
Nicholas M. Patrikalakis Takashi Maekawa

Shape Interrogation for Computer

Aided Design and Manufacturing

SPIN Springer's internal project number, if known

Mathematics { Monograph (English)

June 26, 2001

Springer-Verlag

Berlin Heidelberg NewYork

London Paris Tokyo

HongKong Barcelona

Budapest

Preface

Objectives and Features
Shape interrogation is the process of extraction of information from a geo-

metric model. Shape interrogation is a fundamental component of Computer
Aided Design and Manufacturing (CAD/CAM) systems and was �rst used in
such context by M. Sabin, one of the pioneers of CAD/CAM, in the late six-
ties. The term surface interrogation has been used by I. Braid and A. Geisow
in the same context. An alternate term nearly equivalent to shape interro-
gation is geometry processing �rst used by R. E. Barnhill, another pioneer of
this �eld. In this book we focus on shape interrogation of geometric models
bounded by free-form surfaces. Free-form surfaces, also called sculptured sur-
faces, are widely used in scienti�c and engineering applications. For example,
the hydrodynamic shape of propeller blades has an important role in marine
applications, and the aerodynamic shape of turbine blades determines the
performance of aircraft engines. Free-form surfaces arise also in the bodies of
ships, automobiles and aircraft, which have both functionality and attractive
shape requirements. Many electronic devices as well as consumer products
are designed with aesthetic shapes, which involve free-form surfaces.

When engineers or stylists design geometric models bounded by free-form
surfaces, they need tools for shape interrogation to check whether the de-
signed object satis�es the functionality and aesthetic shape requirements.
This book provides the mathematical fundamentals as well as algorithms for
various shape interrogation methods including nonlinear polynomial solvers,
intersection problems, di�erential geometry of intersection curves, distance
functions, curve and surface interrogation, umbilics and lines of curvature,
geodesics, and o�set curves and surfaces.

The book can serve as a textbook for teaching advanced topics of geomet-
ric modeling for graduate students as well as professionals in industry. It has
been used as one of the textbooks for the graduate course \Computational
Geometry" at the Massachusetts Institute of Technology (MIT). Currently
there are several excellent books in the area of geometric modeling and in
the area of solid modeling. This book provides a bridge between these two
areas. Apart from the di�erential geometry topics covered, the entire book is
based on the unifying concept of recasting all shape interrogation problems
to the solution of a nonlinear system.

VI

Structure and Outline
Chapter 1 presents a brief overview of analytical methods for the repre-

sentation of curves and surfaces in a computer environment. We focus on the
parametric representation of curves and surfaces, commonly used in CAD
systems for shape speci�cation. We next review the theory of Bernstein poly-
nomials and associated algorithms and their application in the de�nition and
manipulation of B�ezier curves and surface patches. Finally in this chapter,
we review the theory of B-spline basis functions and associated algorithms
and their application in the de�nition and manipulation of B-spline and Non-
Uniform Rational B-spline curves and surface patches. In our development of
Bernstein polynomials and B-spline basis functions and the associated curve
and surface representations, we do not provide detailed proofs as they are
already contained in other existing books on geometric modeling, on which
we rely for instructional purposes.

Chapters 2 and 3 provide an overview and introduction into the classical
elementary di�erential geometry of explicit, parametric and implicit curves
and surfaces, necessary for the development of the more advanced di�eren-
tial geometry topics that are presented in Chaps. 6, 8, 9 and 10. Much of the
material of Chaps. 2 and 3 (except the treatment of curvatures of implicit sur-
faces) can be generally found in various forms in existing books on di�erential
geometry and is included for convenience of the reader and completeness of
our development.

Chapter 4 focuses on the development of geometrically motivated solvers
for nonlinear equation systems and the related numerical robustness (relia-
bility) issues. Much of the shape interrogation problems de�ned and solved
in this book can be reduced to solving systems of n nonlinear polynomial
equations in l unknowns, each of which varies within a known interval. Much
of the development is based on the Interval Projected Polyhedron (IPP) al-
gorithm, developed in our Design Laboratory at MIT in the early nineties.
Some shape interrogation problems involve more general nonlinear functions
including radicals of polynomials. These are also converted to nonlinear poly-
nomial systems of higher dimensionality via an auxiliary variable method.
The fundamental feature of the IPP algorithm is that it allows recasting of
continuous shape interrogation problems encountered in geometric modeling
and processing of free-form shapes into the discrete problem of computing
convex hulls of a set of points in a plane and their intersections with other
convex hulls along a particular axis. In this way, a bridge between the largely
disparate �elds of geometric modeling of free-form shapes (largely based on
numerical analysis and approximation theory) and discrete computational
geometry (largely based on the theory of algorithms and combinatorics) is
established. Another fundamental feature of the IPP algorithm, is the use of
rounded interval arithmetic motivated by questions of numerical robustness
or reliability, which have high importance in CAD/CAM systems. Interval
methods are a special branch of numerical analysis, with great potential for

VII

applications in geometric modeling and processing problems. Interval meth-
ods have not yet been used extensively in practice, because, if they are applied
naively, they lead to interval growth that reduces the possible achievable pre-
cision in a numerical computation. However, when combined with geometric
modeling algorithms based on convex combinations (as the de Casteljau al-
gorithm), they lead to very minor interval growth and permit e�ective and
high accuracy solutions in practice. The IPP algorithm robustly eliminates
subregions of the domain which do not contain roots, thereby allowing e�ec-
tive bracketing of the roots of the nonlinear system within a given box with
size typically much smaller than the actual accuracy of the results of current
CAD/CAM systems.

Chapter 5 presents the �rst major shape interrogation problem analyzed
in this book. Intersection is a fundamental operation in the creation of geo-
metric models encoded in the Boundary Representation form of solid model-
ing. Intersection is also very useful in geometric processing for visualization,
analysis and manufacturing of solid models. We present a uni�ed method-
ology for solving intersection problems, which reduces all such problems to
solving a system of nonlinear polynomial equations which in turn can be
solved using the method of Chap. 4. We also present a novel classi�cation of
intersection problems by virtue of their dimensionality, the type of geometric
representations involved, and the number system used in problem statement
and solution. The point to point, point to curve, point to surface, curve
to curve, curve to surface and surface to surface intersection problems are
treated in some detail. Various special cases of interest, where the geometric
entities involved (points, curves and surfaces) are represented implicitly or
parametrically in terms of polynomials, are treated in some depth.

Chapter 6 is motivated by e�cient tracing of intersection curves of two
surfaces which intersect either transversely or tangentially, and presents the
�rst, second and higher order derivatives of these entities for use in devel-
oping e�cient and robust tracing algorithms. The surfaces involved may be
parametric or implicit in any combination.

Chapter 7 presents methods for the computation of the stationary points
of distance functions between points, parametric curves and parametric sur-
face patches (in any combination). The curves and surfaces may be de�ned
by general piecewise rational polynomials. The resulting problems are again
reduced to solving systems of nonlinear equations which can be solved using
the IPP algorithm developed in Chap. 4. Distance functions are closely re-
lated to intersection problems and are also useful in many other applications
including feature recognition via medial axis transforms, animation, collision
detection, and manufactured object localization and inspection.

Chapter 8 addresses a variety of curve and surface interrogation methods
involving their position vectors and several higher order derivatives. Particu-
lar emphasis is placed on robust extraction of stationary points of curvature
maps and the consequent application in robust contouring of such maps.

VIII

Again the problem reduces to solving systems of nonlinear equations which
can be solved using the IPP algorithm developed in Chap. 4. The interroga-
tion methods analyzed in this chapter have many applications in aesthetic
and functional surface design and analysis, in fairing of oscillatory shapes, in
meshing of surface patches and in machining automation.

Chapter 9 discusses the problems of umbilics and lines of curvature as
methods of shape interrogation and identi�cation. Umbilics are computed
via solution of a nonlinear polynomial system following the IPP algorithm of
Chap. 4. Curvature lines are computed via integration of a system of di�eren-
tial equations via an adaptive numerical process with specialized treatment
near umbilics. The stability problem of umbilics under perturbation of the
underlying surface is also analyzed for use in surface identi�cation and feature
recognition problems.

Chapter 10 addresses yet another shape interrogation problem involv-
ing the geodesics of parametric and implicit surfaces. The classical geodesic
equations are reviewed and numerical methods for the e�ective computation
of geodesics between two points on a surface or a point and a curve on a
surface are presented. The numerical methods involve iterative solution of a
nonlinear boundary value problem via either shooting or relaxation methods.
Geodesics have applications in feature recognition via medial axis transforms,
in path planning in robotics (for distance minimization), in representation of
geodesic o�sets for design and in manufacturing.

Chapter 11, the �nal chapter of this book, focuses on the problem of
o�set (or parallel) curves and surfaces. O�sets have important applications
in NC machining, feature recognition via medial axis transforms and in tol-
erance region speci�cation. The de�nition and computation of singularities
(and especially self-intersections) of planar o�set curves and o�set surfaces is
treated in depth. The methods developed are in part analytical, and in part
numerical relying on the IPP algorithm of Chap. 4 and on integration of sys-
tems of nonlinear di�erential equations. The related concepts of Pythagorean
hodographs, general o�sets and pipe surfaces, which build on the theory of
o�set curves and surfaces, are also reviewed and analyzed in some detail.

Problems that instructors can use in developing their own courses are
provided immediately after Chap. 11. Many of these problems have been
used in our graduate course at MIT.
Errors

A book of this size is likely to contain omissions and errors. If you have
any constructive suggestions or �nd errors, please communicate them to N.
M. Patrikalakis, MIT Room 5-428, 77 Massachusetts Avenue, Cambridge,
MA 02139-4307, USA (e-mail: nmp@mit.edu), and T. Maekawa, MIT Room
5-426A, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA (e-mail:
tmaekawa@mit.edu).

IX

Acknowledgements
We wish to recognize the following former and current students who have

helped in the development of this book: Panos G. Alourdas, Christian Bliek,
Julie S. Chalfant, Wonjoon Cho, Donald G. Danmeier, H. Nebi Gursoy, An-
dreas Hofman, Chun-Yi Hu, Todd R. Jackson, Kwang Hee Ko, George A.
Kriezis, Hongye Liu, John G. Nace, P. V. Prakash, Guoling Shen, Evan C.
Sherbrooke, Stephen Smyth, Krishnan Sriram, Seamus T. Tuohy, Marsette A.
Vona, Guoxin Yu and Jingfang Zhou. We also wish to acknowledge Stephen
L. Abrams for his assistance with software development and Fred Baker for
editorial assistance.

We also thank Chryssostomos Chryssostomidis, David C. Gossard, Mal-
colm Sabin, Takis Sakkalis, Nickolas S. Sapidis, Franz-Erich Wolter and Xiuzi
Ye and several anonymous referees selected by Springer for useful discussions
and their comments.

We also wish to acknowledge MIT's funding of this book development
from the Bernard M. Gordon Engineering Curriculum Development Fund
via the Dean of the School of Engineering and via additional support from
the Department of Ocean Engineering.

We, �nally, dedicate this book to our families, our wives Sandra Jean
and Yuko and our children Alexander, Andrew, Nikki, and Takuya, whose
love, patience, understanding and encouragement made this lengthy project
possible.

Cambridge, MA, June, 2001 Nicholas M. Patrikalakis
Takashi Maekawa

Contents

1. Representation of Curves and Surfaces : : : : : : : : : : : : : : : : : : : 1
1.1 Analytic representation of curves . 1

1.1.1 Plane curves . 1
1.1.2 Space curves . 3

1.2 Analytic representation of surfaces . 4
1.3 B�ezier curves and surfaces . 6

1.3.1 Bernstein polynomials . 6
1.3.2 Arithmetic operations of polynomials in Bernstein form 7
1.3.3 Numerical condition of polynomials in Bernstein form . 9
1.3.4 De�nition of B�ezier curve and its properties 12
1.3.5 Algorithms for B�ezier curves . 13
1.3.6 B�ezier surfaces . 18

1.4 B-spline curves and surfaces . 20
1.4.1 B-splines . 20
1.4.2 B-spline curve . 21
1.4.3 Algorithms for B-spline curves . 24
1.4.4 B-spline surface . 29

1.5 Generalization of B-spline to NURBS . 30

2. Di�erential Geometry of Curves : 35
2.1 Arc length and tangent vector . 35
2.2 Principal normal and curvature . 39
2.3 Binormal vector and torsion . 43
2.4 Frenet-Serret formulae . 47

3. Di�erential Geometry of Surfaces : 49
3.1 Tangent plane and surface normal . 49
3.2 First fundamental form I (metric) . 52
3.3 Second fundamental form II (curvature) 55
3.4 Principal curvatures . 59
3.5 Gaussian and mean curvatures . 64

3.5.1 Explicit surfaces . 64
3.5.2 Implicit surfaces . 65

3.6 Euler's theorem and Dupin's indicatrix . 68

XII Contents

4. Nonlinear Polynomial Solvers and Robustness Issues : : : : : 73
4.1 Introduction . 73
4.2 Local solution methods . 74
4.3 Classi�cation of global solution methods 76

4.3.1 Algebraic and Hybrid Techniques 76
4.3.2 Homotopy (Continuation) Methods 78
4.3.3 Subdivision Methods . 78

4.4 Projected Polyhedron algorithm . 78
4.5 Auxiliary variable method for nonlinear systems with square

roots of polynomials . 88
4.6 Robustness issues . 90
4.7 Interval arithmetic . 92
4.8 Rounded interval arithmetic and its implementation 95

4.8.1 Double precision oating point arithmetic 95
4.8.2 Extracting the exponent from the binary representation 98
4.8.3 Comparison of two di�erent unit�in�the�last�place

implementations . 101
4.8.4 Hardware rounding for rounded interval arithmetic . . . 102
4.8.5 Implementation of rounded interval arithmetic 103

4.9 Interval Projected Polyhedron algorithm 105
4.9.1 Formulation of the governing polynomial equations . . . 105
4.9.2 Comparison of software and hardware rounding 106

5. Intersection Problems : 111
5.1 Overview of intersection problems . 111
5.2 Intersection problem classi�cation . 113

5.2.1 Classi�cation by dimension . 114
5.2.2 Classi�cation by type of geometry 114
5.2.3 Classi�cation by number system . 116

5.3 Point/point intersection . 116
5.4 Point/curve intersection . 116

5.4.1 Point/implicit algebraic curve intersection 116
5.4.2 Point/rational polynomial parametric curve intersection119
5.4.3 Point/procedural parametric curve intersection 123

5.5 Point/surface intersection . 123
5.5.1 Point/implicit algebraic surface intersection 123
5.5.2 Point/rational polynomial parametric surface intersec-

tion . 124
5.5.3 Point/procedural parametric surface intersection 127

5.6 Curve/curve intersection . 128
5.6.1 Rational polynomial parametric/implicit algebraic curve

intersection (Case D3) . 128
5.6.2 Rational polynomial parametric/rational polynomial

parametric curve intersection (Case D1) 132

Contents XIII

5.6.3 Rational polynomial parametric/procedural paramet-
ric and procedural parametric/procedural parametric
curve intersections (Cases D2 and D5) 133

5.6.4 Procedural parametric/implicit algebraic curve inter-
section (Case D6) . 135

5.6.5 Implicit algebraic/implicit algebraic curve intersection
(Case D8) . 135

5.7 Curve/surface intersection . 136
5.7.1 Rational polynomial parametric curve/implicit alge-

braic surface intersection (Case E3) 137
5.7.2 Rational polynomial parametric curve/rational poly-

nomial parametric surface intersection (Case E1) 137
5.7.3 Rational polynomial parametric/procedural paramet-

ric and procedural parametric/procedural parametric
curve/surface intersections (Cases E2/E6) 138

5.7.4 Procedural parametric curve/implicit algebraic sur-
face intersection (Case E7) . 138

5.7.5 Implicit algebraic curve/implicit algebraic surface in-
tersection (Case E11) . 139

5.7.6 Implicit algebraic curve/rational polynomial paramet-
ric surface intersection (Case E9) 139

5.8 Surface/surface intersections . 139
5.8.1 Rational polynomial parametric/implicit algebraic sur-

face intersection (Case F3) . 140
5.8.2 Rational polynomial parametric/rational polynomial

parametric surface intersection (Case F1) 149
5.8.3 Implicit algebraic/implicit algebraic surface intersec-

tion (Case F8) . 153
5.9 Overlapping of curves and surfaces . 157
5.10 Self-intersection of curves and surfaces . 159
5.11 Summary . 161

6. Di�erential Geometry of Intersection Curves : : : : : : : : : : : : : 163
6.1 Introduction . 163
6.2 More di�erential geometry of curves . 164
6.3 Transversal intersection curve . 166

6.3.1 Tangential direction . 166
6.3.2 Curvature and curvature vector . 167
6.3.3 Torsion and third order derivative vector 169
6.3.4 Higher order derivative vector . 170

6.4 Intersection curve at tangential intersection points 172
6.4.1 Tangential direction . 173
6.4.2 Curvature and curvature vector . 175
6.4.3 Third and higher order derivative vector 178

6.5 Examples . 179

XIV Contents

6.5.1 Transversal intersection of parametric-implicit surfaces 179
6.5.2 Tangential intersection of implicit-implicit surfaces . . . 181

7. Distance Functions : 183
7.1 Introduction . 183
7.2 Problem formulation . 184

7.2.1 De�nition of the distances between two point sets 184
7.2.2 Geometric interpretation of stationarity of distance

function . 186
7.3 More about stationary points . 187

7.3.1 Classi�cation of stationary points 187
7.3.2 Nonisolated stationary points . 192

7.4 Examples . 194

8. Curve and Surface Interrogation : 197
8.1 Classi�cation of interrogation methods . 197

8.1.1 Zeroth-order interrogation methods 198
8.1.2 First-order interrogation methods 199
8.1.3 Second-order interrogation methods 202
8.1.4 Third-order interrogation methods 207
8.1.5 Fourth-order interrogation methods 210

8.2 Stationary points of curvature of free-form parametric surfaces212
8.2.1 Gaussian curvature . 212
8.2.2 Mean curvature . 215
8.2.3 Principal curvatures . 216

8.3 Stationary points of curvature of explicit surfaces 217
8.4 Stationary points of curvature of implicit surfaces 223
8.5 Contouring constant curvature . 225

8.5.1 Contouring levels . 225
8.5.2 Finding starting points . 225
8.5.3 Mathematical formulation of contouring 227
8.5.4 Examples . 229

9. Umbilics and Lines of Curvature : 233
9.1 Introduction . 233
9.2 Lines of curvature near umbilics . 234
9.3 Conversion to Monge form . 239
9.4 Integration of lines of curvature . 244
9.5 Local extrema of principal curvatures at umbilics 246
9.6 Perturbation of generic umbilics . 252
9.7 Inection lines of developable surfaces . 258

9.7.1 Di�erential geometry of developable surfaces 258
9.7.2 Lines of curvature near inection lines 264

Contents XV

10. Geodesics : 267
10.1 Introduction . 267
10.2 Geodesic equation . 268

10.2.1 Parametric surfaces . 268
10.2.2 Implicit surfaces . 272

10.3 Two point boundary value problem . 274
10.3.1 Introduction . 274
10.3.2 Shooting method . 275
10.3.3 Relaxation method . 276

10.4 Initial approximation . 277
10.4.1 Linear approximation . 277
10.4.2 Circular arc approximation . 279

10.5 Shortest path between a point and a curve 280
10.6 Numerical applications . 283

10.6.1 Geodesic path between two points 283
10.6.2 Geodesic path between a point and a curve 284

10.7 Geodesic o�sets . 286
10.8 Geodesics on developable surfaces . 289

11. O�set Curves and Surfaces : 295
11.1 Introduction . 295

11.1.1 Background and motivation . 295
11.1.2 NC machining . 295
11.1.3 Medial axis . 301
11.1.4 Tolerance region . 308

11.2 Planar o�set curves . 309
11.2.1 Di�erential geometry . 309
11.2.2 Classi�cation of singularities . 310
11.2.3 Computation of singularities . 313
11.2.4 Approximations . 314

11.3 O�set surfaces . 318
11.3.1 Di�erential geometry . 318
11.3.2 Singularities of o�set surfaces . 320
11.3.3 Self-intersection of o�sets of implicit quadratic surfaces 321
11.3.4 Self-intersection of o�sets of explicit quadratic surfaces 330
11.3.5 Self-intersection of o�sets of polynomial parametric

surface patches . 337
11.3.6 Tracing of self-intersection curves 345
11.3.7 Approximations . 347

11.4 Pythagorean hodograph . 351
11.4.1 Curves . 351
11.4.2 Surfaces . 353

11.5 General o�sets . 354
11.6 Pipe surfaces . 355

11.6.1 Introduction . 355

XVI Contents

11.6.2 Local self-intersection of pipe surfaces 357
11.6.3 Global self-intersection of pipe surfaces 358

Problems : 369

A. Color Plates : 379

References : 383

Index : 407

1. Representation of Curves and Surfaces

We �rst introduce three forms to represent geometric objects mathematically.
They are the parametric, implicit and explicit forms. Implicit and explicit
forms are often referred to as nonparametric forms. Then we briey review
the representation of curves and surfaces in B�ezier and B-spline form and
treat the special properties associated with each.

1.1 Analytic representation of curves

1.1.1 Plane curves

A plane curve can be expressed in the parametric form as

x = x(t); y = y(t) ; (1.1)

where the coordinates of the point (x; y) of the curve are expressed as func-
tions of a parameter t within a closed interval t1 � t � t2. The functions x(t)
and y(t) are assumed to be continuous with a su�cient number of continuous
derivatives. The parametric curve is said to be of class r, if the functions have
continuous derivatives up to the order r, inclusively [205]. In vector notation
the parametric curve can be speci�ed by a vector-valued function

r = r(t) : (1.2)

Another method of representing a curve analytically is to impose one
condition on a variable point (x; y) by an equation of the form

f(x; y) = 0 : (1.3)

This is an implicit equation for a plane curve. When f(x; y) is linear in
variables x and y, (1.3) represents a straight line. If f(x; y) is of the second
degree in x and y (i.e. ax2+2bxy+ cy2+2dx+2ey+h = 0), (1.3) represents
a variety of plane curves called conic sections [79]. The implicit equation
for a plane curve can also be expressed as an intersection curve between a
parametric surface and a plane. We will discuss this formulation in Chap. 5.

