 and

k =
x′ − x′′

y′ − y′′

which contradicts (15ii).
Even though Proposition 5.1 gives us an infinite choice

for the right k, it is impractical to attempt to apply require-
ment (15ii) directly in choosing k. There is, however, a com-
putational way of resolving this difficulty. The reader is re-
ferred to Remark 3, p. 409 of [13] for all the details in-
volved. From now on, in view of Proposition 5.1, we will
assume that the given polynomials f(x, y) and g(x, y) sat-
isfy conditions CR and CU.

5.1.1. Example Let us assume that we have two real poly-
nomial equations as follows [10]:

f(x, y) =
x2

4
+ y2 − 1 = 0,

g(x, y) = (x− 1)2 + y2 − 1 = 0, (16)

whose zero sets are illustrated in Figure 4. The exact roots

y

2

1

0

−1

−2

x

210−1−2

f(x,y)=0
g(x,y)=0

Figure 4. A circle and ellipse, equations (16)

of (16) are:

z1 =

(

2

3
,
2

3

√
2

)

, z2 =

(

2

3
,−2

3

√
2

)

, z3 = (2, 0) . (17)

Roots z1 and z2 have multiplicity one and z3 has multiplic-
ity two. Obviously we can see that equations (16) do not sat-
isfy the CU condition. Now, using the linear isomorphism
(14), we can rewrite (16) as follows:

f̄(x̄, ȳ) = ȳ2 +
2kx̄

k2 + 4
ȳ +

x̄2 − 4

k2 + 4
= 0,

ḡ(x̄, ȳ) = ȳ2 +
2k(x̄− 1)

1 + k2
ȳ +

x̄(x− 2)

k2 + 1
= 0. (18)

From the subresultant computation [13], we find that

s00 = 0,

s11 =
1

(1 + k2)(4 + k2)

[

6kx̄− 2k(k2 + 4)
]

,

where sjj denotes the j-th subresultant of f and g. We
choose k = 1 such that s11 6≡ 0. Then equations (18) be-
come

f̄(x̄, ȳ) =
5

4
ȳ2 +

1

2
x̄ȳ +

x̄2

4
− 1 = 0,

ḡ(x̄, ȳ) = 2ȳ2 + 2(x̄− 1)ȳ + x̄2 − 2x̄ = 0, (19)

illustrated in Figure 5. The exact roots of (19) are:

y
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Figure 5. Drawings of (19)

(

2

3
(1 +

√
2),−2

3

√
2

)

,

(

2

3
(1 −

√
2),

2

3

√
2

)

, (2, 0) .

Therefore, equations (19) satisfy the CR and CU condi-
tions.

5.2. An Algorithm for Solving a Bivariate Polyno-
mial System

Let f(x, y), g(x, y) be as above and consider h(x) =
Resy(f, g). Let x1, x2, · · · , xr be the (distinct) roots of



h(x). Then, we claim that above each such xi, there is one,
and only one, yi so that the pair zi = (xi, yi) is a root of sys-
tem (3). Moreover, zi is a real root if and only if xi ∈ R.
Indeed, since f, g are regular in y, the lifting property of re-
sultants says that for each h(xi) = 0, there exists a yi ∈ C,
so that f(xi, yi) = g(xi, yi) = 0; this yi is unique from
condition CU. Moreover, if xi ∈ R, yi has to be a real num-
ber as well, since the coefficients of f and g are real.

We summarize the above in the following

Remark 5.1 Let f(x, y), g(x, y) be as in Proposition 5.1,
and let h(x) = Resy(f, g). Then the roots of the system (3)
are in an one to one correspondence with the roots of h(x).
Moreover, zi = (xi, yi) is a real root of (3) if and only if xi

is a real root of h(x).

Now suppose that a rectangle S = [a1, a2] × [a3, a4]
in R

2, contains all real roots of (3). Using our procedure
for the univariate case, we assume that we have a partition
a1 = t1 < t2 < t3 < · · · < tk = a2 of [a1, a2] so that
in each subinterval [ti, ti+1] there exists precisely one (real)
root ri of h(x). Similarly, we also compute the resultant rel-
ative to x, l(y) = Resx(f, g) and using the same procedure
we can find a partition a3 = s1 < s2 < s3 < · · · < sc = a4

of [a3, a4] such that there exist roots vj of l(y) = 0 in each
subinterval [sj , sj+1]. Then we can find a set of kc boxes,
T

T = {αij |αij = [ti, ti+1] × [sj , sj+1]} .
Remark 5.2 Let us assume that we have a system of equa-
tions (3) and αij = [ti, ti+1] × [sj , sj+1] encloses a real
root of (3). Then, the following must be true

0 ∈ f([ti, ti+1], [sj , sj+1]) × g([ti, ti+1], [sj , sj+1]),

where f and g are evaluated in interval arithmetic.

Using Remark 5.2, we can sort out the boxes aij which en-
close roots and associate the corresponding multiplicity.

5.2.1. Examples We take the system of equations (19) as
our first example. The resultants of (19) relative to y and x
are

h(x) =
1

16
(9x2 − 12x− 14)(x− 2)2,

l(y) =
1

16
y2(9y2 − 8). (20)

Using the TDB algorithm with a tolerance 10−7, we can
find the roots of h(x) = 0 and l(y) = 0 in Tables 9 and 10,
respectively. Now, we can compute nine boxes from Ta-
bles 9 and 10. Using Remark 5.2, we have the following
roots and multiplicities, d as in Table 11.