2 1. Representation of Curves and Surfaces

The explicit form can be considered as a special case of parametric and
implicit forms. If t can be expressed as a function of x or y, we can easily
eliminate t from (1.1) to generate the explicit form

y = F (x) or x = G(y) : (1.4)

This is always possible at least locally when dx
dt 6= 0 or dy

dt 6= 0 [411]. Con-
versely if we set x or y in (1.4) to be equal to the parameter t we obtain
the parametric form (1.1). Also if the implicit equation (1.3) can be solved
for one variable in terms of the other, we also obtain (1.4). This is always
possible at least locally when @f

@y 6= 0 or @f
@x 6= 0 [166].

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Fig. 1.1. Folium of Descartes

Example 1.1.1. Figure 1.1 shows the Folium of Descartes, introduced by R.
Descartes in 1638, with its asymptotic line [226]. It can be expressed in para-
metric form

r(t) =

�
3t

1 + t3
;

3t2

1 + t3

�T
; �1 < t <1 (t 6= �1) ; (1.5)

where superscript T denotes transpose of a vector. For t < �1 the curve is
located in the fourth quadrant and approaches the origin as t goes to �1. For
�1 < t < 0 the curve is located in the second quadrant, and t = 0 corresponds
to the origin. In the �rst quadrant it forms a loop moving counter-clockwise
as t increases from 0 to +1. Eliminating t from (1.5), the Folium of Decartes
can be also expressed in an implicit form

f(x; y) = x3 + y3 � 3xy = 0 : (1.6)

1.1 Analytic representation of curves 3

We can easily trace the curve using the parametric equation (1.5) by evalu-
ating x(t) and y(t) for a discrete sampling of t, while such tracing is more
di�cult when using the implicit equation (1.6). However, determining if a
point (x0; y0) lies on the curve is easier when using the implicit rather than
the parametric equation of the curve. For example, we can verify that the
point (32 ;

3
2) lies on the curve by substituting x = 3

2 and y = 3
2 into implicit

form and deducing that f(32 ;
3
2) = 0. However, it is more complex to deduce

this using the parametric form. We �rst set x(t) = 3
2 which yields a cubic

equation t3� 2t+1 = 0. The roots of the cubic equation are 1, �1�p5
2 . Then

we substitute each root into y(t) to see if it becomes equal to 3
2 . An alternate

way to do this involves the theory of resultants from algebraic geometry that
we will see in Sect. 5.4.2.

1.1.2 Space curves

The parametric representation of space curves is:

x = x(t); y = y(t); z = z(t); t1 � t � t2 : (1.7)

The implicit representation for a space curve can be expressed as an in-
tersection curve between two implicit surfaces

f(x; y; z) = 0 \ g(x; y; z) = 0 ; (1.8)

or parametric and implicit surfaces

r = r(u; v) \ f(x; y; z) = 0 ; (1.9)

or two parametric surfaces

r = p(�; t) \ r = q(u; v) : (1.10)

The di�erential geometry properties of the intersection curves between im-
plicit surfaces are discussed in Sects. 2.2 and 2.3 as well as in Chap. 6 together
with the intersection curves between parametric and implicit, and two para-
metric surfaces. In Sect. 5.8 algorithms for computing the intersections (1.8),
(1.9) and (1.10) are discussed.

If t can be expressed as a function of x, y, or z, we can eliminate t from
the parametric form (1.7) to generate the explicit form. Let us assume t is a
function of x, then we have

y = Y (x); z = Z(x) : (1.11)

This is always possible at least locally when dx
dt 6= 0 [411]. Also if the two

implicit equations f(x; y; z) = 0 and g(x; y; z) = 0 can be solved for two of
the variables in terms of the third, for example y and z in terms of x, we
obtain the explicit form (1.11). This is always possible at least locally when
@f
@y

@g
@z � @f

@z
@g
@y 6= 0 [411]. Therefore the explicit equation for the space curve

can be expressed as an intersection curve of two cylinders projecting the curve
onto xy and xz planes.

4 1. Representation of Curves and Surfaces

1.2 Analytic representation of surfaces

Similar to the curve case there are mainly three ways to represent surfaces,
namely parametric, implicit and explicit methods. In parametric representa-
tion the coordinates of a point (x; y; z) of the surface patch are expressed as
functions of the parameters u and v in a closed rectangle:

x = x(u; v); y = y(u; v); z = z(u; v); u1 � u � u2; v1 � v � v2 : (1.12)
The functions x(u; v), y(u; v) and z(u; v) are continuous and possess a su�-
cient number of continuous partial derivatives. The parametric surface is said
to be of class r, if the functions have continuous (partial) derivatives up to
the order r, inclusively. In case the class is not explicitly given, it is assumed
that the functions have in�nitely many derivatives. In vector notation the
parametric surface can be speci�ed by a vector-valued function

r = r(u; v) : (1.13)

An implicit surface is de�ned as the locus of points whose coordinates
(x; y; z) satisfy an equation of the form

f(x; y; z) = 0 : (1.14)

When (1.14) is linear in variables x, y and z, it represents a plane. If (1.14)
is of second degree in the variables x, y, z, it represents quadrics [79]

ax2 + by2 + cz2 + dxy + eyz + hxz + kx+ ly +mz + n = 0 : (1.15)

Some of the quadric surfaces such as elliptic paraboloid, hyperbolic paraboloid
and parabolic cylinder have explicit forms (see Fig. 8.9). Paraboloid of revo-
lution is a special case of elliptic paraboloid where the major and minor axes
are the same. The rest of the quadrics have implicit forms including ellip-
soid, elliptic cone, elliptic cylinder, hyperbolic cylinder, hyperboloid of one
sheet and two sheets, where the hyperboloid of revolution is a special form.
The natural quadrics, sphere, circular cone and circular cylinder, which are
special cases of ellipsoid, elliptic cone and elliptic cylinder, are widely used
in mechanical design and CAD/CAM systems. Also they result from stan-
dard manufacturing operations such as rolling, turning, �lleting, drilling and
milling [149]. According to a survey conducted by the Production Automa-
tion Project group at the University of Rochester in the mid 1970's, 80-85% of
mechanical parts were adequately represented by planes and cylinders, while
90-95% were modeled with the addition of cones [433, 362, 149].

If the implicit equation (1.14) can be solved for one of the variables as a
function of the other two, say z is solved in terms of x and y, we obtain an
explicit surface

z = F (x; y) : (1.16)

1.2 Analytic representation of surfaces 5

This is always possible at least locally when @f
@z 6= 0 [166]. And if the two

variables u, v of the parametric form can be solved in terms of x and y, we
can substitute u = u(x; y) and v = v(x; y) into z = z(u; v) which yields an
explicit form. This is possible when @x

@u
@y
@v � @x

@v
@y
@u 6= 0 [76]. Conversely when

the explicit form z = F (x; y) is given, the parametric form is derived by
setting x = u, y = v, z = F (u; v). Thus, the explicit form can be considered
as a special case of implicit and parametric forms.

Example 1.2.1. Let us consider a hyperbolic paraboloid surface patch in the
parametric form:

x = u+ v; y = u� v; z = u2 � v2; 0 � u; v � 1 : (1.17)

Since we can easily solve for u and v in terms of x and y as u = x+y
2 and

v = x�y
2 , the explicit form is obtained as

z = xy; 0 � x+ y � 2; 0 � x� y � 2 : (1.18)

Table 1.1. Representations of curves and surfaces

Geometry Parametric Implicit Explicit

Plane x = x(t), y = y(t) f(x; y) = 0 or y = F (x)
curves t1 � t � t2 r = r(u; v) \ plane

Space x = x(t), y = y(t), f(x; y; z) = 0 \ g(x; y; z) = 0 y = Y (x) \
curves z = z(t), t1 � t � t2 or r = r(u; v) \ f(x; y; z) = 0 z = Z(x)

or r = p(�; t) \ r = q(u; v)

Surfaces x = x(u; v), f(x; y; z) = 0 z = F (x; y)
y = y(u; v),
z = z(u; v),
u1 � u � u2,
v1 � v � v2

Table 1.1 summarizes the three representation forms for plane curves,
space curves and surfaces. Table 1.2 compares the three representations
[119, 116]. It is clear from the tables that the parametric form is the most
versatile method among the three and the explicit is the least. Furthermore,
the explicit form can always be easily converted to parametric form. There-
fore we will mainly focus on the parametric and implicit forms throughout
this book. Methods to �t and manipulate free-form shapes in implicit form
are more complex than those for the parametric form both with respect to
computation and geometric intuition. However, a considerable body of re-
search aimed at alleviating precisely this obstacle has been published over
the last �fteen years, see for example [372, 298, 16]. In this book we do not
cover implicit surface �tting and design methods.

6 1. Representation of Curves and Surfaces

Table 1.2. Comparison of di�erent methods of curve and surface representation

Disadvantages

Explicit Implicit Parametric

� In�nite slopes are im-
possible if f(x) is a poly-
nomial.

� Di�cult to �t and
manipulate free form
shapes.

� High exibility compli-
cates intersections and
point classi�cation.

� Axis dependent (di�-
cult to transform).

� Axis dependent.

� Closed and multival-
ued curves are di�cult to
represent.

� Complex to trace.

Advantages

Explicit Implicit Parametric

� Easy to trace. � Closed and multival-
ued curves and in�nite
slopes can be repre-
sented.

� Closed and multival-
ued curves and in�nite
slopes can be repre-
sented.

� Point classi�cation
(solid modeling, in-
terference check) is
easy.

� Axis independent (easy
to transform).

� Intersections/o�sets
can be represented.

� Easy to generate com-
posite curves.
� Easy to trace.
� Easy in �tting and
manipulating free-form
shapes.

1.3 B�ezier curves and surfaces

Good introductory books on B�ezier/B-spline curves and surfaces are provided
by Faux and Pratt [116], Mortenson [275], Ding and Davies [75], Rogers and
Adams [347], Beach [21], Nowacki et al. [288] and Lee [230], while for a more
comprehensive mathematical introduction to B-splines, Bezier and B-spline
curves and surfaces, the reader should refer to textbooks by Yamaguchi [454],
Hosaka [173], Risler [345], Farin [92], Hoschek and Lasser [175], Piegl and
Tiller [313] and Gallier [121].

1.3.1 Bernstein polynomials

The Bernstein polynomials are de�ned as

Bi;n(t) =
n!

i!(n� i)! (1� t)
n�iti; i = 0; : : : ; n : (1.19)

1.3 B�ezier curves and surfaces 7

They form a basis for polynomials (see Sect. 4.4) and have several properties
of interest:

� Non-negativity: Bi;n(t) � 0; 0 � t � 1; i = 0; : : : ; n .
� Partition of unity:

Pn
i=0Bi;n(t) = (1 � t + t)n = 1 (by the binomial

theorem).
� Symmetry:

Bi;n(t) = Bn�i;n(1� t) : (1.20)

� Recursion: Bi;n(t) = (1� t)Bi;n�1(t) + tBi�1;n�1(t) with Bi;n(t) = 0 for
i < 0, i > n and B0;0(t) = 1 .

� Linear precision:

t =

nX
i=0

i

n
Bi;n(t) ; (1.21)

which implies that the monomial t can be expressed as the weighted sum
of Bernstein polynomials of degree n with coe�cients evenly spaced in the
interval [0,1]. This property is used extensively in Chaps. 4 and 5.

� Degree elevation: The basis functions of degree n can be expressed in
terms of those of degree n+ 1 [106] as:

Bi;n(t) =

�
1� i

n+ 1

�
Bi;n+1(t) +

i+ 1

n+ 1
Bi+1;n+1(t) ; (1.22)

where i = 0; 1; � � � ; n. Or more generally in terms of basis functions of
degree n+ r [106] as:

Bi;n(t) =

i+rX
j=i

�
n
i

��
r

j � i
�

�
n+ r
j

� Bj;n+r(t); i = 0; 1; � � � ; n : (1.23)

Figure 1.2 shows the Bernstein polynomials of degree 3 and 4. The deriva-
tive of a Bernstein polynomial is

dBi;n(t)

dt
= n[Bi�1;n�1(t)�Bi;n�1(t)] ; (1.24)

where B�1;n�1(t) = Bn;n�1(t) = 0.

1.3.2 Arithmetic operations of polynomials in Bernstein form

Arithmetic operations between polynomials are often required for shape inter-
rogation (see for example Chaps. 4, 5, etc.). Farouki and Rajan [106] provide

8 1. Representation of Curves and Surfaces

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

B
i,3

(t
)

i=0

i=1 i=2

i=3

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

B
i,4

(t
)

i=0

i=1

i=2

i=3

i=4

(b)

Fig. 1.2. Bernstein polynomials: (a) degree three, (b) degree four

1.3 B�ezier curves and surfaces 9

formulae for such arithmetic operations of polynomials in Bernstein form.
Let the two polynomials f(t) and g(t) of degree m and n with Bernstein
coe�cients fmi and gni be as follows:

f(t) =

mX
i=0

fmi Bi;m(t); g(t) =

nX
i=0

gni Bi;n(t); 0 � t � 1 : (1.25)

� Addition and subtraction
If the degrees of the two polynomials are the same, i.e. m = n, we simply
add or subtract the coe�cients

f(t) + g(t) =

mX
i=0

(fmi � gmi)Bi;m(t) : (1.26)

If m > n, we need to �rst degree elevate g(t) m�n times using (1.23) and
then add or subtract the coe�cients

f(t) + g(t) =

mX
i=0

0
BB@fmi �

min(n;i)X
j=max(0;i�m+n)

�
n
j

��
m� n
i� j

�
�
m
i

� gnj

1
CCABi;m(t) :

(1.27)

� Multiplication
Multiplication of two polynomials of degree m and n yields a degree m+n
polynomial

f(t)g(t) =
m+nX
i=0

0
BB@

min(m;i)X
j=max(0;i�n)

�
m
j

��
n

i� j
�

�
m+ n
i

� fmj g
n
i�j

1
CCABi;m+n(t) :

(1.28)

1.3.3 Numerical condition of polynomials in Bernstein form

Polynomials in the Bernstein basis have better numerical stability under per-
turbation of their coe�cients than in the power basis. We will introduce the
concept of condition numbers for polynomial roots investigated by Farouki
and Rajan [105].

Let us consider a polynomial f(t) in the basis �i(t) with coe�cients fi:

f(t) =
nX
i=0

fi�i(t) : (1.29)

If we perturb a single coe�cient fj by �fj , we have

10 1. Representation of Curves and Surfaces

~f(t) = f0�0(t) + f1�1(t) + : : :+ (fj + �fj)�j(t) + : : :+ fn�n(t) ; (1.30)

or using (1.29)

~f(t) = f(t) + �fj�j(t) : (1.31)

If t+ �t is a root of the perturbed polynomial ~f(t), then

~f(t+ �t) = f(t+ �t) + �fj�j(t+ �t) = 0 ; (1.32)

or

f(t+ �t) = ��fj�j(t+ �t) : (1.33)

Now let us Taylor expand (1.33) about t0, where t0 is a root of f(t), i.e.
f(t0) = 0,

nX
i=1

(�t)i

i!

dif

dti
(t0) = ��fj

nX
i=0

(�t)i

i!

di�j
dti

(t0) : (1.34)

If t0 is a simple root of f(t), then _f(t0) 6= 0, and in the limit of in�nitesimal
perturbations the above equation gives:

lim
�fj!0

�t
�fj
fj

= �fj�j(to)
_f(t0)

: (1.35)

The absolute value of the right hand side of the above equation

C = jfj�j(to)= _f(t0)j ; (1.36)

is called the condition number of the root t0 with respect to the single coe�-
cient fj . For perturbations in each coe�cient, fj , j = 0; 1; : : : ; n, the condition
number of the root t0 becomes:

C =

Pn
j=0 jfj�j(to)j
j _f(t0)j

: (1.37)

If t0 is an m-fold root, m � 2, then a multiple-root condition number
C(m) for perturbations in each coe�cient fj , j = 0; 1; : : : ; n is de�ned as

C(m) =

0
@ m!

jdmf(t0)dtm j
nX
j=0

jfj�j(t0)j
1
A1=m

: (1.38)

The following theorem is due to Farouki and Rajan [105].

1.3 B�ezier curves and surfaces 11

Table 1.3. Condition numbers for Wilkinson polynomial (adapted from [105])

i Cp(x0) Cb(x0)

1 2:100 � 101 3:413 � 100

2 4:389 � 103 1:453 � 102

3 3:028 � 105 2:335 � 103

4 1:030 � 107 2:030 � 104

5 2:059 � 108 1:111 � 105

6 2:667 � 109 4:153 � 105

7 2:409 � 1010 1:115 � 106

8 1:566 � 1011 2:215 � 106

9 7:570 � 1011 3:321 � 106

10 2:775 � 1012 3:797 � 106

11 7:822 � 1012 3:321 � 106

12 1:707 � 1013 2:215 � 106

13 2:888 � 1013 1:115 � 106

14 3:777 � 1013 4:153 � 105

15 3:777 � 1013 1:111 � 105

16 2:833 � 1013 2:030 � 104

17 1:541 � 1013 2:335 � 103

18 5:742 � 1012 1:453 � 102

19 1:310 � 1012 3:413 � 100

20 1:378 � 1011 0

Theorem 1.3.1. For an arbitrary polynomial f(t) with a simple root t0 2
[0; 1], let Cp(t0) and Cb(t0) denote the condition numbers (1.37) of the root
in the power and Bernstein bases on [0; 1], respectively. Then Cb(t0) � Cp(t0)
for all t0 2 [0; 1]. In particular Cb(0) = Cp(0) = 0, while for t0 2 (0; 1] we
have the strict inequality Cb(t0) < Cp(t0).

As an illustration of the above theorem, let us consider Wilkinson's poly-
nomial in which twenty real roots are equally distributed on [0; 1]:

f(t) =

20Y
i=1

(t� i=20) : (1.39)

The condition numbers for each root with respect to a perturbation in the
single coe�cient of t19 are shown in Table 1.3 [105]. We can clearly observe
that the condition numbers of the root in the Bernstein basis are several
orders of magnitude smaller than in the power basis. This serves to illustrate
the attractiveness of using the Bernstein basis in computations in CAD/CAM

12 1. Representation of Curves and Surfaces

systems. Although not a panacea, Bernstein basis when used properly in
a oating point environment increases reliability of computations (see also
detailed discussions in Chaps. 4 and 5).

1.3.4 De�nition of B�ezier curve and its properties

A B�ezier curve is a parametric curve that uses the Bernstein polynomials as
a basis. A B�ezier curve of degree n (order n+ 1) is represented by

r(t) =

nX
i=0

biBi;n(t); 0 � t � 1 : (1.40)

The coe�cients, bi, are the control points or B�ezier points and together with
the basis function Bi;n(t) determine the shape of the curve. Lines drawn
between consecutive control points of the curve form the control polygon. A
cubic B�ezier curve together with its control polygon is shown in Fig. 1.3 (a).
B�ezier curves have the following properties:

� Geometry invariance property: Partition of unity property of the Bern-
stein polynomial assures the invariance of the shape of the B�ezier curve
under translation and rotation of its control points.

� End points geometric property:
{ The �rst and last control points are the endpoints of the curve. In other
words, b0 = r(0) and bn = r(1).

{ The curve is tangent to the control polygon at the endpoints. This can
be easily observed by taking the �rst derivative of a B�ezier curve

_r(t) =
dr(t)

dt
= n

n�1X
i=0

(bi+1 � bi)Bi;n�1(t); 0 � t � 1 : (1.41)

In particular we have _r(0) = n(b1 � b0) and _r(1) = n(bn � bn�1).
Equation (1.41) can be simpli�ed by setting �bi = bi+1 � bi:

_r(t) = n

n�1X
i=0

�biBi;n�1(t); 0 � t � 1 : (1.42)

The �rst derivative of a B�ezier curve, which is called hodograph, is an-
other B�ezier curve whose degree is lower than the original curve by one
and has control points n�bi, i = 0; � � � ; n� 1. Hodographs are useful in
the study of intersection (see Sect. 5.6.2) and other interrogation prob-
lems such as singularities and inection points.

� Convex hull property: A domain D is convex if for any two points P1 and
P2 in the domain, the segment P1P2 is entirely contained in the domain
D [334]. It can be shown that the intersection of convex domains is a

1.3 B�ezier curves and surfaces 13

convex domain. The convex hull of a set of points P is the boundary of the
smallest convex domain containing P . There are several e�cient algorithms
for computing the convex hull of a set of points [334, 66, 291].
Using the above de�nitions and facts, the convex hull of a B�ezier curve
is the boundary of the intersection of all the convex sets containing all
vertices or the intersection of the half spaces generated by taking three
vertices at a time to construct a plane and having all other vertices on
one side. The convex hull can also be conceptualized at the shape of a
rubber band in 2-D or a sheet in 3-D stretched taut over the polygon
vertices [75]. The entire curve is contained within the convex hull of the
control points as shown in Fig. 1.3 (b). The convex hull property is useful in
intersection problems (see Fig. 1.4), in detection of absence of interference
and in providing estimates of the position of the curve through simple and
e�ciently computable bounds.

� Variation diminishing property:
{ 2-D: The number of intersections of a straight line with a planar
B�ezier curve is no greater than the number of intersections of the line
with the control polygon. A line intersecting the convex hull of a planar
B�ezier curve may intersect the curve transversally, be tangent to the
curve, or not intersect the curve at all. It may not, however, intersect the
curve more times than it intersects the control polygon. This property
is illustrated in Fig. 1.5.

{ 3-D: The same relation holds true for a plane with a space B�ezier
curve.

From this property, we can roughly say that a B�ezier curve oscillates less
than its control polygon, or in other words, the control polygon's segments
exaggerate the oscillation of the curve. This property is important in in-
tersection algorithms and in detecting the fairness of B�ezier curves.

� Symmetry property: If we renumber the control points as b�n�i = bi, or
in other words relabel from b0;b1; : : : ;bn to bn;bn�1; : : : ;b0 and using
the symmetry property of the Bernstein polynomial (1.20) the following
identity holds:

nX
i=0

biBi;n(t) =

nX
i=0

b�iBi;n(1� t) : (1.43)

1.3.5 Algorithms for B�ezier curves

� Evaluation and subdivision algorithm: A B�ezier curve can be evaluated
at a speci�c parameter value t0 and the curve can be split at that value
using the de Casteljau algorithm [175], where the following equation

bki (t0) = (1� t0)bk�1
i�1 + t0b

k�1
i ; k = 1; 2; : : : ; n; i = k; : : : ; n ;

(1.44)

14 1. Representation of Curves and Surfaces

b0

b1

b2

b3

Control Polygon

(a)

b0

b1

b2

b3

Convex Hull

(b)

Fig. 1.3. A cubic B�ezier curve: (a) with control polygon, (b) with convex hull

is applied recursively to obtain the new control points. The algorithm is
illustrated in Fig. 1.6, and has the following properties:
{ The values b0i are the original control points of the curve.
{ The value of the curve at parameter value t0 is b

n
n.

{ The curve is split at parameter value to and can be represented as two
curves, with control points (b00, b

1
1,: : :, b

n
n) and (bnn; b

n�1
n ; : : : ; b0n).

� Continuity algorithm: B�ezier curves can represent complex curves by
increasing the degree and thus the number of control points. Alterna-
tively, complex curves can be represented using composite curves, which

1.3 B�ezier curves and surfaces 15

Fig. 1.4. Comparison of convex hulls of B�ezier curves as means of detecting inter-
section

Possible Impossible

Fig. 1.5. Variation diminishing property of a cubic B�ezier curve

can be formed by joining several B�ezier curves end to end. If this method
is adopted, the continuity between consecutive curves must be addressed.
One set of continuity conditions are the geometric continuity conditions,
designated by the letter G with an integer exponent. Position continuity,
or G0 continuity, requires the endpoints of the two curves to coincide,

ra(1) = rb(0) : (1.45)

The superscripts denote the �rst and second curves. Tangent continuity, or
G1 continuity, requires G0 continuity and in addition the tangents of the
curves to be in the same direction,

_ra(1) = �1t ; (1.46)

_rb(0) = �2t ; (1.47)

where t is the common unit tangent vector and �1, �2 are the magnitude
of _ra(1) and _rb(0). G1 continuity is important in minimizing stress con-
centrations in physical solids loaded with external forces and in helping
prevent ow separation in uids.

16 1. Representation of Curves and Surfaces

b0
3 =b0

2 =b0
1 =b0

0

b1
0 b2

0

b3
0

t

1-t

t 1-t

t

1-t
b1

3 =b1
2 =b1

1

b2
1

b3
1b2

2

b3
2

b3
3

b0
0

b1
0

b2
0

b3
0

b1
1

b2
1

b3
1

b2
2

b3
2

1−t

t

1−t

1−t

1−t

1−tt

t

t

t

b3=r(t)3

1−t

t

Fig. 1.6. The de Casteljau algorithm

Curvature continuity, or G2 continuity, requires G1 continuity and in ad-
dition the center of curvature to move continuously past the connection
point [116],

�rb(0) =

�
�2
�1

�2

�ra(1) + � _ra(1) ; (1.48)

1.3 B�ezier curves and surfaces 17

where � is an arbitrary constant. G2 continuity is important for aesthetic
reasons and also for helping prevent uid ow separation.
More stringent continuity conditions are the parametric continuity con-
ditions, where Ck continuity requires the kth derivative (and all lower
derivatives) of each curve to be equal at the joining point. In other words,

dkra(1)

dtk
=
dkrb(0)

dtk
: (1.49)

Let us assume that the global parameter t, associated with the i-th segment
of a composite degree n B�ezier curve with local parameter ui (0 � ui � 1),
runs over the interval [ti, ti+1]. Then the i-th segment of a composite B�ezier
curve is given by:

ri(t) =

nX
j=0

bni+jBj;n(ui) ; (1.50)

where the global parameter t and the local parameter ui are related by,

0 � ui = t� ti
ti+1 � ti � 1 : (1.51)

If we denote hi = ti+1 � ti, the C1 and C2 continuity conditions for the
i-th and i+1-th segments of the composite B�ezier curve can be stated
as [454, 175]:

hi+1 (bni � bni�1) = hi (bni+1 � bni) ; (1.52)

and

bni�1 +
hi+1

hi
(bni�1 � bni�2) = bni+1 +

hi
hi+1

(bni+1 � bni+2) :

(1.53)

Figure 1.7 illustrates the connection of two cubic B�ezier curve segments at
t = ti+1.

� Degree elevation: The degree elevation algorithm permits us to increase
the degree of a B�ezier curve from n to n + 1 and the number of control
points from n + 1 to n + 2 without changing the shape of the curve. The
new control points bn+1

i of the degree n+ 1 curve are given by

bn+1
i =

i

n+ 1
bni�1 +

�
1� i

n+ 1

�
bni ; i = 0; : : : ; n+ 1 ; (1.54)

where bn�1 = bnn+1 = 0. The degree elevation algorithm for a B�ezier curve
from degree n to n+ r is given by [106]:

bn+ri =

min(n;i)X
j=max(0;i�r)

�
n
j

��
r

i� j
�

�
n+ r
i

� bnj ; i = 0; 1; � � � ; n+ r : (1.55)

18 1. Representation of Curves and Surfaces

bn i-3 bn i+3

bn i-2

bn i+2

bn i-1

bn i+1

bn ihi

::

hi+1

hi
::

hi+1

hi
::

hi+1

Fig. 1.7. Continuity conditions

1.3.6 B�ezier surfaces

A tensor product surface patch is formed by moving a curve through space
while allowing deformations in that curve. This can be thought of as allowing
each control point bi to sweep a curve in space. If this surface is represented
using Bernstein polynomials, a B�ezier surface patch is formed, with the fol-
lowing formula:

r(u; v) =

mX
i=0

nX
j=0

bijBi;m(u)Bj;n(v); 0 � u; v � 1 : (1.56)

Here, the set of straight lines drawn between consecutive control points bij is
referred to as the control net. It is easy to see that boundary iso-parametric
curves (u = 0, u = 1, v = 0 and v = 1) have the same control points as
the corresponding boundary points on the net. An example of a bi-quadratic
B�ezier surface with its control net can be seen in Fig. 1.8. Since a B�ezier
surface is a direct extension of univariate B�ezier curve to its bivariate form,
it inherits many of the properties of the B�ezier curve described in Sect. 1.3.4
such as:

� Geometry invariance property.
� End points geometric property.
� Convex hull property.

However, no variation diminishing property is known for B�ezier surface
patches.

The surface patches treated in this book are mostly topologically quadri-
lateral. However we sometimes need to use topologically triangular patches. In
such cases, we may collapse one boundary curve of a quadrilateral patch into

1.3 B�ezier curves and surfaces 19

a single point to form a three-sided patch as shown in Fig. 1.9. Such a trian-
gular patch is said to be degenerate [116, 92]. Alternatively one could arrange
for two partial derivatives ru and rv at one of the corners of a quadrilateral
patch (1.56) to be collinear to create degenerate patches [92]. The di�erential
geometry of degenerated patches is studied in [116, 452, 456].

b20 b21

b22

b10

b12b00

b01

b02

Fig. 1.8. A bi-quadratic B�ezier surface with control net

Fig. 1.9. Octant of ellipsoid, represented by a degenerate patch

20 1. Representation of Curves and Surfaces

1.4 B-spline curves and surfaces

The B�ezier representation has two main disadvantages. First, the number of
control points is directly related to the degree. Therefore, to increase the com-
plexity of the shape of the curve by adding control points requires increasing
the degree of the curve or satisfying the continuity conditions between con-
secutive segments of a composite curve. Second, changing any control point
a�ects the entire curve or surface, making design of speci�c sections very di�-
cult. These disadvantages are remedied with the introduction of the B-spline
(basis-spline) representation.

Early fundamental work on the B-spline basis functions was performed
almost 50 years ago by Schoenberg [367], and this was followed by develop-
ment of fundamental algorithms by Cox [67] and de Boor [72, 73]. B-splines in
the context of Computer Aided Geometric Design were proven to be a viable
and attractive representation method by many pioneers of this �eld, such
as Riesenfeld [344, 130], Boehm [33], Schumaker [368] and many subsequent
researchers.

In this section, we provide de�nitions and the basic properties and algo-
rithms of B-splines. However, we do not deal with �tting, approximation and
fairing methods using B-splines which are very important in their own right.
For these topics, there are specialized books, monographs and proceedings
and a large variety of papers [364, 175, 92, 313, 45].

1.4.1 B-splines

An order k B-spline is formed by joining several pieces of polynomials of
degree k � 1 with at most Ck�2 continuity at the breakpoints. A set of non-
descending breaking points t0 � t1 � : : : � tm de�nes a knot vector

T = (t0; t1; : : : ; tm) ; (1.57)

which determines the parametrization of the basis functions.
Given a knot vector T, the associated B-spline basis functions, Ni;k(t),

are de�ned as:

Ni;1(t) =

�
1 for ti � t < ti+1

0 otherwise ;
(1.58)

for k = 1, and

Ni;k(t) =
t� ti

ti+k�1 � tiNi;k�1(t) +
ti+k � t

ti+k � ti+1
Ni+1;k�1(t) ; (1.59)

for k > 1 and i = 0; 1; : : : ; n. These equations have the following proper-
ties [175]:

� Positivity: Ni;k(t) > 0, for ti < t < ti+k.

1.4 B-spline curves and surfaces 21

� Local support: Ni;k(t) = 0, for t0 � t � ti, and ti+k � t � tn+k.
� Partition of unity:

Pn
i=0Ni;k(t) = 1, for t 2 [t0; tm].

� Recursion: Given by (1.59).
� Continuity: Ni;k(t) has C

k�2 continuity at each simple knot.

The concept of nodes orGreville abscissae [130, 92], which are the averages
of the knots, are important in B-spline approximations [130, 451] and de�ned
as follows:

�i =
1

k � 1
(ti+1 + ti+2 + � � �+ ti+k�1) : (1.60)

The node �i generally lies near the parameter value which corresponds to a
maximum of the basis function Ni;k(t) [344, 313].

The derivative of the B-spline basis function is given by [313]

dNi;k(t)

dt
=

k � 1

ti+k�1 � tiNi;k�1(t)� k � 1

ti+k � ti+1
Ni+1;k�1(t) : (1.61)

1.4.2 B-spline curve

A B-spline curve is de�ned as a linear combination of control points pi and
B-spline basis functions Ni;k(t) given by

r(t) =
nX
i=0

piNi;k(t); n � k � 1; t 2 [tk�1; tn+1] : (1.62)

In this context the control points are called de Boor points. The basis function
Ni;k(t) is de�ned on a knot vector

T = (t0; t1; : : : ; tk�1; tk; tk+1; : : : ; tn�1; tn; tn+1; : : : ; tn+k) ; (1.63)

where there are n+k+1 elements, i.e. the number of control points n+1 plus
the order of the curve k. Each knot span ti � t � ti+1 is mapped onto a poly-
nomial curve between two successive joints r(ti) and r(ti+1). Normalization
of the knot vector, so it covers the interval [0,1], is helpful in improving nu-
merical accuracy in oating point arithmetic computation due to the higher
density of oating point numbers in this interval [133, 299].

A B-spline curve has the following properties:

� Geometry invariance property: Partition of unity property of the B-spline
assures the invariance of the shape of the B-spline curve under translation
and rotation.

� End points geometric property:
{ Unlike B�ezier curves, B-spline curves do not in general pass through the
two end control points. Increasing the multiplicity of a knot reduces the
continuity of the curve at that knot. Speci�cally, the curve is (k� p� 1)

22 1. Representation of Curves and Surfaces

t

1

o

t1

t2

t3

t4 t7
t8
t9
t10

t6t5

N0,4

N1,4 N2,4

N3,4 N4,4 N5,4

N6,4

N0,4 is C
-1

N0,4 is C
2 N1,4 is C

2

N5,4 is C
2

N2,4 is C
2

N6,4 is C
0

N1,4 is C
2

N4,4 is C
2

N1,4 is C
0

N2,4 is C
1

N3,4 is C
2

N3,4 is C
2

N4,4 is C
1

N5,4 is C
0

N6,4 is C
-1

Fig. 1.10. An order four B-spline basis functions with uniform knot vector

times continuously di�erentiable at a knot with multiplicity p (� k), and
thus has C(k�p�1) continuity. Therefore, the control polygon will coincide
with the curve at a knot of multiplicity k�1, and a knot with multiplicity
k indicates C�1 continuity, or a discontinuous curve. Repeating the knots
at the end k times will force the endpoints to coincide with the control
polygon. Thus the �rst and the last control points of a curve with a knot
vector described by

T = (t0; t1; : : : ; tk�1;| {z }
k equal knots

tk; tk+1; : : : ; tn�1; tn;| {z }
n-k+1 internal knots

tn+1; : : : ; tn+k| {z }
k equal knots

) ; (1.64)

coincide with the endpoints of the curve. Such knot vectors and curves
are known as clamped [313]. In other words, clamped/unclamped refers
to whether both ends of the knot vector have multiplicity equal to k or
not. Figure 1.10 shows cubic B-spline basis functions de�ned on a knot
vector T = (t0 = t1 = t2 = t3; t4; t5; t6; t7 = t8 = t9 = t10). A
clamped cubic B-spline curve based on this knot vector is illustrated in
Fig. 1.11 with its control polygon.

{ B-spline curves with a knot vector (1.64) are tangent to the control
polygon at their endpoints. This is derived from the fact that the �rst
derivative of a B-spline curve is given by [175]

1.4 B-spline curves and surfaces 23

p0

p1

p2

p3

p4

p5

p6

t0=t1=t2=t3

t4

t5

t6

t7=t8=t9=t10

Span 1

Span 2

Span 3

Span 4

Fig. 1.11. A clamped cubic B-spline curve

_r(t) =

nX
i=1

(k � 1)

�
pi � pi�1

ti+k�1 � ti

�
Ni;k�1(t) ; (1.65)

where the knot vector is obtained by dropping the �rst and last knots
from (1.64), i.e.

T0 = (t1; : : : ; tk�1;| {z }
k-1 equal knots

tk; tk+1; : : : ; tn�1; tn;| {z }
n-k+1 internal knots

tn+1; : : : ; tn+k�1| {z }
k-1 equal knots

) ; (1.66)

and

_r(0) =
k � 1

tk � t1 (p1 � p0) ; (1.67)

_r(1) =
k � 1

tn+k�1 � tn (pn � pn�1) : (1.68)

� Convex hull property: The convex hull property for B-splines applies
locally, so that a span lies within the convex hull of the control points that
a�ect it. This provides a tighter convex hull property than that of a B�ezier
curve, as can be seen in Fig. 1.11. The i-th span of the cubic B-spline curve

24 1. Representation of Curves and Surfaces

in Fig. 1.11 lies within the convex hull formed by control points pi�1, pi,
pi+1, pi+2. In other words, a B-spline curve must lie within the union of
all such convex hulls formed by k successive control points [130].

� Local support property: A single span of a B-spline curve is controlled
only by k control points, and any control point a�ects k spans. Speci�cally,
changing pi a�ects the curve in the parameter range ti < t < ti+k and the
curve at a point t where tr < t < tr+1 is determined completely by the
control points pr�(k�1); : : : ;pr as shown in Fig. 1.11.

� Variation diminishing property:
{ 2-D: The number of intersections of a straight line with a planar B-
spline curve is no greater than the number of intersections of the line
with the control polygon. A line intersecting the convex hull of a planar
B-spline curve may intersect the curve transversally, be tangent to the
curve, or not intersect the curve at all. It may not, however, intersect
the curve more times than it intersects the control polygon.

{ 3-D: The same relation holds true for a plane with a 3-D space B-spline
curve.

� B-spline to B�ezier property: From the discussion of end points geometric
property, it can be seen that a B�ezier curve of order k (degree k � 1) is a
B-spline curve with no internal knots and the end knots repeated k times.
The knot vector is thus

T = (t0; t1; : : : ; tk�1| {z }
k equal knots

; tn+1; : : : ; tn+k| {z }
k equal knots

) ; (1.69)

where n+ k + 1 = 2k or n = k � 1.

1.4.3 Algorithms for B-spline curves

� Evaluation and subdivision algorithm: A B-spline curve can be evalu-
ated at a speci�c parameter value �t using the de Boor algorithm, which
is a generalization of the de Casteljau algorithm introduced in Sect. 1.3.5.
The repeated substitution of the recursive de�nition of the B-spline basis
function (1.59) into (1.62) and re-indexing leads to the following de Boor
algorithm [175]

r(t) =

n+jX
i=0

pjiNi;k�j(t); j = 0; 1; : : : ; k � 1 ; (1.70)

where

pji = (1� �ji)pj�1
i�1 + �jip

j�1
i ; j > 0 ; (1.71)

with

1.4 B-spline curves and surfaces 25

P1

1

P2

2 P3

3 P3

2

P3

1

P3

0

P2

0

P1

0 P2

1

P0

0

t0=t1=t2=t3 t4 t5 t6t-

p0
0

p1
0

p2
0

p3
0

p1
1

p2
1

p3
1

p2
2

p3
2

p3=r(t)
3

t4−t
t4−t1

t
t4−t1

−t1

t
t5−t2

−t2

t
t6−t3

−t3

t5−t
t5−t2

t6−t
t6−t3

t
t4−t2

−t2

t
t5−t3

−t3

t
t4−t3

−t3

t4−t
t4−t2

t5−t
t5−t3

t4−t
t4−t3

Fig. 1.12. The de Boor algorithm

26 1. Representation of Curves and Surfaces

�ji =
�t� ti

ti+k�j � ti and p0j = pj : (1.72)

For j = k � 1, the B-spline basis function reduces to Nl;1 for t 2 [tl; tl+1],
and pk�1

l coincides with the curve

r(�t) = pk�1
l : (1.73)

The de Boor algorithm is shown graphically in Fig. 1.12 for a cubic B-spline
curve (�t 2 [t3; t4]). If we compare Figs. 1.6 and 1.12, it is obvious that the
de Boor algorithm is a generalization of the de Casteljau algorithm. The
de Boor algorithm also permits the subdivision of the B-spline curve into
two segments of the same order. In Fig. 1.12, the two new polygons are
p00 p

1
1 p

2
2 p

3
3 and p

3
3 p

2
3 p

1
3 p

0
3.

� Knot insertion: A knot can be inserted into a B-spline curve without
changing the geometry of the curve [34, 313]. The new curve is identical to
the old one, with a new basis where

nX
i=0

piNi;k(t) becomes
n+1X
i=0

�pi �Ni;k(t) (1.74)

over T = [t0; t1; : : : ; tl; tl+1; : : :] over T = [t0; t1; : : : ; tl; �t; tl+1; : : :] ;

when a new knot �t is inserted between knots tl and tl+1. The new de Boor
points are given by

�pi = (1� �i)pi�1 + �ipi ; (1.75)

where

�i =

8<
:
1 i � l� k + 1
0 i � l+ 1

�t�ti
tl+k�1�ti l � k + 2 � i � l :

(1.76)

The above algorithm is also known as Boehm's algorithm [34, 35]. A more
general (but also more complex) insertion algorithm permitting insertion
of several (possibly multiple) knots into a B-spline knot vector, known as
the Oslo algorithm, was developed by Cohen et al. [63]. Both algorithms
due to Boehm and Cohen et al. have found wide application in CAD/CAM
systems since the early 1980's.
A B-spline curve is C1 continuous in the interior of a span. Within exact
arithmetic, inserting a knot does not change the curve, so it does not change
the continuity. However, if any of the control points are moved after knot
insertion, the continuity at the knot will become Ck�p�1, where p is the
multiplicity of the knot. Figure 1.13 illustrates a single insertion of a knot
at parameter value �t, resulting in a knot with multiplicity one.
The B-spline curve can be subdivided into B�ezier segments by knot inser-
tion at each internal knot until the multiplicity of each internal knot is
equal to k.

1.4 B-spline curves and surfaces 27

p0
1 =p0

0

p1
0 p2

0

p3
0 =p4

1

p1
1

p2
1

p3
1t-

Fig. 1.13. Boehm's algorithm

� Knot removal: Knot removal is the reverse process of knot insertion. It
is used for approximation and data reduction [242], and for data reduction
in cases the curve or surface does not change neither geometrically nor
parametrically [419].
We briey review the latter knot removal algorithm developed by Tiller [419].
To demonstrate the process, this example uses a cubic B-spline curve r(�t)
given by control points (p00; : : : ;p

0
6) and knot vector (t0; : : : t10) where

t0 = : : : = t3 = 0, t4 = t5 = t6 = 1 and t7 = : : : = t10 = 2 as shown
in Fig. 1.14. As the basis functions only guarantee C0 continuity at �t = 1,
the �rst derivative may or may not be continuous there. Using the C1 con-
tinuity condition (1.52), the �rst derivative will be continuous if and only
if

(t7 � t4)(p03 � p02) = (t6 � t3)(p04 � p03) : (1.77)

Since t4 = t6 = �t,

p03 =
�t� t3
t7 � t3p

0
4 +

t7 � �t

t7 � t3p
0
2 : (1.78)

Since p02 = p12 and p
0
4 = p13,

p03 = �3p
1
3 + (1� �3)p12 �3 =

�t� t3
t7 � t3 : (1.79)

A similar reasoning yields the fact that a knot �t = 1 can be removed a
second time, if and only if the second derivative is continuous, yielding

28 1. Representation of Curves and Surfaces

p12 = �2p
2
2 + (1� �2)p21 ;

p13 = �3p
2
3 + (1� �3)p22 ; (1.80)

�i =
�t� ti

ti+p+2 � ti i = 2; 3 ;

and a knot �t = 1 can be removed a third time if and only if the third
derivative is continuous, yielding

p21 = �1p
3
1 + (1� �1)p30 ;

p22 = �2p
3
2 + (1� �2)p31 ;

p23 = �3p
3
3 + (1� �3)p32 ; (1.81)

�i =
�t� ti

ti+p+3 � ti i = 1; 2; 3 :

Note that there are no unknowns in (1.79), one unknown, p22, in (1.80) and
two unknowns, p31 and p

3
2, in (1.81).