A next example is a system of bivariate polynomials
given as follows [15]:

f(x, y) = x3 − 3x2 + 5x− 4 + y3

Roots d
[1.99999995,2.00000003] 2

[-0.27614243,-0.27614236] 1
[1.60947569,1.60947576] 1

Table 9. Roots and multiplicities of h(x) = 0

Roots d
[-7.4506e-08,7.4506e-08] 2

[-0.94280906,-0.94280899] 1
[0.94280899,0.94280906] 1

Table 10. Roots and multiplicities of l(y) = 0

−3y2 + 5y − 2xy = 0,

g(x, y) = 2x3 − 2x2 + x− 4 − 4x2y + 2xy (21)
+9y + 3xy2 − 8y2 + y3 = 0,

illustrated in Figure 6. The resultants h(x) and l(y) are
given as

h(x) = 56x9 − 704x8 + 3880x7 − 12304x6

+24744x5 − 32736x4 + 28504x3 (22)
−15760x2 + 5024x− 704.

l(y) = −56y9 + 608y8 − 2824y7 + 7312y6

−11496y5 + 11136y4 − 6328y3 (23)
+1744y2 − 32y − 64.

We can find roots of h(x) = 0 and l(y) = 0 using the TDB
algorithm with a tolerance 10−7, and apply Remark 5.2 to
have roots and multiplicities, d, of (21) as in Table 12.

5.3. Implementation

The algorithm proposed in Section 5 requires an expres-
sion of a resultant of two input polynomial equations. This
resultant computation must be performed in exact arith-
metic to maintain all topological and numerical properties
of roots of the polynomial system. We can use a resultant
computation algorithm [4] or any type of computer algebra
system such as Maple. Also, since we know that a resul-
tant is equivalent to the determinant of the Sylvester matrix

Root (x,y) d
[1.99999995, 2.00000003]x[-7.4506e-8,7.4506e-8] 2

[-0.27614243, -0.27614236]x[0.94280899, 0.94280906] 1
[1.60947569, 1.60947576]x[-0.94280906, -0.94280899] 1

Table 11. Roots and multiplicities of (19)
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Figure 6. Drawings of (21)

Root (x,y) d
[0.999999978, 1.00000001]x[0.99999994, 1.00000001] 5

[1.57142855, 1.57142859]x[-0.142857209, -0.142857134] 1
[1.99999999, 2.00000003]x[1.99999996, 2.00000003] 3

Table 12. Roots and multiplicities of (21)

[7] of two bivariate polynomials, we can treat the determi-
nant of the matrix as a function which is provided as input
to the TDB algorithm.

5.4. Application

Similarly to the univariate polynomial case in Section
3.2.2, a significant improvement over the IPP algorithm
can be also achieved by using the procedure for the bivari-
ate polynomial system. Namely, we can eliminate spurious
roots and provide the multiplicity information of each root
for a bivariate polynomial system. Assume that we have
two real polynomials f(x, y) = g(x, y) = 0, which sat-
isfy Proposition 5.1. We apply the IPP algorithm to com-
pute the roots zi = ([xi], [yi]), (i = 1, · · · , s) of the sys-
tem. Then, we compute the resultant of f and g with re-
spect to y, h(x) = Resy(f, g). The next step is to com-
pute all roots [b1], · · · , [br] of h(x) = 0 and their multiplic-
ities d1, · · · , dr by using the TDB algorithm in Section 4.
After finding the roots of h(x) = 0 we choose [b1] and se-
lect zj whose x component overlaps with [b1]. We repeat
this process for all [b]’s. Then, the selected z’s are consoli-
dated and reported as roots of the bivariate polynomial sys-
tem with their multiplicity.

This procedure can be illustrated with an example. Let

Root (x) d
[0.59999996, 0.60000002] 2
[0.50236893, 0.50236899] 1
[0.03096437, 0.03096443] 1

Table 13. Roots and multiplicities of h(x) = 0

us assume that we have a system of bivariate polynomials
as follows:

f(x, y) =
5

4
y2 +

1

2
xy − 13

10
y +

1

4
x2

− 3

10
x+

111

400
= 0,

g(x, y) = 2y2 + 2xy − 27

10
y + x2 (24)

−17

10
x+

91

100
= 0,

illustrated in Figure 7. The resultant of (24) with respect to

y
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Figure 7. Drawings of (24)

y is

h(x) =
9

16
x4 − 39

40
x3 +

457

800
x2 − 237

2000
x+

63

20000
. (25)

The roots and multiplicities d of (25) are obtained as in Ta-
ble 13 by using the TDB algorithm in Section 4 with a tol-
erance 10−7. The IPP algorithm using the same tolerance
10−7 produces 4138 boxes that have not been rejected as
not containing roots. Using the roots in Table 13, we can re-
duce the number to eight roots and after consolidation of the
eight roots, we have the roots in Table 14 along with their
multiplicities.



Root (x,y) d
[0.59999987, 0.60000012],[0.49999987,0.50000015] 2
[0.50236888, 0.50236909],[0.26429769,0.26429779] 1
[0.03096428, 0.03096447],[0.73570220,0.73570230] 1

Table 14. Roots and multiplicities of (24)

6. Conclusions

In this paper we presented a method that relies on the no-
tion of local degree for the computation of single, as well as,
multiple roots of univariate and bivariate polynomial sys-
tems. Even though most of the ideas presented here were in
existence for some time, it is the first time that are used in
this context.

It is apparent from the presentation that multiple roots
are difficult to deal with. Indeed, most of the existent root
finding algorithms experience difficulties in dealing with
such roots.

Our method, however, is successful in isolating and com-
puting multiple roots of univariate and bivariate polynomial
systems. This method provides the basis for further research
needed in addressing the general problem of multiple roots
of nonlinear polynomial systems in n variables.
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