For the knot removal process, �rst the right hand side of (1.79) is computed
and compared to p03. If they are equal within a given tolerance, the knot
and p03 are removed.
If the �rst knot removal is successful, equations (1.80) are solved for p22
and compared:

p22 =
p12 � (1� �2)p21

�2
; (1.82)

p22 =
p13 � �3p23
1� �3 : (1.83)

If the two values for p22 are the same, then the knot and control points p12
and p13 are removed and control point p22 is inserted.
If the second knot removal is successful, the third step is to solve the �rst
and third equations of (1.81) for

p31 =
p21 � (1� �1)p30

�1
; (1.84)

p32 =
p23 � �3p33
1� �3 : (1.85)

The two values are then substituted into the second equation of (1.81). If
the result is within tolerance of p22, then the knot is removed and control
points p21, p

2
2 and p

2
3 are replaced by p31 and p

3
2.

This can be generalized to apply to any number of removals of any par-
ticular knot. For the nth removal, there will be a system of n equations
with n� 1 unknowns. If n is even, two values of the �nal unknown control
point will be calculated and compared. If they are within tolerance, the
knot removal is successful. If n is odd, all new control points are computed

1.4 B-spline curves and surfaces 29

p0
0 =p0

1 =p0
2 =p0

3

p1
0 =p1

1 =p1
2

p1
3 p2

2

p3
0

p4
0 =p3

1p2
0 =p2

1

p2
3

p5
0 =p4

1 =p3
2

p6
0 =p5

1 =p4
2 =p3

3

t 0 =t1 =t 2 =t 3 =0 t 4 =t5 =t 6 =1 t 7 =t8 =t 9 =t10=2

Fig. 1.14. Knot removal (adapted from [419])

and the �nal two are substituted into the middle equation. If the result is
within the tolerance, the knot removal is successful. If the nth removal is
successful, n control points will be replaced by n� 1 control points.
Knot removal from a surface is performed on the m + 1 rows or n + 1
columns of control points. However, the knot removal is successful only if
the knot can be successfully removed from each row or column. Therefore,
the result must be checked for each row or column before any control points
are removed.

1.4.4 B-spline surface

The surface analogue of the B-spline curve is the B-spline surface (patch).
This is a tensor product surface de�ned by a topologically rectangular set
of control points pij , 0 � i � m, 0 � j � n and two knot vectors U =
(u0; u1; : : : ; um+k) and V = (v0; v1; : : : ; vn+l) associated with each parameter
u, v. The corresponding integral B-spline is given by

r(u; v) =
mX
i=0

nX
j=0

pijNi;k(u)Nj;l(v) : (1.86)

Parametric lines on a B-spline surface are obtained by letting u = const,
or v = const. A parametric line with u = u0 is a B-spline curve in v with V as
its knot vector and vertices qj , 0 � j � n given by qj =

Pm
i=0 pijNi;m(u0).

Some of the properties of the B-spline curves can be easily extended to
surfaces such as:

30 1. Representation of Curves and Surfaces

� Geometry invariance property.
� End points geometric property.
� Convex hull property.
� B-spline to B�ezier property.

However, no variation diminishing property is known for B-spline surface
patches.

1.5 Generalization of B-spline to NURBS

Non-Uniform Rational B-Spline (NURBS) curves and surface patches [432,
313] are the most popular representation method in CAD/CAM due to their
generality, excellent properties and incorporation in international standards
such as IGES (Initial Graphics Exchange Speci�cation) [182] and STEP
(Standard for the Exchange of Product Model Data) [428]. The NURBS
functions have the same properties as integral B-splines, and are capable of
representing a wider class of geometries. The NURBS curve is represented in
a rational form

r(t) =

Pn
i=0 wipiNi;k(t)Pn
i=0 wiNi;k(t)

; (1.87)

where wi > 0 is a weighting factor and Ni;k(u) is the B-spline basis function.
If all the weights are equal to one, the integral B-spline is recovered. If the
number of control points equals the order of the NURBS curve, then the
curve reduces to a rational B�ezier curve

r(t) =

Pn
i=0 wibiBi;n(t)Pn
i=0 wiBi;n(t)

: (1.88)

The NURBS formulation permits exact representation of conics, such as
circle, ellipse and hyperbola.

Example 1.5.1. Let us express the �rst quadrant of an ellipse as a rational
B�ezier curve as shown in Fig. 1.15. A parametric representation of such ellipse
segment is given by

x = a cos �; y = b sin �; 0 � � � �

2
;

where � is an angle parameter. If we set

t = tan
�

2
=

r
1� cos �

1 + cos �
;

then

1.5 Generalization of B-spline to NURBS 31

cos � =
1� t2
t2 + 1

; sin � =
2t

t2 + 1
:

Therefore the �rst quadrant of the ellipse can be described by

x(t) = a
1� t2
t2 + 1

; y(t) = b
2t

t2 + 1
; 0 � t � 1 : (1.89)

On the other hand a third order rational B�ezier curve is given by

r(t) =
w0(1� t)2b0 + w12t(1� t)b1 + w2t

2b2
w0(1� t)2 + w12t(1� t) + w2t2

; 0 � t � 1 : (1.90)

By equating the denominators of (1.89) and (1.90), we �nd the weights to be
w0 = 1, w1 = 1 and w2 = 2. The three control points b0, b1, b2 can then be
easily obtained by the end points geometric property of the B�ezier curve as
b0 = (a; 0)T , b1 = (a; b)T , and b2 = (0; b)T .

x

y

b0

b1b2

Fig. 1.15. The �rst quadrant of an ellipse described by a rational B�ezier curve

A NURBS surface patch can be represented as

r(u; v) =

Pm
i=0

Pn
j=0 wijpijNi;k(u)Nj;l(v)Pm

i=0

Pn
j=0 wijNi;k(u)Nj;l(v)

; (1.91)

where wij > 0 is a weighting factor. This formulation allows for exact repre-
sentation of quadrics, tori, surfaces of revolution and very general free-form
surfaces. If all wij = 1, the integral B-spline surface is recovered. If the num-
ber of control points are equal to the order of the B-spline basis function

32 1. Representation of Curves and Surfaces

in both parameters u and v, then the NURBS surface reduces to a rational
B�ezier surface patch:

r(u; v) =

Pm
i=0

Pn
j=0 wijbijBi;m(u)Bj;n(v)Pm

i=0

Pn
j=0 wijBi;m(u)Bj;n(v)

: (1.92)

x

y

z

b00

b01

b02

b10

b11

b12

b20

b21

b22

Fig. 1.16. 1/16 of a torus represented by a rational B�ezier surface patch

Example 1.5.2. Let us express 1/16th of a torus (in the �rst octant of a coor-
dinate frame) as a rational B�ezier surface as shown in Fig. 1.16. A parametric
representation of such a toroidal surface patch is given by

r(�; �) = (R+ a cos�) cos �i+ (R+ a cos�) sin �j+ a sin�k; 0 � �; � � �

2
;

where � and � are angle parameters, R > a, and i, j, k are unit vectors having
the directions of the positive x, y and z axes, respectively. If we set

u = tan
�

2
=

r
1� cos �

1 + cos �
; v = tan

�

2
=

s
1� cos�

1 + cos�
; 0 � u; v � 1 ;

then

cos � =
1� u2
u2 + 1

; sin � =
2u

u2 + 1
; cos� =

1� v2
v2 + 1

; sin� =
2v

v2 + 1
:

1.5 Generalization of B-spline to NURBS 33

Thus the toroidal surface patch under consideration can be described by

r(u; v) =

�
R+ a

1� v2
v2 + 1

�
1� u2
u2 + 1

i+

�
R+ a

1� v2
v2 + 1

�
2u

u2 + 1
j+

2va

v2 + 1
k ;

0 � u; v � 1 : (1.93)

Now we will convert this rational polynomial surface patch into a rational
B�ezier surface patch. A biquadratic B�ezier surface is given by

r(u; v) =

P2
i=0

P2
j=0 wijbijBi;2(u)Bj;2(v)P2

i=0

P2
j=0 wijBi;2(u)Bj;2(v)

: (1.94)

By equating the denominators of (1.93) and (1.94), we �nd the weights to be

w00 = 1; w01 = 1; w02 = 2 ;

w10 = 1; w11 = 1; w12 = 2 ;

w20 = 2; w21 = 2; w22 = 4 :

The nine control points bij , 0 � i; j � 2 can then be easily obtained by the
end points geometric property of the B�ezier surface as:

b00 = (R+ a; 0; 0)T , b01 = (R+ a; 0; a)T , b02 = (R; 0; a)T ;
b10 = (R+ a;R+ a; 0)T ; b11 = (R+ a;R+ a; a)T ; b12 = (R;R; a)T ;
b20 = (0; R+ a; 0)T ; b21 = (0; R+ a; a)T ; b22 = (0; R; a)T :

2. Di�erential Geometry of Curves

The di�erential geometry of curves and surfaces is fundamental in Computer
Aided Geometric Design (CAGD). The curves and surfaces treated in di�er-
ential geometry are de�ned by functions which can be di�erentiated a certain
number of times. Books by Hilbert and Cohn-Vossen [165], Koenderink [204]
provide intuitive introductions to the extensive mathematical literature on
three-dimensional shape analysis. The books by Struik [411], Willmore [443],
Kreyszig [205], Lipschutz [234], do Carmo [76] o�er �rm theoretical basis to
the di�erential geometry aspects of three-dimensional shape description. A
book by Gray [136] combines the traditional textbook style and a symbolic
manipulation program Mathematica. In a recent textbook, Gallier [122]
provides a thorough introduction to di�erential geometry as well as a com-
prehensive treatment of a�ne and projective geometry and their applications
to rational curves and surfaces in addition to basic topics of computational
geometry (eg. convex hulls, Voronoi diagrams and Delaunay triangulations).
We briey review elementary di�erential geometry of curves in this chapter
and surfaces in Chap. 3.

2.1 Arc length and tangent vector

Let us consider a segment of a parametric curve r = r(t) between two points
P (r(t)) and Q (r(t+�t)) as shown in Fig. 2.1. Its length �s can be approx-
imated by a chord length j�rj = jr(t+�t)� r(t)j, and by means of a Taylor
expansion we have

�s ' j�rj = jr(t+�t)� r(t)j =
����drdt�t+ d2r

dt2
(�t)2

���� '
����drdt
�����t ; (2.1)

to the �rst order approximation.
Thus as point Q approaches P or in other words �t ! 0, the length �s

becomes the di�erential arc length of the curve:

ds =

����drdt
���� dt = j _rjdt = p _r � _rdt : (2.2)

Here the dot _ denotes di�erentiation with respect to the parameter t. There-
fore the arc length of a segment of the curve between points r(to) and r(t) can

36 2. Di�erential Geometry of Curves

P

Q

r(t+∆t)

r(t)

∆r

x

y

z

Fig. 2.1. A segment �r connecting two point P and Q on a parametric curve r(t)

be obtained as follows (provided the function t 2 [t0; t]! r(t) is one-to-one
almost everywhere):

s(t) =

Z t

to

ds =

Z t

to

p
_r � _rdt =

Z t

to

p
_x2(t) + _y2(t) + _z2(t)dt : (2.3)

The vector dr
dt is called the tangent vector at point P . This tangent vector

has a simple geometrical interpretation. The vector r(t+�t)� r(t) indicates
the direction from r(t) to r(t +�t). If we divide the vector by �t and take
the limit as �t ! 0, then the vector will converge to the �nite magnitude
vector _r(t), i.e. the tangent vector. The magnitude of the tangent vector is
derived from (2.2) as

j _rj = ds

dt
; (2.4)

hence the unit tangent vector becomes

t =
_r

j _rj =
dr
dt
ds
dt

=
dr

ds
� r0 : (2.5)

Here the prime 0 denotes di�erentiation with respect to the arc length. We
will keep these notations, i.e. dot _ is for di�erentiation with respect to non-
arc-length parameter t and prime 0 with respect to arc length parameter s
throughout the book. We list some useful formulae of the derivatives of arc
length s with respect to parameter t and vice versa:

_s =
ds

dt
= j _rj =

p
_r � _r ; (2.6)

2.1 Arc length and tangent vector 37

�s =
d _s

dt
=

_r � �rp
_r � _r ; (2.7)

���
s =

d�s

dt
=

(_r � _r)(_r� ���r +�r � �r)� (_r � �r)2
(_r � _r) 32 ; (2.8)

t0 =
dt

ds
=

1

j _rj =
1p
_r � _r ; (2.9)

t00 =
dt0

ds
= � _r � �r

(_r � _r)2 ; (2.10)

t000 =
dt00

ds
= � (�r � �r+ _r� ���r)(_r � _r)� 4(_r � �r)2

(_r � _r) 72 : (2.11)

De�nition 2.1.1. A regular (ordinary) point P on a parametric curve r =
r(t) = (x(t); y(t); z(t))T is de�ned as a point where j _r(t)j 6= 0. A point which
is not a regular point is called a singular point.

De�nition 2.1.2. A parametrization r = r(t) = (x(t); y(t); z(t))T of a curve
de�ned in the interval I is called an allowable representation of class r [206],
if it satis�es the following:

1. the mapping r : I ! R3, t 7! r(t) = (x(t); y(t); z(t))T is one-to-one,
2. the vector function r = r(t) is of class r � 1 in the interval I,
3. j _r(t)j 6= 0 for all t 2 I.

A parametric curve satisfying De�nition 2.1.2 is also referred to as a regu-
lar curve. The magnitude of the tangent vector ds

dt can be interpreted as a rate
of change of the arc length s with respect to the parameter t and is called the
parametric speed. If we assume the curve _r(t) to be regular, then by de�nition
j _r(t)j is never zero and hence ds

dt is always positive. When ds
dt = 1, the curve

is said to be arc length parametrized or to have unit speed. If the parametric
speed does not vary signi�cantly, points of the curve obtained at parameter
values t0; t1; � � � ; tN corresponding to a uniform increment �t = tk � tk�1,
will be nearly evenly distributed along the curve, as illustrated in Fig. 2.2.
It is well known that every regular curve has an arc length parametrization
[109], however, in practice it is very di�cult to �nd it analytically, due to
the fact that (2.3) is hard to integrate analytically. Pythagorean hodograph
(PH) curves, introduced by Farouki and Sakkalis [108, 110], form a class of
special planar polynomial curves whose parametric speed is a polynomial.
Accordingly, its arc length is a polynomial function s(t) of the parameter t.
We provide a further review of Pythagorean hodograph curves and surfaces
in Sect. 11.4.

De�nition 2.1.3. A point (x0; y0) of a planar irreducible implicit curve
f(x; y) = 0 is said to be singular if f(x0; y0) = fx(x0; y0) = fy(x0; y0) = 0.

38 2. Di�erential Geometry of Curves

Parameter Space

t0 t3 t4 t5t1 t2

t0

t1

t2 t3 t4

t5

x

y

t

ds
dt

Fig. 2.2. When parametric speed does not vary signi�cantly, points with uniformly
spaced parameter values are nearly uniformly spaced along a parametric curve

The unit tangent vector for implicit curves can also be derived as follows.
First we start with the planar curve f(x; y) = 0. The di�erential df of the
implicit form f = 0 is zero, thus by letting fx =

@f
@x and fy =

@f
@y we have

df = fxdx + fydy = 0 ; (2.12)

or assuming fy 6= 0,

dy

dx
= �fx

fy
: (2.13)

Therefore the tangent vector on the implicit curve is given by �(fy;�fx)T ,
and hence the unit tangent vector is

t = � (fy;�fx)
Tq

f2x + f2y

: (2.14)

The sign depends on the sense in which s increases.
As shown in Table 1.1, an implicit space curve is de�ned as the intersection

of two implicit surfaces, f(x; y; z) = 0 and g(x; y; z) = 0. As we will see in
Sect. 3.1, the normal vectors of these two implicit surfaces are rf and rg,
respectively, where the symbol r represents the gradient vector operator

which is of the form r =
�
@
@x ;

@
@y ;

@
@z

�T
.

Since the tangent vector to the intersection curve is orthogonal to the
normals of the two implicit surfaces, the unit tangent vector is given by

t = � rf �rgjrf �rgj ; (2.15)

provided that the denominator is nonzero (rf 6= 0 and rg 6= 0 or in other
words the two surfaces are nonsingular and the surfaces are not tangent to
each other at their common point under consideration). The unit tangent
vector of the intersection of two implicit surfaces, when the two surfaces
intersect tangentially is given in Sect. 6.4. Also here the sign depends on the
sense in which s increases. A more detailed treatment of the tangent vector
of implicit curves resulting from intersection of various types of surfaces can
be found in Chap.6.

2.2 Principal normal and curvature 39

Example 2.1.1. The semi-cubical parabola, which is illustrated in Fig. 2.3,
can be represented in parametric form as the curve r(t) = (t2; t3)T [226]. The
parametric speed is evaluated as j _r(t)j =pt2(4 + 9t2). It becomes zero when
t = 0, hence it is singular at the origin and forms a cusp, which is illustrated
in Fig. 2.3. The curve can be also represented implicitly f(x; y) = x3�y2 = 0.
We can also observe that f(0; 0) = fx(0; 0) = fy(0; 0) = 0.

−0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

t > 0t > 0

t < 0t < 0

Fig. 2.3. A singular point occurs on a semi-cubical parabola in the form of a cusp

2.2 Principal normal and curvature

If r(s) is an arc length parametrized curve, then r0(s) is a unit vector (see
(2.5)), and hence r0 � r0 = 1. Di�erentiating this relation, we obtain

r0 � r00 = 0 ; (2.16)

which states that r00 is orthogonal to the tangent vector, provided it is not a
null vector. This fact can be also interpreted from the de�nition of the second
derivative r00(s)

r00(s) = lim
�s!0

r0(s+�s)� r0(s)
�s

: (2.17)

40 2. Di�erential Geometry of Curves

∆θ

ρ

1

1

∆s

r’ (s+∆s)r’ (s)

r’ (s+∆s)

r’ (s+∆s)−
r’ (s)

r’ (s)

n

Center of curvature

∆θ

Q

P

Fig. 2.4. Derivation of the normal vector of a curve (adapted from [454])

As shown in Fig. 2.4, the direction of r0(s+�s)� r0(s) becomes perpen-
dicular to the tangent vector as �s! 0. The unit vector

n =
r00(s)
jr00(s)j =

t0(s)
jt0(s)j ; (2.18)

which has the direction and sense of t0(s) is called the unit principal normal
vector at s. The plane determined by the unit tangent and normal vectors
t(s) and n(s) is called the osculating plane at s. It is also well known that
the plane through three consecutive points of the curve approaching a single
point de�nes the osculating plane at that point [411].

When r0(s+�s) is moved from Q to P , then r0(s), r0(s+�s) and r0(s+
�s)�r0(s) form an isosceles triangle (see Fig. 2.4), since r0(s+�s) and r0(s)
are unit tangent vectors. Thus we have jr0(s+�s)� r0(s)j = �� � 1 = �� =
jr00(s)�sj as �s! 0 and hence

jr00(s)j = lim
�s!0

��

�s
= lim

�s!0

��

%��
=

1

%
� � : (2.19)

� is called the curvature , and its reciprocal % is called the radius of curvature
at s. It follows that

r00 = t0 = �n : (2.20)

The vector k = r00 = t0 is called the curvature vector, and measures the
rate of change of the tangent along the curve. By de�nition � is nonnegative,
thus the sense of the normal vector is the same as that of r00(s).

The curvature for arbitrary speed (non-arc-length parametrized) curve
can be obtained as follows. First we evaluate _r and �r by the chain rule

2.2 Principal normal and curvature 41

_r =
dr

ds

ds

dt
= tv ; (2.21)

�r =
d

dt
[tv] =

dt

ds
v2 + t

dv

dt
= �nv2 + t

dv

dt
; (2.22)

where v = ds
dt is the parametric speed. Taking the cross product of _r and �r

we obtain

_r� �r = �v3t� n : (2.23)

For the planar curve, we can give the curvature � a sign by de�ning the
normal vector such that (t;n; ez) form a right-handed screw, where ez =
(0; 0; 1)T as shown in Fig. 2.5. The point where the curvature changes sign is
called an inection point (see also Fig. 8.3).

x

y

z

t
n

ez
n

t

t

n
κ<0

κ=0

κ>0

inflection
point

Fig. 2.5. Normal and tangent vectors along a 2D curve

According to this de�nition the unit normal vector of the plane curve is
given by

n = ez � t = (� _y; _x)Tp
_x2 + _y2

; (2.24)

and hence from (2.23) we have

� =
(_r� �r) � ez

v3
=

_x�y � _y�x

(_x2 + _y2)
3
2

: (2.25)

For a space curve, by taking the norm of (2.23) and using (2.4), we obtain

42 2. Di�erential Geometry of Curves

� =
j _r� �rj
j _rj3 : (2.26)

The normal vector for the arbitrary speed curve can be obtained from
n = b � t, where b is the unit binormal vector which will be introduced in
Sect. 2.3 (see (2.41)).

The unit principal normal vector and curvature for implicit curves can be
obtained as follows. For the planar curve the normal vector can be deduced
by combining (2.14) and (2.24) yielding

n = ez � t = (fx; fy)
Tq

f2x + f2y

=
rf
jrf j ; (2.27)

where only the + sign of t was used (although it is not necessary).
We will introduce a derivative operator with respect to arc length so

that the derivation becomes simple. If we rewrite the plane implicit curve
as f(x(s); y(s)) = 0 where s is arc length along the implicit curve, the total
derivative with respect to the arc length becomes

df

ds
=
@f

@x

dx

ds
+
@f

@y

dy

ds
: (2.28)

Now if we replace dx
ds and dy

ds by using (2.5) and (2.14) (+ sign), we obtain
the derivative operator with respect to arc length

d

ds
=

1

jrf j
�
fy

@

@x
� fx @

@y

�
: (2.29)

By applying the operator (2.29) to (2.14) (+ sign) and equating with �n
(using (2.20) and (2.27)), we obtain

� = �fxxf
2
y � 2fxyfxfy + f2xfyy

(f2x + f2y)
3
2

: (2.30)

For a 3-D implicit curve, we can deduce a derivative operator [443] similar
to (2.29),

d

ds
=

1

j�j
�
�1

@

@x
+ �2

@

@y
+ �3

@

@z

�
; (2.31)

where � is the tangent vector of the 3-D implicit curve (see (2.15)) given by

� = (�1; �2; �3) = rf �rg ; (2.32)

and

2.3 Binormal vector and torsion 43

�1 =
@f

@y

@g

@z
� @g

@y

@f

@z
; (2.33)

�2 =
@g

@x

@f

@z
� @f

@x

@g

@z
; (2.34)

�3 =
@f

@x

@g

@y
� @g

@x

@f

@y
: (2.35)

By applying the derivative operator (2.31) to j�jt = � we obtain

dj�jt
ds

=
1

j�j
�
�1
@�

@x
+ �2

@�

@y
+ �3

@�

@z

�
; (2.36)

which gives

j�j2�n+ j�jj�j0t =
�
�1
@�

@x
+ �2

@�

@y
+ �3

@�

@z

�
: (2.37)

Taking the cross product of j�jt = � and (2.37) yields

j�j3�b = ��
�
�1
@�

@x
+ �2

@�

@y
+ �3

@�

@z

�
: (2.38)

Thus,

� =

����� ��1 @�@x + �2
@�
@y + �3

@�
@z

����
j�j3 : (2.39)

A di�erent derivation of the curvature of a 3-D implicit curve is given in Sect.
6.3.2.

2.3 Binormal vector and torsion

In Sects. 2.1 and 2.2, we have introduced the tangent and normal vectors,
which are orthogonal to each other and lie in the osculating plane. Let us
de�ne a unit binormal vector b such that (t;n;b) form a right-handed screw,
i.e.

b = t� n; t = n� b; n = b� t ; (2.40)

which is shown in Fig. 2.6. The plane de�ned by normal and binormal vectors
is called the normal plane and the plane de�ned by binormal and tangent
vectors is called the rectifying plane (see Fig. 2.6). As mentioned before, the
plane de�ned by tangent and normal vectors is called the osculating plane.
The binormal vector for the arbitrary speed curve with nonzero curvature
can be obtained by using (2.23) and the �rst equation of (2.40) as follows:

44 2. Di�erential Geometry of Curves

y

t

b

n

r=r(t)

x

z

(t,n): osculating plane

(n,b): normal plane

(b,t): rectifying plane

Fig. 2.6. The tangent, normal, and binormal vectors de�ne an orthogonal coordi-
nate system along a space curve

b =
_r� �r

j _r� �rj : (2.41)

The binormal vector is perpendicular to the osculating plane and its rate of
change is expressed by the vector

b0 =
d

ds
(t� n) = dt

ds
� n+ t� dn

ds
= t� n0 ; (2.42)

where we used the fact that dt
ds = r00 = �n.

Since n is a unit vector n � n = 1, we have n � n0 = 0. Therefore n0 is
parallel to the rectifying plane (b; t), and hence n0 can be expressed as a
linear combination of b and t:

n0 = �t+ �b : (2.43)

Thus, using (2.42) and (2.43), we obtain

b0 = t� (�t+ �b) = �t � b = ��b� t = ��n : (2.44)

The coe�cient � is called the torsion and measures how much the curve
deviates from the osculating plane. By taking the dot product with �n, we
obtain the torsion of the curve at a nonzero curvature point

� = �n � b0 = �r
00

�
�
�
r0 � r00

�

�0
= �r

00

�
�
�
r0 � r000

�

�
=

(r0r00r000)
r00 � r00 ;

(2.45)

where (2.20) is used and (r0r00r000) is a triple scalar product. 1

1 A triple scalar product (a b c) is numerically equal to the volume of the paral-
lelepiped having the edge vectors a, b and c, and is given by

2.3 Binormal vector and torsion 45

The torsion for an arbitrary speed curve is given by

� =
(_r�r

���
r)

(_r� �r) � (_r � �r)
: (2.48)

The evaluation of torsion when curvature vanishes is discussed in Sect. 6.2.
While the curvature is determined only in magnitude, except for plane

curves, torsion is determined both in magnitude and sign. Torsion is positive
when the rotation of the osculating plane is in the direction of a right-handed
screw moving in the direction of t as s increases. If the torsion is zero at all
points, the curve is planar.

The binormal vector of a 3-D implicit curve can be obtained from (2.38)
as follows:

b =
��

�
�1

@�
@x + �2

@�
@y + �3

@�
@z

�
j��

�
�1

@�
@x + �2

@�
@y + �3

@�
@z

�
j
: (2.49)

The torsion for a 3-D implicit curve can be derived by applying the deriva-
tive operator (2.31) to (2.38) [443], which gives

d

ds
(j�j3�b) = (2.50)

1

j�j
�
�1

@

@x
+ �2

@

@y
+ �3

@

@z

��
��

�
�1
@�

@x
+ �2

@�

@y
+ �3

@�

@z

��
;

and therefore

j�j(j�j3�)0b� j�j4��n = (2.51)�
�1

@

@x
+ �2

@

@y
+ �3

@

@z

��
��

�
�1
@�

@x
+ �2

@�

@y
+ �3

@�

@z

��
:

Taking the dot product with (2.37) we obtain

�j�j6�2� =
�
�1
@�

@x
+ �2

@�

@y
+ �3

@�

@z

�
(2.52)

�
�
�1

@

@x
+ �2

@

@y
+ �3

@

@z

��
��

�
�1
@�

@x
+ �2

@�

@y
+ �3

@�

@z

��
;

from which we calculate � . An alternative approach for evaluating the torsion
of 3-D implicit curves is presented in Sect. 6.3.3.

(a b c) =

�����
ax bx cx
ay by cy
az bz cz

����� =
�����
ax ay az
bx by bz
cx cy cz

����� = (a� b) � c = a � (b� c) : (2.46)

Also a cyclic permutation maintains the value of the triple scalar product:

(a b c) = (b c a) = (c a b) : (2.47)

46 2. Di�erential Geometry of Curves

-2

-1

0

1

2

-2

-1

0

1

2

0

10

20

30

40

50

Fig. 2.7. Circular helix with a = 2, b = 3 for 0 � t � 6�

Example 2.3.1. A circular helix in parametric representation is given by
r(t) = (a cos t; a sin t; bt)T . Figure 2.7 shows a circular helix with a = 2,
b = 3 for 0 � t � 6�. The parametric speed is easily computed as
j _r(t)j = pa2 + b2 � c, which is a constant. Therefore the curve is regular
and its arc length is

s(t) =

Z t

0

j _rjdt =
Z t

0

p
a2 + b2dt = ct :

We can easily reparametrize the curve with arc length by replacing t by s
c

yielding r = (a cos sc ; a sin
s
c ;

bs
c)

T . The �rst three derivatives are evaluated as

r0(s) =
�
�a
c
sin

s

c
;
a

c
cos

s

c
;
b

c

�T
; r00(s) =

�
� a

c2
cos

s

c
;� a

c2
sin

s

c
; 0
�T

;

r000(s) =
� a
c3

sin
s

c
;� a

c3
cos

s

c
; 0
�T

:

The curvature and torsion are evaluated as follows:

�2 = r00 � r00 = a2

c4

�
cos2

s

c
+ sin2

s

c

�
=
a2

c4
= constant ;

� =
(r0r00r000)
r00 � r00 =

(r0r00r000)
�2

=
c4

a2

����������

�a
c sin

s
c

a
c cos

s
c

b
c

� a
c2 cos

s
c � a

c2 sin
s
c 0

a
c3 sin

s
c � a

c3 cos
s
c 0

����������

2.4 Frenet-Serret formulae 47

=
c4

a2
b

c

a2

c5

�
cos2

s

c
+ sin2

s

c

�
=

b

c2
= constant :

Note that the circular helix has constant curvature and torsion and when
b > 0, it is a right-handed helix while when b < 0, it is a left-handed helix.

2.4 Frenet-Serret formulae

From (2.20) and (2.44), we found that

t0 = �n ; (2.53)

b0 = ��n : (2.54)

From these equations we deduce

n0 = (b� t)0 = b0 � t+ b� t0 = ��n� t+ b� (�n) = ��t+ �b :

(2.55)

In matrix form we can express the di�erential equations as0
@ t0

n0

b0

1
A =

0
@ 0 � 0
�� 0 �
0 �� 0

1
A
0
@ t
n
b

1
A : (2.56)

Thus, t, n, b are completely determined by the curvature and torsion of
the curve as a function of parameter s. The equations � = �(s), � = �(s)
are called intrinsic equations of the curve. The formulae (2.56) are known as
the Frenet-Serret formulae and describe the motion of a moving trihedron
(t; n; b) along the curve. From these t, n, b the shape of the curve can be
determined apart for a translation and rotation. For arbitrary speed curve
the Frenet-Serret formulae are given by0

@ _t
_n
_b

1
A =

0
@ 0 v� 0
�v� 0 v�
0 �v� 0

1
A
0
@ t
n
b

1
A ; (2.57)

where v = ds
dt is the parametric speed.

Example 2.4.1. As shown in Example 2.3.1 the intrinsic equations of circular
helix are given by �(s) = a

c2 , �(s) =
b
c2 , where c =

p
a2 + b2. In this example

we derive the parametric equations of circular helix from these intrinsic equa-
tions. Substituting the intrinsic equations into the Frenet-Serret equations we
obtain

dt

ds
=

a

c2
n;

dn

ds
= � a

c2
t+

b

c2
b;

db

ds
= � b

c2
n :

48 2. Di�erential Geometry of Curves

We �rst di�erentiate the �rst equation twice and the second equation once
with respect to s, which yield

d2t

ds2
=

a

c2
dn

ds
;

d3t

ds3
=

a

c2
d2n

ds2
;

d2n

ds2
= � a

c2
dt

ds
� b2

c4
n ;

where the third equation is used to replace db
ds . Eliminating n, dn

ds ,
d2n
ds2 and

recognizing that t = dr
ds , we obtain the fourth order di�erential equation

d4r

ds4
+

1

c2
d2r

ds2
= 0 :

The general solution to this di�erential equation is given by

r(s) = C1 +C2s+C3 cos
s

c
+C4 sin

s

c
;

where C1, C2, C3 and C4 are the vector constants determined by the initial
conditions. In this case we assume the following initial conditions

r(0) = (a; 0; 0)T ; r0(0) =
�
0;
a

c
;
b

c

�T
; r00(0) =

�
� a

c2
; 0; 0

�T
;

r000(0) =
�
0;� a

c3
; 0
�T

;

which yield

C1 = (0; 0; 0)T ; C2 =

�
0; 0;

b

c

�T
;C3 = (a; 0; 0)T ; C4 = (0; a; 0)T ;

thus, we have r(s) =
�
a cos sc ; a sin

s
c ;

bs
c

�T
.

3. Di�erential Geometry of Surfaces

3.1 Tangent plane and surface normal

Let us consider a curve u = u(t), v = v(t) in the parametric domain of
a parametric surface r = r(u; v) as shown in Fig. 3.1. Then r = r(t) =
r(u(t); v(t)) is a parametric curve lying on the surface r = r(u; v). The tangent
vector to the curve on the surface is evaluated by di�erentiating r(t) with
respect to the parameter t using the chain rule and is given by

_r(t) = ru _u+ rv _v ; (3.1)

where subscripts u and v denote partial di�erentiation with respect to u and
v, respectively. The tangent plane at point P can be considered as a union

u

v z
r(u,v)

r(u(t),v(t))
u=u(t),v=v(t)

Parametric Space 3−D Spacex

y

Fig. 3.1. The mapping of a curve in 2-D parametric space onto a 3-D parametric
surface

of the tangent vectors of the form (3.1) for all r(t) through P as illustrated
in Fig. 3.2. Point P corresponds to parameters up, vp. Since the tangent
vector (3.1) consists of a linear combination of two surface tangents along iso-
parametric curves ru and rv , the equation of the tangent plane at r(up; vp)
in parametric form with parameters �, � is given by

50 3. Di�erential Geometry of Surfaces

Tp(�; �) = r(up; vp) + �ru(up; vp) + �rv(up; vp) : (3.2)

x

y

z
r(t)=ruu+rvv

Tp

ru

rv

P

Fig. 3.2. The tangent plane at a point on a surface

The surface normal vector is perpendicular to the tangent plane (see Fig.
3.3) and hence the unit normal vector is given by

N =
ru � rv
jru � rvj : (3.3)

By using (3.3), the equation of the tangent plane at r(up; vp) can be written
in the implicit form as

(r � r(up; vp)) �N(up; vp) = 0 ; (3.4)

where r is a point on the tangent plane.

De�nition 3.1.1. A regular (ordinary) point P on a parametric surface is
de�ned as a point where ru � rv 6= 0. A point which is not a regular point is
called a singular point.

The condition ru � rv 6= 0 requires that at point P the vectors ru and rv
do not vanish and have di�erent directions, i.e. ru and rv are linearly inde-
pendent. As we discussed in Sect. 1.3.6, in some design problems we need to
employ triangular patches de�ned by parametrization over a rectangular do-
main. Such a degenerated patch can be generated by collapsing one boundary
curve into a single point or by arranging for two partial derivatives ru and rv
at one of the corners of a quadrilateral patch to be collinear. In both cases
ru � rv has zero magnitude at the degenerate corner point and (3.3) cannot
be used. Conditions for the existence of surface normals at these degenerate

3.1 Tangent plane and surface normal 51

x

y

z

Tp
ru

rv

N

Fig. 3.3. The normal to the point on a surface

corner points have been discussed in [116, 92, 452, 456]. The concept of a reg-
ular surface requires additional conditions beyond the existence of a tangent
plane everywhere on the surface, such as absence of self-intersections. This
concept is presented fully in do Carmo [76].

There are essential and arti�cial singularities [443]. The essential singu-
larities arise from speci�c features of the surface geometry such as the apex
of a cone. The arti�cial singularities arise from the choice of parametrization.

Example 3.1.1. The elliptic cone can be described in a parametric form r =
(at cos �; bt sin �; ct)T , where 0 � � � 2�, 0 � t � l and a, b, c are constants.
We have

r� = (�at sin �; bt cos �; 0)T ; rt = (a cos �; b sin �; c)T ;

thus

jr� � rtj = jbct cos �ex + act sin �ey � abtezj
=

q
t2(b2c2 cos2 � + a2c2 sin2 � + a2b2) :

We can easily observe that the surface becomes singular only at t = 0, which
corresponds to the apex of the cone.

The unit normal vector for an implicit surface can be derived by con-
sidering two parametric curves r1 = (x1(t1); y1(t1); z1(t1))

T , r2 = (x2(t2);
y2(t2); z2(t2))

T lying on an implicit surface f(x; y; z) = 0, and intersecting
at point P on the surface with di�erent tangent directions. Thus we have the
relations:

f(x1(t1); y1(t1); z(t1)) = 0; f(x2(t2); y2(t2); z(t2)) = 0 : (3.5)

52 3. Di�erential Geometry of Surfaces

Total di�erentiation of (3.5) with respect to t1 and t2, respectively, yields

fx
dx1
dt1

+ fy
dy1
dt1

+ fz
dz1
dt1

= 0 ; (3.6)

fx
dx2
dt2

+ fy
dy2
dt2

+ fz
dz2
dt2

= 0 : (3.7)

Now if we multiply (3.6) by dx2
dt2

and subtract (3.7) multiplied by dx1
dt1

, and if

we multiply (3.6) by dy2
dt2

and subtract (3.7) multiplied by dy1
dt1

we can deduce
the following relation

fx : fy : fz = (3.8)

dz2
dt2

dy1
dt1
� dz1
dt1

dy2
dt2

:
dz1
dt1

dx2
dt2
� dz2
dt2

dx1
dt1

:
dx1
dt1

dy2
dt2
� dx2
dt2

dy1
dt1

;

which indicates that vector rf = (fx; fy; fz)
T (also known as gradient of f)

is in the direction of the cross product of the two tangent vectors at P , i.e.
in the normal direction. Thus the unit normal vector of the implicit surface
is given by

N =
(fx; fy; fz)

Tq
f2x + f2y + f2z

=
rf
jrf j ; (3.9)

provided that jrf j 6= 0.
Alternatively, we can derive (3.9) by considering an arbitrary parametric

curve r = r(t) on an implicit surface f(x; y; z) = 0, leading to the relation
rf � _r = 0. Since r = r(t) is arbitrary, rf must be perpendicular to the
tangent plane, and hence it is a normal vector.

The tangent plane of an implicit surface f(x; y; z) = 0 at point P with
coordinates (xp; yp; zp) can be obtained by replacing the normal vector of
parametric surface in (3.4) with (3.9), which leads to

fx(x � xp) + fy(y � yp) + fz(z � zp) = 0 ; (3.10)

where f(xp; yp; zp) = 0 and fx, fy fz in (3.10) are evaluated at (xp; yp; zp).

Example 3.1.2. The elliptic cone of Example 3.1.1 has also the following im-
plicit representation f(x; y; z) = (xa)

2+(yb)
2�(zc)2 = 0. The magnitude of the

normal vector rf = (2xa2 ;
2y
b2 ;� 2z

c2)
T , where (x; y; z) 2 f(x; y; z) = 0, becomes

0 only when x=y=z=0 corresponding to the apex of the cone as also derived
in Example 3.1.1.

3.2 First fundamental form I (metric)

The di�erential arc length of a parametric curve is given by (2.2). Now if we
replace the parametric curve by a curve u = u(t), v = v(t) which lies on the
parametric surface r = r(u; v), then

3.2 First fundamental form I (metric) 53

ds =

����drdt
���� dt =

����ru dudt + rv
dv

dt

���� dt =p(ru _u+ rv _v) � (ru _u+ rv _v)dt

=
p
Edu2 + 2Fdudv +Gdv2 ; (3.11)

where

E = ru � ru; F = ru � rv ; G = rv � rv : (3.12)

The �rst fundamental form is de�ned as

I = ds2 = dr � dr = Edu2 + 2Fdudv +Gdv2 ; (3.13)

and E, F , G are called the �rst fundamental form coe�cients and play im-
portant roles in many intrinsic properties of a surface. The �rst fundamental
form I can be rewritten as

I =
1

E
(E du+ F dv)2 +

EG� F 2

E
dv2 : (3.14)

Since (ru � rv)
2 = (ru � rv) � (ru � rv) = (ru � ru)(rv � rv) � (ru � rv)2 =

EG � F 2 > 01 and E = ru � ru > 0, I is positive de�nite, provided that the
surface is regular. That is I � 0 and I = 0 if and only if du = 0 and dv = 0.

Example 3.2.1. Let us compute the arc length of a curve u = t, v = t for
0 � t � 1 on a hyperbolic paraboloid r(u; v) = (u; v; uv)T where 0 � u; v � 1
as shown in Fig. 3.4 (a). We have

ru = (1; 0; v)T ; rv = (0; 1; u)T ;

E = ru � ru = 1 + v2; F = ru � rv = uv; G = rv � rv = 1 + u2 ;

and along the curve the �rst fundamental form coe�cients are

E = 1 + t2; F = t2; G = 1 + t2 ;

thus,

ds =
p
E _u2 + 2F _u _v +G _v2dt = 2

r
t2 +

1

2
dt :

Finally the arc length for 0 � t � 1 is given by

1 Here the vector identity

(a� b) � (c� d) = (a � c)(b � d)� (a � d)(b � c) ; (3.15)

with the special case

(a� b) � (a� b) = (a � a)(b � b)� (a � b)2 ; (3.16)

is used.

54 3. Di�erential Geometry of Surfaces

s = 2

Z 1

0

r
t2 +

1

2
dt =

"
t

r
t2 +

1

2
+

1

2
log

t+

r
t2 +

1

2

!#1
0

=

r
3

2
+

1

2
log(
p
2 +
p
3) :

(a)

x

y

z

(b)

x

y

z

Fig. 3.4. Hyperbolic paraboloid: (a) arc length along u = t, v = t, (b) area
bounded by positive u and v axes and a quarter circle

The angle between two curves on a parametric surface r1 = r(u1(t); v1(t))
and r2 = r(u2(t); v2(t)) can be evaluated by taking the inner product of the
tangent vectors of r1 and r2, yielding

cos! =
Edu1du2 + F (du1dv2 + dv1du2) +Gdv1dv2p

Edu21 + 2Fdu1dv1 +Gdv21
p
Edu22 + 2Fdu2dv2 +Gdv22

= E
du1
ds1

du2
ds2

+ F

�
du1
ds1

dv2
ds2

+
dv1
ds1

du2
ds2

�
+G

dv1
ds1

dv2
ds2

: (3.17)

As a result of the above equation, the orthogonality condition for the two
tangent vectors _r1 and _r2 is:

Edu1du2 + F (du1dv2 + dv1du2) +Gdv1dv2 = 0 : (3.18)

In particular when the two curves are the u and v iso-parametric curves,
(3.17) reduces to

cos! =
ru � rv
jrujjrv j =

ru � rvp
ru � ruprv � rv =

Fp
EG

: (3.19)

3.3 Second fundamental form II (curvature) 55

Thus the iso-parametric curves are orthogonal if F = 0.
The area of a small parallelogramwith vertices r(u; v), r(u+�u; v), r(u; v+

�v) and r(u+ �u; v + �v) as illustrated in Fig. 3.5, is approximated by

�A = jru�u� rv�vj =
p
EG� F 2�u�v ; (3.20)

or in di�erential form

dA =
p
EG� F 2dudv : (3.21)

r(u0+δu,v0)r(u0,v0+δv)

r(u0,v0)

δA

r(u0,v0+δv)−r(u0,v0) r(u0+δu,v0)−r(u0,v0)

Fig. 3.5. Area of small surface patch

Example 3.2.2. Let us compute the area of a region of the hyperbolic paraboloid
that is used in Example 3.2.1. The region is bounded by positive u and v
axes and a quarter circle u2 + v2 = 1 as shown in Fig. 3.4 (b). Substituting
EG� F 2 = (1 + v2)(1 + u2)� u2v2 = 1 + u2 + v2 into (3.21), we obtain

A =

Z
D

p
1 + u2 + v2dudv :

To perform the integration it is easier to change variables, u = r cos �, v =
r sin �, so that

A =

Z �
2

0

Z 1

0

p
1 + r2 r d� dr =

�

6
(
p
8� 1) :

3.3 Second fundamental form II (curvature)

In order to quantify the curvatures of a surface S, we consider a curve C
on S which passes through point P as shown in Fig. 3.6. The unit tangent
vector t and the unit normal vector n of the curve C at point P are related
by (2.20) as follows:

56 3. Di�erential Geometry of Surfaces

S P

N

kkg

kn

n

C

t

Fig. 3.6. De�nition of normal curvature

k =
dt

ds
= �n = kn + kg ; (3.22)

where kn is the normal curvature vector and kg is the geodesic curvature
vector which are the components of the curvature vector k of C in the surface
normal direction and in the direction perpendicular to t in the surface tangent
plane. Thus, the normal curvature vector can be expressed as

kn = �nN ; (3.23)

where �n is called the normal curvature of the surface at P in the direction
t. In other words, �n is the magnitude of the projection of k onto the surface
normal at P , with a sign determined by the orientation of the surface normal
at P .

By di�erentiating N � t = 0 along the curve with respect to s we obtain

dt

ds
�N+ t � dN

ds
= 0 ; (3.24)

thus

�n =
dt

ds
�N = �t � dN

ds
= �dr

ds
� dN
ds

= �dr � dN
dr � dr (3.25)

=
Ldu2 + 2Mdudv +Ndv2

Edu2 + 2Fdudv +Gdv2
; (3.26)

where

L = �ru �Nu; M = �1
2
(ru �Nv + rv �Nu) = �ru �Nv = �rv �Nu ;

N = �rv �Nv : (3.27)

Since ru and rv are perpendicular to N, we have ru �N = 0 and rv �N = 0,
and hence we have an alternative expression for L, M and N

3.3 Second fundamental form II (curvature) 57

L = ruu �N; M = ruv �N; N = rvv �N : (3.28)

Computation of curvatures at points where the surface representation is de-
generate (see Sect. 1.3.6) is given in [452].

The numerator of (3.26) is the second fundamental form II , i.e.

II = Ldu2 + 2Mdudv +Ndv2 ; (3.29)

and L, M , N are called second fundamental form coe�cients. Therefore the
normal curvature is given by

�n =
II

I
=
L+ 2M�+N�2

E + 2F�+G�2
; (3.30)

where � = dv
du is the direction of the tangent line to C at P . We can observe

that �n at a given point P on the surface depends only on � which leads to
the following theorem due to Meusnier.

Theorem 3.3.1. All curves lying on a surface S passing through a given
point p 2 S with the same tangent line have the same normal curvature at
this point.

Using this theorem we can say that the normal curvature is positive when
the center of the curvature of the normal section curve, which is a curve
through P cut out by a plane that contains t and N; is on the same side of
the surface normal (see Fig. 3.7 (a)). Sometimes the positive normal curvature
is de�ned in the opposite direction, i.e. the center of curvature of the normal
section curve is on the opposite side of the surface normal as illustrated in
Fig. 3.7 (b). In such cases (3.23) (3.30) become

kn = ��nN; �n = �II
I

= �L+ 2M�+N�2

E + 2F�+G�2
: (3.31)

The latter convention is often used in the area of o�set curves and surfaces
in the context of NC machining. Throughout this book we refer to the �rst
convention as convention (a) and to the second one as convention (b). We
have listed all the equations, which involve changes due to this convention in
the last page of this chapter.

Suppose P is a point on a surface and Q is a point in the neighborhood
of P and r = r(u; v) is the surface containing P and Q, as in Fig. 3.8. Now
suppose P and Q are the points r(u; v) and r(u+ du; v + dv), then Taylor's
expansion gives

r(u+ du; v + dv) = r(u; v) + rudu+ rvdv (3.32)

+
1

2
(ruudu

2 + 2ruvdudv + rvvdv
2) + : : : :

Therefore

58 3. Di�erential Geometry of Surfaces

center of curvature

center of curvature

N

N

P

P

(a) (b)

Fig. 3.7. De�nition of positive normal curvature: (a) �n�N = �n, (b) �n�N = ��n
N

P d

Tp

Q

r=r(u,v)

Fig. 3.8. Geometrical illustration of the second fundamental form

PQ = r(u+ du; v + dv)� r(u; v) = rudu+ rvdv (3.33)

+
1

2
(ruudu

2 + 2ruvdudv + rvvdv
2) + : : : :

Thus using (3.28), (3.29), the projection of PQ onto N is

d = PQ �N = (rudu+ rvdv) �N+
1

2
II ; (3.34)

where the higher order terms are neglected and since ru �N = rv �N = 0, we
get

d =
1

2
II =

1

2
(Ldu2 + 2Mdudv +Ndv2) : (3.35)

Thus jII j is equal to twice the distance from Q to the tangent plane of
the surface at P within second order terms. We want to observe in which

3.4 Principal curvatures 59

situation d is positive and negative or in other words we want to examine
in which side of the tangent plane Q lies. When d = 0, (3.35) becomes
Ldu2+2Mdudv+Ndv2 = 0, which can be considered as a quadratic equation
in terms of du or dv. If we solve for du, assuming L 6= 0, we obtain

du =
�M �pM2 � LN

L
dv ; (3.36)

which leads us to the following four cases:

� If M2 �LN < 0, there is no real root. This means there is no intersection
between the surface and its tangent plane except at point P . Point P
is called elliptic point (Fig. 3.9(a)). For example, an ellipsoid consists
entirely of elliptic points.

� If M2 � LN = 0 and L2 +M2 + N2 6= 0, there are double roots. The
surface intersects its tangent plane with one line du = �M

L dv, which
passes through point P . Point P is called parabolic point (Fig. 3.9(b)).
For example, a circular cylinder consists entirely of parabolic points.

� If M2 � LN > 0, there are two roots. The surface intersects its tangent

plane with two lines du = �M�pM2�LN
L dv, which intersect at point P .

Point P is called hyperbolic point (Fig. 3.9(c)). For example, a hyperboloid
of revolution consists entirely of hyperbolic points.

� If L = M = N = 0, the surface and the tangent plane have a contact of
higher order than in the preceding cases. Point P is called a at or planar
point.

If L = 0 and N 6= 0, we can solve for dv instead of du. If L = N = 0 and
M 6= 0, we have 2Mdudv = 0, thus the iso-parametric lines u = constant,
v = constant will be the two intersection lines.

N
N N

P
P PTp

Tp

Tp

Fig. 3.9. (a) Elliptic point; (b) parabolic point; (c) hyperbolic point

3.4 Principal curvatures

As we can see from (3.30) the normal curvature at a point P depends on the
direction of � = dv

du . Now we will seek the directions in which the extrema

60 3. Di�erential Geometry of Surfaces

of principal curvature occur following Struik [411]. The extreme values of �n
can be obtained by evaluating d�n

d� = 0 of (3.30), which gives:

(E + 2F�+G�2)(N�+M)� (L+ 2M�+N�2)(G� + F) = 0 ; (3.37)

and hence

�n =
L+ 2M�+N�2

E + 2F�+G�2
=
M +N�

F +G�
: (3.38)

Furthermore since

E + 2F�+G�2 = (E + F�) + �(F +G�) ;

L+ 2M�+N�2 = (L+M�) + �(M +N�) ;

(3.37) can be reduced to

(E + F�)(M +N�) = (L+M�)(F +G�) ; (3.39)

and hence

�n =
L+ 2M�+N�2

E + 2F�+G�2
=
M +N�

F +G�
=
L+M�

E + F�
: (3.40)

Therefore, the extreme values of �n satisfy the two simultaneous equations

(L� �nE)du+ (M � �nF)dv = 0 ;

(M � �nF)du+ (N � �nG)dv = 0 : (3.41)

These equations form a homogeneous linear system of equations for du, dv,
which will have a nontrivial solution if and only if���� L� �nE M � �nF

M � �nF N � �nG
���� = 0 ; (3.42)

where j j denotes the determinant of a matrix, or expanding

(EG� F 2)�2n � (EN +GL� 2FM)�n + (LN �M2) = 0 : (3.43)

The discriminant D of this quadratic equation in �n can be re-formulated
as

D = 4

�
EG� F 2

E2

�
(EM � FL)2 +

�
EN �GL� 2F

E
(EM � FL)

�2

;

(3.44)

after some algebraic manipulations. Thus the discriminantD is always greater
than or equal to zero and (3.43) has real roots. The discriminant D becomes

3.4 Principal curvatures 61

zero if and only if EM � FL = 0 and EN �GL = 0 or if and only if there
is a constant k such that

L = kE; M = kF; N = kG : (3.45)

Such a point is called an umbilic and the normal curvature is the same in
all directions. Therefore (3.43) has either two distinct real roots, or a double
root. If we set

K =
LN �M2

EG� F 2
; (3.46)

H =
EN +GL� 2FM

2(EG� F 2)
; (3.47)

the quadratic equation for �n (3.43) simpli�es to:

�2n � 2H�n +K = 0 : (3.48)

The quantities K and H are called Gaussian (Gauss) curvature and mean
curvature, respectively. Upon solving (3.48) for the extreme values of cur-
vature, we have

�max = H +
p
H2 �K ; (3.49)

�min = H �
p
H2 �K ; (3.50)

where �max is the maximum principal curvature and �min is the minimum
principal curvature. The directions in the tangent plane for which �n takes
maximum and minimum values are called principal directions. The corre-
sponding directions in the uv-plane can be determined by using (3.40), which
leads to

� = �M � �nF
N � �nG ; (3.51)

or

� = � L� �nE
M � �nF ; (3.52)

where �n is replaced by either �max or �min.
When the discriminant is zero or H2 = K, �n is a double root with value

equal to H and the corresponding point of the surface is an umbilical point.
At an umbilical point a surface is locally a part of sphere with radius of
curvature 1

jHj . In the special case where both K and H vanish, the point is

a at or planar point.
Alternatively we can derive the principal directions by solving a quadratic

equation in �

62 3. Di�erential Geometry of Surfaces

(FN �GM)�2 + (EN �GL)�+ (EM � FL) = 0 ; (3.53)

which is deduced from (3.37). The discriminant of this equation is easily
shown to be the same as that of (3.43), and hence it is greater than or equal
to zero. At an umbilical point the discriminant vanishes and (3.45) hold, thus
we have FN = GM , EN = GL and EM = FL. Therefore, the coe�cients of
the quadratic equation become all zero and thus the principal directions are
not de�ned. When a point P on the surface is a non-umbilical point, there are
always two principal directions determined by the quadratic equations. Let
�max and �min be the directions of maximum and minimum principal cur-
vature in the uv-plane. Then, �max and �min satisfy the quadratic equation
(3.53):

(FN �GM)�2max + (EN �GL)�max + (EM � FL) = 0 ; (3.54)

(FN �GM)�2min + (EN �GL)�min + (EM � FL) = 0 : (3.55)

From these equations we can deduce

�max + �min = � EN �GL
FN �GM ; (3.56)

�max�min =
EM � FL
FN �GM ; (3.57)

thus,

E + F (�max + �min) +G�max�min (3.58)

=
1

FN �GM [E(FN �GM)� F (EN �GL) +G(EM � FL)] = 0 :

Consequently, it is evident from (3.18) that the two tangent vectors in the
principal directions are orthogonal.

A curve on a surface whose tangent at each point is in a principal direction
at that point is called a line of curvature. Since at each (non-umbilical) point
there are two principal directions that are orthogonal, the lines of curvatures
form an orthogonal net of lines. Figure 3.10 shows an example of the lines
of curvature on a saddle-shaped surface where all points are hyperbolic. The
solid lines correspond to the maximum principal curvature direction, while
the dashed lines correspond to the minimum principal curvature direction
(convention (a) is used). Since there is no umbilical point on the surface, we
do not encounter any singularity on the net of lines of curvature. The lines
of curvature in the presence of umbilical points are discussed in Chap. 9.

This orthogonal net of lines can be used as a parametrization of a surface.
In such cases, we have F = 0 (see (3.19)), and (3.41) reduce to

(L� �nE)du+Mdv = 0; Mdu+ (N � �nG)dv = 0 : (3.59)

If these equations are satis�ed by du = 0 and by dv = 0, this implies M = 0,
and the two principal curvatures are �1 =

L
E and �2 =

N
G , in the absence of

3.4 Principal curvatures 63

x

y

z

Fig. 3.10. Lines of curvature

umbilical points. Therefore the necessary condition for the parametric lines
to be lines of curvature is

F =M = 0 : (3.60)

The converse is also true and the condition is also su�cient.

Example 3.4.1. As a curve C in the xz-plane x = f(t), z = g(t) revolves
about the z-axis, it generates a surface of revolution S. The curves C in
di�erent rotated positions are called the meridians of S, while the circles
generated by each point on C are called the parallels of S. If we denote
the rotation angle in the xy-plane as �, the surface of revolution can be
parametrized as

r = (f(t) cos �; f(t) sin �; g(t))T :

Thus,

rt = (_f(t) cos �; _f(t) sin �; _g(t))T ; r� = (�f(t) sin �; f(t) cos �; 0)T ;
and hence

E = _f2(t) + _g2(t); F = 0; G = f2(t) :

Since F = 0, (3.19) shows that the meridians and parallels are orthogonal.
Furthermore we have

L =
� �f _g + _f�gq
_f2(t) + _g2(t)

; M = 0; N =
f _gq

_f2(t) + _g2(t)
;

which lead us to the conclusion that the meridians and parallels of a surface
of revolution are the lines of curvature.

64 3. Di�erential Geometry of Surfaces

3.5 Gaussian and mean curvatures

From (3.49), (3.50), it is readily seen that the Gaussian and mean curvatures
are the product and the average of the two principal curvatures, respectively:

K = �max�min ; (3.61)

H =
�max + �min

2
: (3.62)

The sign of the Gaussian curvature coincides with sign of LN�M2, since

K = LN�M2

EG�F 2 (see (3.46)) and EG � F 2 > 0. Consequently a point on a
surface is elliptic if K > 0 (�max and �min are of the same sign), hyperbolic
if K < 0 (�max and �min have di�erent signs) and parabolic if K = 0 and
H 6= 0 (either �max or �min is zero), at or planar point if K = H = 0
(�max = �min = 0).

3.5.1 Explicit surfaces

Very often a surface is given by an explicit form z = h(x; y). It is, therefore,
convenient to have analytic equations for the Gaussian and mean curvatures
expressed in terms of the derivatives of the height function h(x; y). As we
mentioned in Sect. 1.1 the explicit form can be converted into a parametric
form r = (u; v; h(u; v))T where u = x and v = y. This form is often referred to
asMonge form , and the surface is called a Monge patch. It is straightforward
to evaluate

E = 1 + h2x; F = hxhy; G = 1 + h2y ; (3.63)

N =
(�hx;�hy; 1)Tq

1 + h2x + h2y

; (3.64)

L =
hxxq

1 + h2x + h2y

; M =
hxyq

1 + h2x + h2y

; N =
hyyq

1 + h2x + h2y

;

(3.65)

and hence

K =
LN �M2

EG� F 2
=

hxxhyy � h2xy
(1 + h2x + h2y)

2
; (3.66)

H =
EN +GL� 2FM

2(EG� F 2)
=

(1 + h2x)hyy � 2hxhyhxy + (1 + h2y)hxx

2(1 + h2x + h2y)
3=2

:

(3.67)

3.5 Gaussian and mean curvatures 65

Example 3.5.1. Let us compute the Gaussian and mean curvatures of the
hyperbolic paraboloid z = xy (in Example 3.2.1 we used its parametric form)
using the explicit formulae (3.63) to (3.67). Since

hx = y; hy = x; hxx = 0; hxy = 1; hyy = 0; N =
(�y;�x; 1)Tp
x2 + y2 + 1

;

we have

E = 1 + y2; F = xy; G = 1 + x2; L = 0; M =
1p

x2 + y2 + 1
; N = 0 ;

and hence

K = � 1

(x2 + y2 + 1)2
; H = � xy

(x2 + y2 + 1)
3
2

:

Here we can observe that the Gaussian curvature is always negative and thus
all the points on a hyperbolic paraboloid are hyperbolic points. Furthermore,
since L = N = 0 and M 6= 0, the surface intersects its tangent plane at
the iso-parametric lines (see Sect. 3.3 last paragraph). Also from (3.49) and
(3.50) we obtain

�max =
�xy +p(x2 + 1)(y2 + 1)

(x2 + y2 + 1)
3
2

; �min =
�xy �p(x2 + 1)(y2 + 1)

(x2 + y2 + 1)
3
2

;

where it is very easy to show that �max > 0 and �min < 0 for all (x; y).

3.5.2 Implicit surfaces

Using (3.66), (3.67) for an explicit surface, we can derive equations for the
Gaussian and mean curvature of an implicit surface f(x; y; z) = 0. At a point
where fz 6= 0, z can be expressed as a function of x and y, say z = h(x; y)
[166]. In such cases variables x and y are independent but z is a function
of both x and y. Since f constantly satis�es the equation f(x; y; z) = 0, the
partial di�erentiation of f with respect to the independent variable x (by
holding y �xed) must vanish [166]. Thus,�

@f

@x

�
y

=
@f

@x
+
@f

@z

@z

@x
= 0 ; (3.68)

where
�
@f
@x

�
y
on the left-hand side is considered as f being expressed in terms

of x and y only and y is held constant in the di�erentiation with respect to x,
while @f

@x on the right-hand side is considered as f being expressed in terms
of x, y, z and y, z are held constant in the x di�erentiation. Similarly we
have

66 3. Di�erential Geometry of Surfaces�
@f

@y

�
x

=
@f

@y
+
@f

@z

@z

@y
= 0 : (3.69)

Consequently we have

hx = �fx
fz
; hy = �fy

fz
: (3.70)

The second order partial derivatives hxx, hxy, hyy are provided by di�er-
entiating (3.70). For example,

hxx = �

�
@fx
@x

�
y
fz �

�
@fz
@x

�
y
fx

f2z
=

2fxfzfxz � f2xfzz � f2z fxx
f3z

: (3.71)

Similarly, we have

hxy =
fxfzfyz + fyfzfxz � fxfyfzz � f2z fxy

f3z
; (3.72)

hyy =
2fyfzfyz � f2yfzz � f2z fyy

f3z
: (3.73)

Equations (3.70) to (3.73) may be substituted into (3.63) and (3.65) to
obtain the �rst and second fundamental form coe�cients, and into (3.66) and
(3.67) to compute the Gaussian and mean curvature of an implicit surface. If
fz = 0, alternate formulae may be found by cyclic permutation of x, y, z.

For every quadric surface, it is possible to �nd a suitable 3-D rotation
such that the cross terms dxy, eyz and fxz cancel out in (1.15). If a quadric
surface has a center2, its axes can be translated to the center as origin so that
the equation of the quadric surface does not have any �rst degree terms [79].
Therefore after these transformations the implicit quadrics, ellipsoids, hyper-
boloids of one and two sheets, elliptic cones, elliptic cylinders and hyperbolic
cylinders can be expressed in a standard form

f(x; y; z) = �
x2

a2
+ �

y2

b2
+ �

z2

c2
� � = 0 ; (3.74)

where �, � and � take values either -1, 0 or 1 and � takes values either 0 or
1, depending on the classi�cation of quadrics (see Table 3.1).

By evaluating (3.70), (3.71), (3.72) and (3.73) for f given in (3.74), and
substituting into (3.66) and (3.67), we obtain

2 A center of a quadric surface is de�ned as a point bisecting every chord passing
through it [79]. Here chord is a line which joins two points on a surface. Ellip-
soids and hyperboloids have centers, while paraboloids do not have centers. The
elliptic/hyperbolic cylinder is a limiting case of the ellipsoid/hyperboloid and
the elliptic cone is asymptotic to hyperboloids of one and two sheets.

3.5 Gaussian and mean curvatures 67

Table 3.1. Classi�cation of implicit quadrics

Implicit Quadrics � � � �

Ellipsoid 1 1 1 1

Hyperboloid of One Sheet 1 1 -1 1
1 -1 1 1
-1 1 1 1

Hyperboloid of Two Sheets 1 -1 -1 1
-1 1 -1 1
-1 -1 1 1

Elliptic Cone 1 1 -1 0
1 -1 1 0
-1 1 1 0

Elliptic Cylinder 1 1 0 1
1 0 1 1
0 1 1 1

Hyperbolic Cylinder 1 -1 0 1
-1 1 0 1
1 0 -1 1
-1 0 1 1
0 1 -1 1
0 -1 1 1

K(x; y; z) =
����

a2b2c2(�2 x
2

a4 + �2 y
2

b4 + �2 z
2

c4)
2
; (3.75)

H(x; y; z) = (3.76)

��
2b2c2(�b2 + �c2)x2 + �2a2c2(�a2 + �c2)y2 + �2a2b2(�a2 + �b2)z2

2a4b4c4(�2 x
2

a4 + �2 y
2

b4 + �2 z
2

c4)
3
2

;

where (x; y; z) satisfy f(x; y; z) = 0. The principal curvatures can be obtained
by substituting (3.75) and (3.77) into

�(x; y; z) = H �
p
H2 �K ; (3.77)

where we will not show the substituted expression because it is too cumber-
some.

The curvatures of a hyperbolic cylinder (� = � = 1, � = �1, � = 0)

f(x; y) =
x2

a2
� y2

b2
� 1 = 0 ; (3.78)

can be obtained by evaluating (3.75), (3.77) and (3.77) resulting

K = 0; H =
b2x2 � a2y2

2a4b4(x
2

a4 +
y2

b4)
3
2

; (3.79)

�max =
b2x2 � a2y2

a4b4(x
2

a4 +
y2

b4)
3
2

; �min = 0 ; (3.80)

68 3. Di�erential Geometry of Surfaces

where (x; y) 2 f(x; y) = x2

a2 � y2

b2 � 1 = 0.
Similarly, the curvatures of an ellipsoid (� = � = � = � = 1)

f(x; y; z) =
x2

a2
+
y2

b2
+
z2

c2
� 1 = 0 ; (3.81)

are evaluated as

K =
1

a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

�2 ; H =
x2 + y2 + z2 � a2 � b2 � c2

2a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

� 3
2

;

(3.82)

� =
x2 + y2 + z2 � a2 � b2 � c2

2a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

� 3
2

(3.83)

�

r
(x2 + y2 + z2 � a2 � b2 � c2)2 � 4a2b2c2

�
x2

a4 +
y2

b4 + z2

c4

�
2a2b2c2

�
x2

a4 +
y2

b4 + z2

c4

� 3
2

;

where (x; y; z) 2 f(x; y; z) = x2

a2 + y2

b2 + z2

c2 � 1 = 0. Here we note that in
the derivation of the mean curvature in (3.82), we used (3.81) to simplify
the expression. For the case of a sphere of radius R, (3.81) simpli�es to
f(x; y; z) = 1

R2 (x
2 + y2 + z2) � 1 = 0, and (3.82) and (3.83) simplify to

K = 1
R2 , H = � = � 1

R , which shows that a sphere is made of entirely
nonat umbilics (see Sects. 9.1 and 9.2). The negative sign comes from the
sign convention of the curvature (see Fig. 3.7 and Table 3.2).

Finally, the curvatures of an elliptic cone (� = � = 1, � = �1 and � = 0)

f(x; y; z) =
x2

a2
+
y2

b2
� z2

c2
= 0 ; (3.84)

excluding the apex (0,0,0) are given by

K = 0; H = � x2 + y2 + z2

2a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

� 3
2

; (3.85)

�max = 0; �min = � x2 + y2 + z2

a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

� 3
2

; (3.86)

where (x; y; z) 2 f(x; y; z) = x2

a2 +
y2

b2 � z2

c2 = 0. Here we also used (3.84) to
simplify the expression of mean curvature in (3.85).

3.6 Euler's theorem and Dupin's indicatrix

The normal curvatures of a surface in an arbitrary direction (in the tangent
plane) at point P can be expressed in terms of principal curvatures �1 and �2

3.6 Euler's theorem and Dupin's indicatrix 69

at point P and the angle � between the arbitrary direction and the principal
direction corresponding to �1, namely,

�n = �1 cos
2 �+ �2 sin

2 � : (3.87)

This is known as Euler's theorem. For simplicity, we assume that the iso-
parametric curves of a surface are lines of curvature, which leads to F =M =
0 (see (3.60)). Now (3.26) takes the form

�n =
Ldu2 +Ndv2

Edu2 +Gdv2
: (3.88)

For v = const iso-parametric lines dv = 0 and for u = const iso-parametric
lines du = 0, thus the principal curvatures �1 and �2 are given by:

�1 =
L

E
; �2 =

N

G
: (3.89)

The angle � between the direction dv
du and the principal direction corre-

sponding to �1 (dv1 = 0, u1 arbitrary) is evaluated by (3.17) as

cos� = E
du

ds

du1
ds1

: (3.90)

Since ds1 =
p
Edu21 and ds =

p
Edu2 +Gdv2 we deduce

cos� =
p
E
du

ds
; sin� =

p
G
dv

ds
: (3.91)

As a consequence, we have the Euler's theorem (3.87).
Next we explain Euler's theorem in a more simple way. Let us consider a

section of the surface cut by a plane parallel to the tangent plane at the point
P , and at an in�nitesimal distance h > 0 from it [440]. We also consider a
plane through P containing the normal vector. If we denote the intersection
points of the surface and the two planes by Q and Q0, the signed radius of
curvature of this normal section by %, and the length of QQ0 by 2R as shown
in Fig. 3.11, we have the relation

(j%j � h)2 +R2 = j%j2 ; (3.92)

thus

R2 = 2hj%j ; (3.93)

to the �rst order. If � is the inclination of this normal section to the principal
direction corresponding to �1, Euler's theorem provides

�1 cos
2 �+ �2 sin

2 � =
1

%
= � 2h

R2
: (3.94)

70 3. Di�erential Geometry of Surfaces

If we set

� = R cos�; � = R sin� ; (3.95)

we obtain

�2

2h%1
+

�2

2h%2
= �1 ; (3.96)

where %1 and %2 are principal radius of curvatures. Consequently a section of
the surface cut by a plane parallel to the tangent plane at the point P , and
at an in�nitesimal distance is a conic section. If we scale the �-� coordinates
as follows

X =
�p
2h

=
Rp
2h

cos� =
p
j%j cos�; (3.97)

Y =
�p
2h

=
Rp
2h

sin� =
p
j%j sin� ; (3.98)

we obtain

X2

%1
+
Y 2

%2
= �1 : (3.99)

This equation determines a conic section called Dupin's indicatrix as shown
in Fig. 3.12. If P is an elliptic point, both principal curvatures have the same
sign, and the indicatrix is an ellipse, while if it is a hyperbolic point, the
principal curvatures have di�erent sign and the indicatrix consists of a pair

of hyperbolas with asymptotic lines Y = �
q

j%2j
j%1jX . If one of the principal

curvatures vanishes, it is a parabolic point and the indicatrix yields a pair of
parallel lines.

3.6 Euler's theorem and Dupin's indicatrix 71

Center of Curvature

Q Q’

R R
h

P

Q Q’
R R

Center of Curvature

h

ρ>0

N

N

ρ<0

(a) (b)

Fig. 3.11. Cross section of the surface cut by a normal plane: (a) normal curva-
ture is positive, (b) normal curvature is negative (Here we followed the curvature
convention (a); see Fig. 3.7)

Φ

Y

| ρ 2|

| ρ 1|

| ρ |

X

Φ

Y

| ρ 2|

| ρ |

X

Y

X

Φ

| ρ |

| ρ 1|

| ρ 2|

(a) (b) (c)

Fig. 3.12. Dupin's indicatrix for (a) elliptic point, (b) parabolic point, (c) hyper-
bolic point

72 3. Di�erential Geometry of Surfaces

Table 3.2. A list of equations which involves a sign change due to the sign con-
vention of curvature of the planar curve or the normal curvature of the surface (see
Fig. 3.7). In sign convention (a) the center of curvature is on the same side of the
normal vector, while in sign convention (b) it is on the opposite direction

Equation Convention (a) Convention (b)

(2.20) r00 = t0 = �n r00 = t0 = ��n
(2.22) �r = �nv2 + t dv

dt
�r = ��nv2 + t dv

dt

(2.24) n = ez � t = (� _y; _x)Tp
_x2+ _y2

n = t� ez =
(_y;� _x)Tp

_x2+ _y2

(2.27) n = ez � t =
(fx;fy)

Tp
f2x+f

2
y

n = t� ez =
(�fx;�fy)

Tp
f2x+f

2
y

= rf
jrf j

= � rf
jrf j

(2.55) n0 = ��t (� = 0) n0 = �t (� = 0)

(3.23) kn = �nN kn = ��nN
(3.25) �n = dt

ds
�N = �t � dN

ds
�n = � dt

ds
�N = t � dN

ds

= � dr
ds
� dN
ds

= � dr�dN
dr�dr

= dr
ds
� dN
ds

= dr�dN
dr�dr

(3.26) �n = Ldu2+2Mdudv+Ndv2

Edu2+2Fdudv+Gdv2
�n = �Ldu2+2Mdudv+Ndv2

Edu2+2Fdudv+Gdv2

(3.30) �n = II
I
= L+2M�+N�2

E+2F�+G�2
�n = � II

I
= L+2M�+N�2

E+2F�+G�2

(3.38) �n = L+2M�+N�2

E+2F�+G�2
�n = �L+2M�+N�2

E+2F�+G�2

= M+N�
F+G�

= �M+N�
F+G�

(3.41) (L� �nE)du+ (M � �nF)dv (L+ �nE)du+ (M + �nF)dv
= 0 = 0
(M � �nF)du+ (N � �nG)dv (M + �nF)du+ (N + �nG)dv
= 0 = 0

(3.42)

��� L� �nE M � �nF
M � �nF N � �nG

��� = 0

��� L+ �nE M + �nF
M + �nF N + �nG

��� = 0

(3.43) (EG� F 2)�2n (EG� F 2)�2n
�(EN +GL� 2FM)�n +(EN +GL� 2FM)�n
+(LN �M2) = 0 +(LN �M2) = 0

(3.47) H = EN+GL�2FM
2(EG�F2)

H = 2FM�EN�GL
2(EG�F2)

(3.51) � = �M��nF
N��nG

� = �M+�nF
N+�nG

(3.52) � = � L��nE
M��nF

� = � L+�nE
M+�nF

(3.67) H = H =
(1+h2x)hyy�2hxhyhxy+(1+h2y)hxx

2(1+h2x+h
2
y)

3=2

2hxhyhxy�(1+h2x)hyy�(1+h2y)hxx

2(1+h2x+h
2
y)

3=2

(3.88) �n = Ldu2+Ndv2

Edu2+Gdv2
�n = �Ldu2+Ndv2

Edu2+Gdv2

(3.89) �1 =
L
E
; �2 =

N
G

�1 = � L
E
; �2 = �N

G

4. Nonlinear Polynomial Solvers and

Robustness Issues

4.1 Introduction

We have seen in Chap. 1 that curves and surfaces in CAD/CAM systems are
usually represented by piecewise polynomial equations of various types. As
we will see in the remaining chapters of this book, the governing equations
for general interrogation problems on such curve and surface representations
(intersections, distance functions, curvature extrema, etc.) reduce to solving
systems of nonlinear polynomial equations as follows:

f(x) = 0 ; (4.1)

where f consists of n functions f1, f2; : : : ; fn, each of which is a polynomial
in the l independent variables x1, x2; : : : ; xl.

Frequently such systems also include square roots of polynomials, which
arise from normalization of the normal vector and analytical expressions of
the principal curvatures of a surface (see (2.24), (3.3), (3.49), (3.50)).

Example 4.1.1. As an illustrative example, let us consider a simple intersec-
tion problem of two planar implicit polynomial (algebraic) curves. Consider
two circles x2 + y2 = 9

16 and (x� 1)2 + y2 = 1
4 intersecting as shown in Fig.

4.1. In this case n = l = 2, and if we set x1 = x and x2 = y, the system of
equations becomes

f1(x1; x2) = x21 + x22 �
9

16
= 0 ; (4.2)

f2(x1; x2) = (x1 � 1)2 + x22 �
1

4
= 0 : (4.3)

The roots can be obtained by eliminating x2, and solving for x1, which gives

(x1; x2) =

21

32
;
�p135
32

!
' (0:65625;�0:36309) :

In this example the degree of the polynomials and the number of variables
were low, so we could solve the system by elementary analytical (elimination)

74 4. Nonlinear Polynomial Solvers and Robustness Issues

y

x

1

1

−1

−1

Fig. 4.1. Intersection of two circles

calculations. However, most problems that arise in CAD/CAM interroga-
tion have higher degrees and number of variables. Such systems of equations
have been solved in earlier approaches by local numerical techniques such as
Newton-type methods which require good initial approximation to all roots
[69, 126], and hence cannot provide full assurance that all roots will be found.
On the other hand global techniques �nd all the roots without initial approx-
imation. We will briey introduce Newton's method in Sect. 4.2, and the rest
of Chap. 4 will be spent on global techniques as well as robustness issues.

4.2 Local solution methods

Newton-type methods are based on local linearization and are conceptually
simple. They are designed to compute roots based on initial approximations.
To begin with, we consider Newton's method in one variable [69, 292] where
we want to �nd roots for f(x) = 0. If we denote the initial guess of the
root as x0, then in the neighborhood of x0 the function f(x) can be linearly
approximated using Taylor expansion as follows:

f(x) ' f(x0) + (x� x0) _f(x0) : (4.4)

Provided that _f(xi) 6= 0, the iteration formula immediately follows:

xi+1 = xi � f(xi)
_f(xi)

; i = 0; 1; 2 : : : : (4.5)

This is illustrated in Fig. 4.2(a). A modi�ed Newton's method [151] for
one variable is shown in Fig. 4.2(b), where we take a fractional step as follows
in order to reduce the possibility of divergence in Fig. 4.2(b) of the full step
method given by (4.5)

4.2 Local solution methods 75

xi+1 = xi � �f(xi)_f(xi)
; (4.6)

where � = max[1; 12 ;
1
4 ; :::] such that jf(xi+1)j < jf(xi)j.

f(x)

xx

x

i

i+1

f(x) i

f(x)i+1

(a) (b)

xixi+1

Fig. 4.2. Newton's method for f(x) = 0

If n = l in (4.1), we can easily extend Newton's method for a single
variable to n variables as follows:

xi+1 = xi +�xi ; (4.7)

where
J(xi) ��xi = �f(xi) ; (4.8)

and J(xi) =
h
@fj
@xk

i
is the Jacobian matrix of (4.1) [69].

Advantages of the Newton's method are its quadratic convergence and
simplicity of implementation. Disadvantages are that for each root a good
initial approximation is required, otherwise the method may diverge. Also
the method cannot by itself provide full assurance that all roots have been
found.

Example 4.2.1. Let us solve the intersection of two circles discussed in Ex-
ample 4.1.1 using Newton's method. The Jacobian matrix is evaluated as
follows:

[J]i =

� @f1
@x1

@f1
@x2

@f2
@x1

@f2
@x2

�
i

=

�
2x1 2x2

2(x1 � 1) 2x2

�
i

:

Thus the iteration scheme becomes�
x1
x2

�
i+1

=

�
x1
x2

�
i

+

�
�x1
�x2

�
i

;

76 4. Nonlinear Polynomial Solvers and Robustness Issues

where �x1 and �x2 are obtained from the solution of the following linear
system �

2x1 2x2
2(x1 � 1) 2x2

�
i

�
�x1
�x2

�
i

= �
�
f1
f2

�
i

:

4.3 Classi�cation of global solution methods

Global solution methods are designed to compute all roots in some area of
interest. In recent computational algebraic geometry related research, three
classes of methods for the computation of solutions of nonlinear polynomial
systems can be distinguished [299]: (1) algebraic and hybrid techniques, (2)
homotopy (continuation) methods, (3) subdivision methods. We will briey
review these three types of techniques.

4.3.1 Algebraic and Hybrid Techniques

Algebraic techniques for solving a nonlinear polynomial system are based on
elimination theory. This theory deals with the problem of eliminating one
or more variables from a system of polynomial equations, thus reducing the
given problem to a problem of higher degree but in fewer variables. There are
basically two fundamental approaches in elimination theory: (1) Resultants,
and (2) Gr�obner bases. Both of the above operate ideally in a symbolic alge-
bra environment, and the coe�cients of the polynomials involved are either
rational or real algebraic numbers. There are several algorithms for solving
nonlinear polynomial systems using the above approaches. All the algorithms
are based on some fundamental algorithm that \�nds" all the roots, real and
complex, of a univariate polynomial. The word \�nds" means, either the al-
gorithm isolates the roots using intervals and rectangles, or encodes them as
algebraic numbers, for further manipulation. Let f(x) be a polynomial with
integer coe�cients of degree m, d be a bound for the size of the coe�cients of
f(x), and L(d) be the number of binary digits of d. Then, the (worst) running
times of real root �nding algorithms are functions of m, L(d) and are given in
[64]. On the other hand, bisection methods for �nding all roots of f , real and
complex with similar running times, can be found in [441, 356]. As it can be
seen from the computing times found in [441, 64, 356], there is an enormous
coe�cient growth of all the quantities involved along the way (requiring sig-
ni�cant computer memory). The latter is one of the most serious problems
that all the algorithms using these techniques su�er from.

Resultant type algorithms: A resultant is a function of the coe�cients
of a given system of polynomials and when it is zero it provides an algebraic
criterion for determining when this polynomial system has a solution. Resul-
tants can be classi�ed as classical, like the Sylvester, Bezout, Macaulay and

4.3 Classi�cation of global solution methods 77

u resultants, and non-classical like the sparse resultants. A good introduction
to resultants and applications can be found in [89, 408, 412, 309, 380].

Algorithms based on resultant computation have been presented in [48,
257, 186, 413, 49]. They work well on systems with a small number of so-
lutions M . However, on systems with large M , these algorithms su�er from
e�ciency problems. The main reason for that is that �nding roots of high
degree univariate polynomials can be a very slow procedure, as discussed
above, due to the use of exact arithmetic.

Gr�obner bases type algorithms: The theory of Gr�obner bases was
developed by Buchberger [46]. Gr�obner bases are very special and useful
bases (generator sets) for a special class of subsets of polynomial rings in l
variables, called polynomial ideals. They are named after Gr�obner who was
Buchberger's thesis advisor. Gr�obner bases can be thought of as a generaliza-
tion of Euclid's algorithm for computing the greatest common divisor of two
polynomials and of Gauss' triangularization algorithm for linear systems.

The usefulness of Gr�obner basis for solving nonlinear polynomial sys-
tems comes from the fact that, whenever the system has a �nite num-
ber of solutions, Gr�obner basis provide an equivalent system of triangular
form. Algorithms using Gr�obner bases use the above fact, and appear in
[47, 217, 227, 115, 444]. Using Gr�obner bases, polynomial systems are con-
verted to polynomial triangular systems, which can be solved by backward
substitution, much in the manner of the Gauss' triangularization algorithm
for linear systems.

If the system has a �nite number of solutions in the a�ne plane, as well
as in the projective plane, then a Gr�obner basis can be computed in O(ml)
time, where m is the highest degree among the polynomials and l is the num-
ber of variables. In case, however, that the system is not zero-dimensional at
in�nity, the time becomes O(ml2). These bounds do not take into account the
coe�cient growth. Gr�obner basis algorithms work well on systems with few
roots. This is one reason they have been considered seriously as a practical
equation-solving tool. But when their complexity is measured as a function
of the number of solutions, their performance is poor. As reported in [258],
these algorithms frequently exhaust memory and computer resources even
for low number of equations n and variables l (e.g. n; l � 5) and moder-
ate degrees m. To overcome this di�culty, algorithms that combine resul-
tant and linear algebra techniques are more promising concerning e�ciency
[15, 287, 259, 258]. These algorithms are generally hybrid and are based on
algebraic and numerical analysis methods. In particular, this approach based
on resultants transforms the problem into a sequence of eigenvalue problems.
This method has found extensive application in various types of intersection
problems [211].

78 4. Nonlinear Polynomial Solvers and Robustness Issues

4.3.2 Homotopy (Continuation) Methods

Homotopy methods [123, 458, 218] are mathematically elegant, but unfortu-
nately, investigation of such methods indicates that they tend to be numer-
ically ill-conditioned. If we try to get around this problem by implementing
the algorithm in rational arithmetic, we end up with enormous memory re-
quirements because we have to solve large systems of complex initial value
problems (IVP). Interval methods can be applied to the solution of these
IVPs but they can be slow in practice [258].

4.3.3 Subdivision Methods

Subdivision methods [220, 332, 285, 391, 401, 133] are generally e�cient (in
�nding simple intersections) and stable. Therefore, they are the most fre-
quently used methods in practice. As we will see, they can be combined with
interval methods to numerically guarantee that certain subdomains do not
contain solutions. Interval Newton methods [272, 131, 190, 27, 159, 158] are
a promising class of subdivision methods. However, the subdivision methods
are not as general as algebraic methods, since they are only capable of isolat-
ing zero-dimensional solutions. Furthermore, although the chances, that all
roots have been found, increase as the resolution tolerance is lowered, there
is no certainty that each root has been extracted/isolated. Subdivision meth-
ods typically do not provide a guarantee as to how many roots there may be
in the remaining subdomains. However, if these subdomains are very small,
the existence of a (single) root within these subdomains is a typical assump-
tion. Lastly, subdivision techniques provide no explicit information about
root multiplicities without additional computation. Despite these drawbacks,
subdivision methods are very useful in practice and are further described
below.

4.4 Projected Polyhedron algorithm

In this section we introduce an iterative global root-�nding algorithm for
an n-dimensional nonlinear polynomial equation system, which belongs to
the class of subdivision methods, called Projected Polyhedron (PP) algorithm
developed by Sherbrooke and Patrikalakis [391]. It is easy to visualize and
simple in that it only requires two straightforward algorithms in order to im-
plement it: one for subdividing multivariate polynomials in Bernstein form,
and one for �nding the convex hull of a two-dimensional set of points. This
algorithm is an extension and generalization of earlier adaptive subdivision
algorithms: for n = 1 used in �nding the real roots and extrema of a poly-
nomial within an interval by Lane and Riesenfeld [220], and for n = 2 used
in shape interrogation by Geisow [124] or in intersecting rays with trimmed
rational polynomial surface patches by Nishita et al. [285] (a method known

4.4 Projected Polyhedron algorithm 79

as B�ezier clipping). The PP algorithm has found many applications in shape
interrogation problems (see also Grandine [133]) as we will see in subsequent
sections and its convergence, rate of convergence and complexity properties
are developed in [391].

For illustration, we will enumerate the procedures required by the PP
algorithm to �nd roots of a degree m polynomial equation f(x) = co+ c1x+
c2x

2 + � � �+ cmx
m = 0 over the interval a � x � b.

1. Make an a�ne parameter transformation x = a + t(b � a) such that
0 � t � 1 as follows:

f(t) =

mX
i=0

cMi t
i; 0 � t � 1 : (4.9)

The transition from the interval a � x � b to the interval 0 � t � 1 is
an a�ne map, and the polynomials are invariant under a�ne parameter
transformation [92].

2. Convert the basis from monomial to Bernstein [106]:

f(t) =

mX
i=0

cBi Bi;m(t) ; (4.10)

where

cBi =

iX
j=0

(ij)

(mj)
cMj ; (4.11)

and Bi;m(t) is the ith Bernstein polynomial of degree m.
3. Create a graph of function f(t) using the linear precision property of

Bernstein polynomials (see (1.21)). Then the graph will become a B�ezier
curve

f(t) =

�
t

f(t)

�
=

mX
i=0

�
i
m
cBi

�
Bi;m(t) ; (4.12)

where (im ; c
B
i)

T are control points. Now the problem of �nding roots of
the univariate polynomial has been transformed into a geometric problem
of �nding the intersection of a B�ezier curve with the parameter axis, a
transformation already used in Geisow [124] for surface interrogation.

4. Construct the convex hull of the B�ezier curve.
5. Intersect the convex hull with the parameter axis.
6. Discard the regions which do not contain roots by applying the de Castel-

jau subdivision algorithm and �nd a sub-region of [0,1] which may contain
the root(s).

80 4. Nonlinear Polynomial Solvers and Robustness Issues

7. If the sub-region is su�ciently small, we conclude that there is a root
inside and return it. But when there are more than one root in the sub-
region, the sub-region will not be reduced. In such case we split the region
evenly by applying the de Casteljau subdivision algorithm and we go back
to 4.

Example 4.4.1. PP algorithm in one dimension.
Find the roots of f(x) = �1:1x2+1:4x�0:2 = 0 where 0 � x � 2. The roots
are approximately, 0.164 and 1.108.

1. Make an a�ne parameter transformation by plugging x = 0+(2�0)t = 2t
into f(x) yielding f(t) = �4:4t2 + 2:8t� 0:2 = 0 where 0 � t � 1.

2. Convert from monomial to Bernstein basis using (4.11) as below

cBi =
iX

j=0

(ij)

(2j)
cMj ;

where cM0 = �0:2, cM1 = 2:8 and cM2 = �4:4, thus leading to cB0 = �0:2,
cB1 = 1:2 and cB2 = �1:8.

3. Create a graph of function f(t) using linear precision property of the
Bernstein polynomial

t =

2X
i=0

i

2
Bi;2(t) ;

yielding a B�ezier curve

f(t) =

�
t

f(t)

�
=

2X
i=0

�
i
2
cBi

�
Bi;2(t) :

with control points of (0, -0.2), (0.5, 1.2) and (1, -1.8).
4. Construct a convex hull of the B�ezier curve, which is a triangle as shown

in Fig. 4.3.
5. The convex hull intersects the t-axis with t = 0:0714 and t = 0:7.
6. Discard the regions 0 � t � 0:0714 and 0:7 � t � 1, which do not contain

roots, by applying the de Casteljau algorithm. Now we have a smaller
convex hull which contains the roots (see shaded triangular in Fig. 4.3).

7. If the sub-region is su�ciently small, we conclude that there is a root
inside and return it. In this case there are two roots in the convex hull and
the sub-region does not reduce much (even after several iteration steps),
thus we split the region evenly by applying the de Casteljau subdivision
algorithm and go back to 4.

Example 4.4.2. PP algorithm in two dimensions.
Let us solve the system of polynomial equations (4.2) and (4.3) over the
region �1 � x1; x2 � 1.

4.4 Projected Polyhedron algorithm 81

t

f(t)

t=0.0714 t=0.7

(0.5, 1.2)

(0, −0.2)

(1, −1.8)

Fig. 4.3. de Casteljau algorithm applied to the quadratic B�ezier curve

1. Make an a�ne parameter transformation by substituting x1 = 2u � 1
and x2 = 2v � 1 into (4.2) and (4.3) so that 0 � u; v � 1, then:

f1(u; v) = 4u2 � 4u+ 4v2 � 4v +
23

16
= 0 ;

f2(u; v) = 4u2 � 8u+ 4v2 � 4v +
19

4
= 0 :

2. Convert from monomial to Bernstein basis using

cBij =
iX

k=0

jX
l=0

(ik)(
j
l)

(mk)(
n
l)
cMkl ;

where in this case m = n = 2 leading to

c1
B
00 = 1:4375; c1

B
01 = �0:5625; c1B02 = 1:4375 ;

c1
B
10 = �0:5625; c1B11 = �2:5625; c1B12 = �0:5625 ;

c1
B
20 = 1:4375; c1

B
21 = �0:5625; c1B22 = 1:4375 ;

and
c2
B
00 = 4:75; c2

B
01 = 2:75; c2

B
02 = 4:75 ;

c2
B
10 = 0:75; c2

B
11 = �1:25; c2B12 = 0:75 ;

c2
B
20 = 0:75; c2

B
21 = �1:25; c2B22 = 0:75 :

3. Create graphs of functions f1(u; v) and f2(u; v) using the linear precision
property of Bernstein polynomials. Then the graphs will become two
B�ezier surfaces as follows:

82 4. Nonlinear Polynomial Solvers and Robustness Issues

f1(u; v) =

0
@ u

v
f1(u; v)

1
A =

2X
i=0

2X
j=0

0
@ i

2
j
2
c1
B
ij

1
ABi;2(u)Bj;2(v) ;

f2(u; v) =

0
@ u

v
f2(u; v)

1
A =

2X
i=0

2X
j=0

0
@ i

2
j
2
c2
B
ij

1
ABi;2(u)Bj;2(v) :

The two B�ezier surfaces are shown in Fig. 4.4. Now the root-�nding
problem of the bivariate polynomial system has been transformed to �nd
the intersections of three surfaces, f1(u; v), f2(u; v) and the xy-plane.
Figure 4.5 shows the intersection between the plane and both B�ezier
surfaces. We can easily observe that the two intersection curves are the
circles in Fig. 4.1 but trimmed in the resulting (u; v) domain.

x

y

z

x

y
z

Fig. 4.4. B�ezier surfaces and their control points

4. Project the control points of f1(u; v) and f2(u; v) onto xz and yz planes.
Here x = u, y = v. For each xz and yz plane, construct 2-D convex hulls.
Figure 4.6 (a) shows 2-D convex hulls on the xz plane, while Fig. 4.6 (b)
shows 2-D convex hulls on the yz plane. The solid line corresponds to

4.4 Projected Polyhedron algorithm 83

Fig. 4.5. B�ezier surfaces intersecting with xy-plane

convex hull of f1(u; v) and the dashed line corresponds to that of f2(u; v).

5. Intersect each 2-D convex hull on the xz plane with x (u) axis. The
parameter interval [0; 1] contains solutions of (4.2), while the interval
[0:34375; 1] contains solutions of (4.3). The root is contained in the
common interval [0:34375; 1] of u. We will repeat the same procedures
for the 2-D convex hulls on the yz plane to �nd the common interval
[0:1875; 0:8125] of v.

6. Discard the reigion [0; 0:34375] of u and regions [0; 0:1875] [0:8125; 1] of v
which do not contain the roots by applying the de Casteljau subdivision
algorithm to both B�ezier surfaces.

7. If the sub-regions of both parameters are su�ciently small, we conclude
that there is a root. In this case, the sub-region of the v parameter will
not decrease much in size because there are two roots, while the interval
decreases more in u parameter, since the two roots have the same u
value. We split the sub-region of v evenly by applying the de Casteljau
subdivision algorithm for both surfaces and we go back to step 4.

Many applications in shape interrogation result in systems of n nonlin-
ear polynomial equations with n unknowns, referred to as balanced systems.
However, there exist some problems such as tangential intersection or im-
plicit curve/surface rendering consisting of n nonlinear polynomial equations
with l unknowns, where n could be larger or smaller than l. When n > l the

84 4. Nonlinear Polynomial Solvers and Robustness Issues

z

x(u)

5

−5

1
0

0.34375

z

y(v)

5

−5

1
0

*
root

*
root

*
root

0.1875 0.8125

(a)

(b)

Fig. 4.6. Projections of control points

system is called overconstrained and when n < l it is called underconstrained.
Now we will introduce an n-dimensional Projected-Polyhedron algorithm
such that it can e�ectively handle overconstrained problems [391, 179]. This
algorithm can also be used in underconstrained problems but in such cases it
tends to be slow (especially in the presence of in�nite roots); for such cases
more specialized algorithms are necessary (e.g. parametric surface intersec-
tions where n = 3, and l = 4). In such cases the PP algorithm is used to �nd
characteristic points e�ciently and marching methods are used to trace the
intersection curves (see Sect. 5.8.2).

Suppose we are given a set of n nonlinear polynomials f1; f2; : : : ; fn, each

of which is polynomial in the independent variables x1; x2; : : : ; xl. Let m
(k)
i

denote the degree in xi of polynomial fk, so that the multi-index M (k) =

(m
(k)
1 ;m

(k)
2 ; : : : ;m

(k)
l) describes all the degree information of fk. Furthermore,

suppose we are given an l-dimensional rectangular subset of Rl

B = [a1; b1]� [a2; b2]� : : :� [al; bl] : (4.13)

4.4 Projected Polyhedron algorithm 85

A priori knowledge of B is one of the main features of geometric modeling and
shape interrogation problems. We wish to �nd all points x = (x1; x2; : : : ; xl) 2
B such that

f1(x) = f2(x) = : : : = fn(x) = 0 : (4.14)

By making the a�ne parameter transformation [92] xi = ai + ui(bi �
ai) for each i between 1 and l inclusive, we simplify the problem to one of
determining all u 2 [0; 1]l such that

f1(u) = f2(u) = : : : = fn(u) = 0 : (4.15)

Since all of the fk are polynomial in each of the l independent variables,
a simple change of basis [92] allows us to express them in the multivariate
Bernstein basis, which has better numerical stability under perturbation of
its coe�cients than the power basis [105] as we discussed in Sect. 1.3.3 and
in addition permits transformation of an algebraic problem to a geometric
problem. In other words, for each fk there exists an l-dimensional array of

real coe�cients w
(k)
i1i2:::il

such that for each k 2 f1; : : : ; ng

fk(u) =

m
(k)
1X

i1=0

m
(k)
2X

i2=0

: : :

m
(k)

lX
il=0

w
(k)
i1i2:::il

B
i1;m

(k)
1

(u1)Bi2;m
(k)
2

(u2) : : : Bil;m
(k)

l

(ul) :

(4.16)
The notation in (4.16) may be simpli�ed by letting I = (i1; i2; : : : ; il), M

(k)

= (m
(k)
1 ,m

(k)
2 ,: : :,m

(k)
l) and writing (4.16) in the equivalent form

fk(u) =

M(k)X
I

w
(k)
I BI;M(k) (u) : (4.17)

Representation of algebraic and piecewise algebraic surfaces (i.e., for l =
3) in terms of tensor products of Bernstein polynomials or B-splines has been
studied earlier by Patrikalakis and Kriezis [298]. Equation (4.17) is simply an
extension to n dimensions. Provided that conversion of the problem to the
Bernstein basis is exact or su�ciently accurate, the use of the Bernstein basis
in conjunction with subdivision is known to be numerically stable [105]. The
conversion process itself may be numerically ill-conditioned [106]. Therefore,
we recommend that the problem be formulated in the Bernstein basis from
the very beginning or that the conversion is carried out in exact arithmetic.
If necessary, polynomials may be converted from the multivariate power basis
to the multivariate Bernstein basis using the following formula:

cBi1i2:::il =

i1X
j1=0

i2X
j2=0

: : :

ilX
jl=0

(i1j1)(
i2
j2
) : : : (iljl)

(m1

j1
)(m2

j2
) : : : (ml

jl
)
cMj1j2:::jl : (4.18)

We now restate the problem as the intersection of the graphs of the fk
(each of which is a hypersurface in Rl+1) and the hyperplane ul+1 = 0 of

86 4. Nonlinear Polynomial Solvers and Robustness Issues

Rl+1. This idea is designed to impart geometrical signi�cance to the coe�-
cients of the polynomials and to the solution process.

Let us build a graph fk for each fk:

fk(u) = (u1; u2; : : : ; ul; fk(u))

= (u; fk(u)) : (4.19)

Clearly, (4.15) is satis�ed by the point u if and only if

f1(u) = f2(u) = : : : = fn(u) = (u; 0) : (4.20)

Using the linear precision property of the Bernstein basis (1.21), we obtain
an equivalent expression for each of the uj in equation (4.19):

uj =

M(k)X
I

ij

m
(k)
j

BI;M(k) (u) : (4.21)

Substituting (4.21) into (4.19) gives a more useful representation for the fk:

fk(u) =

M(k)X
I

v
(k)
I BI;M(k) (u) ; (4.22)

where

v
(k)
I =

i1

m
(k)
1

;
i2

m
(k)
2

; : : : ;
il

m
(k)
l

; w
(k)
I

!
: (4.23)

The v
(k)
I are called the control points of fk. Using the parametric hypersur-

faces fk instead of the real-valued fk permits use of the powerful convex-hull
property of the multivariate Bernstein basis.

We assume we are given n nonlinear polynomial equations with l variables
in the power basis, where n � l, and a boxB = [a1; b1]�[a2; b2]�: : :�[al; bl], in
which we need to determine the roots of the given system. In this case we �rst
scale the box by performing an appropriate a�ne parameter transformation
described above to the functions fk, so that the box becomes [0; 1]l. Next we
express the transformed nonlinear polynomial equations in the multivariate
Bernstein basis using (4.18). Now we summarize the PP algorithm.

1. Using the convex hull property, �nd a sub-box of [0; 1]l which contains
all the roots. The essential idea behind the box generation scheme in this
algorithm is to transform a complicated l+1-dimensional problem into a
series of l two-dimensional problems. Suppose Rl+1 can be coordinatized
with the u1; u2; : : : ; ul+1 axes; we can then employ these steps:

a) Project the v
(k)
I of all of the fk into l di�erent coordinate planes;

speci�cally, the (u1; ul+1)-plane, the (u2; ul+1)-plane, and so on, up
to the (ul; ul+1) plane.

4.4 Projected Polyhedron algorithm 87

b) In each one of these planes,

i. Construct n two-dimensional convex hulls. The �rst is the convex
hull of the projected control points of f1, the second is from f2
and so on.

ii. Intersect each convex hull with the horizontal axis (that is,
ul+1 = 0). Because the polygon is convex, the intersection may
be either a closed interval (which may degenerate to a point) or
empty. If it is empty, then no root of the system exists within
the given search box.

iii. Intersect the intervals with one another. Again, if the result is
empty, no root exists within the given search box.

c) Construct an l-dimensional box by taking the Cartesian product of
each one of these intervals in order. In other words, the u1 side of the
box is the interval resulting from the intersection in the (u1; ul+1)-
plane, and so forth.

2. Using the scaling relationship between our current box and the initial
box of search, see if the new sub-box represents a su�ciently small box
in Rl. If it does not, then go to step 3. If it does, then check the convex
hulls of the hypersurface in the new box. If the convex hulls cross each
variable axis, conclude that there is a root or at least an approximate
root in the new box, and put the new box into a root list. Otherwise the
new box is discarded.

3. If any dimension of this sub-box is not much smaller than 1 unit in
length (i.e., the box has not decreased much in size along one or more
sides), split the box evenly along each dimension which is causing trouble
(not reducing in size). Continue on to the next iteration with several
independent sub-problems.

4. If none of the boxes is left, then the root-�nding process is over. Oth-
erwise, perform an appropriate a�ne parameter transformation to the
functions fk, so that the box becomes [0; 1]l, and go back to step 1 for
each new box. This transformation can be performed with the multivari-
ate de Casteljau subdivision algorithm which is an extension of similar
algorithms for 1 and 2 dimensions given in [92]. However, keep track of
the scaling relationship between this box and the initial box of search.

If we assume that each equation in (4.14) is of degree m in each variable
and the system is n-dimensional, then the total asymptotic time per step is of
O(nlml+1). The number of steps depends primarily on the accuracy required
[391]. The Projected Polyhedron algorithm achieves quadratic convergence
in one dimension, while for higher dimensions, it exhibits at best linear con-
vergence [391]. Once roots have been isolated via the PP algorithm, local
quadratically convergent Newton-type algorithms can be used to compute
the roots to high precision more e�ciently. An extension of the algorithm
described above for a set of simultaneous piecewise polynomial nonlinear
equations expressed in terms of tensor product B-splines can be found in

88 4. Nonlinear Polynomial Solvers and Robustness Issues

[132]. A novel feature of this extension is the normalization of the equations
in the range [-1,1] and normalization of the knot vector in each subdomain
in range [0,1] at each iteration step of the process to capitalize on the higher
density of oating point numbers in this range, thereby improving numerical
robustness of the algorithm.

Because the PP algorithm depends only on the convex hull property and
ability to perform subdivision and multiplication, in theory one could imple-
ment the algorithm for rational B-spline entities without subdividing them
into their rational B�ezier components. Subdivision algorithms for B-splines
are well-known, and M�rken [269] has developed an algorithm for multiplying
two piecewise polynomials expressed in the B-spline basis. However, Zhou
et al. [460] indicate that this approach sometimes tends to be more time-
consuming than subdividing into rational polynomials and applying direct
algebraic operations of addition and multiplication of two Bernstein forms
(see Sect. 1.3.2). Piegl and Tiller [314] provide detailed description of the pro-
cedures that can handle algebraic operators of NURBS curves and surfaces
such as dot and cross products, sum/di�erence and derivative operators. They
start with decomposing the B-splines into their B�ezier components using knot
insertion, and applying the algebraic operators to the B�ezier functions and
�nally recomposing the resulting B�ezier functions into B-spline form using
knot removal.

4.5 Auxiliary variable method for nonlinear systems
with square roots of polynomials

In this section we will focus on how to compute the real roots of systems of
irrational equations involving nonlinear polynomials and square roots of non-
linear polynomials within a �nite box. Square roots of nonlinear polynomials
in the context of shape interrogation arise from normalization of the normal
vector and analytical expressions of the principal curvatures of the surface
(see (2.24), (3.3), (3.49), (3.50)). They often appear in the form of

f(x) + g(x)
p
h(x) = 0 ; (4.24)

where x is the unknown vector of l variables, and f(x), g(x) and h(x) are
multivariate polynomials over the box x 2 [0; 1]l.

These polynomials can be expressed in the Bernstein basis as

f(x) =

MfX
I

fIBI;Mf
(x) ; (4.25)

g(x) =

MgX
I

gIBI;Mg(x) ; (4.26)

4.5 Auxiliary variable method for nonlinear systems with square roots of polynomials 89

h(x) =

MhX
I

hIBI;Mh
(x) : (4.27)

Since the square root is involved we cannot use the convex hull property of
the Bernstein polynomial directly.

One might consider a squaring method to square out the square root, so
that the equation becomes

f2(x)� g2(x)h(x) = 0 : (4.28)

This leads to a higher degree equation, also providing extraneous roots which
are not typically necessary. The disadvantages of this squaring method are
discussed in [254]. The alternative is the auxiliary variable method which will
transform the problem into a problem of higher dimensionality. The higher
dimensional formulation has been studied by Ho�mann [169] for surface in-
terrogation problems. First we will introduce the auxiliary variable � such
that

�2 = h(x) : (4.29)

Bounds a � � � b can be obtained by

a =
q
min
I
hI ; (4.30)

b =
q
max
I
hI : (4.31)

When minI hI is negative, we just set a=0. For convenience, we also scale
� such that � � ��a

b�a , so that 0 � � � 1. Consequently, the system of ir-
rational equations involving nonlinear polynomials and square roots of non-
linear polynomials (4.24), which consists of one equation with l unknowns,
has been transformed to a system of nonlinear polynomial equations which
consists of two equations with l + 1 unknowns as follows:

f(x) + g(x) [a+ �(b� a)] = 0 ; (4.32)

[a+ �(b� a)]2 � h(x) = 0 ; (4.33)

where 0 � � � 1 and x 2 [0; 1]l. Note that even though we transformed
the problem into a problem of higher dimensionality, the degree of the new
variable � is only two. System (4.32) (4.33) of two polynomial equations can
be solved using the PP algorithm. A similar procedure can be used when
(4.24) involves not only one but n scalar equations of the form (4.24). If the
h(x) term is di�erent in each of the n equations, then system (4.32) (4.33) will
be transformed into 2n nonlinear polynomial equations in l + n unknowns.

90 4. Nonlinear Polynomial Solvers and Robustness Issues

4.6 Robustness issues

Current state{of{the{art CAD systems used to create and interrogate curved
objects are based on geometric solid modeling methods that typically oper-
ate in oating point arithmetic (FPA). Arithmetic operations, especially di-
vision, in FPA lead to signi�cant numerical errors. Division operation can
be avoided by four-dimensional homogeneous processing proposed by Yam-
aguchi [284, 455]. Furthermore CAD systems will frequently fail as a result of
the limited precision that is inherent to the internal representation of oat-
ing point numbers [167, 168]. One has to keep in mind that any sequence of
operations on a digital computer is essentially equivalent to a �nite sequence
of manipulations on a discrete grid of points. For example, a oating point
(FP) number in general form is given by [126]

(�):b1b2 � � � bp � 2E ; (4.34)

where b1 � � � bp is the mantissa made up of binary digits 0 or 1, bi = 0 or 1,
with b1 6= 0, and p is the number of signi�cant digits, and E is an integer expo-
nent. If p = 2 and �2 � E � 3 then a list of positive numbers in this system is

:10 � 2�2 = 1
8 ; :11 � 2�2 = 3

16 ;
:10 � 2�1 = 1

4 ; :11 � 2�1 = 3
8 ;

:10 � 20 = 1
4 ; :11 � 20 = 3

4 ;
:10 � 21 = 1; :11 � 21 = 3

2 ;
:10 � 22 = 2; :11 � 22 = 3 ;
:10 � 23 = 4; :11 � 23 = 6 ;

and are plotted in Fig. 4.7. Obviously, the resulting set of FP numbers is
a �nite subset of the rational numbers m

n (where m, n are integers) in the
interval [18 ; 6] and they are distributed non-uniformly in this interval.

0 1
−
8

1
−
4

3
−
8

1
−
2

3
−
4

3
−
2

3
−
16

1 2 3 4 6

Fig. 4.7. Nonnegative oating point numbers on the interval [0,6] (adapted from
[126])

Nonlinear polynomial solvers operating in rational arithmetic (RA), where
the arithmetic is done with rational numbers without approximation [203],
are robust, but are generally memory intensive and time consuming due to
the growth of the number of digits needed to represent rational numbers

4.6 Robustness issues 91

that result from arithmetic operations on other rational numbers. On the
other hand, nonlinear solvers operating in oating point arithmetic are faster,
but generally not robust. Interval methods, which are described in Sect. 4.7,
e�ectively solve these two problems, namely, nonlinear polynomial solvers
operating in interval arithmetic (IA) are inexpensive compared to rational
arithmetic, and they are robust in eliminating regions not containing roots.

x

y

o

Fig. 4.8. Curves y = x4 and y = 0 contact tangentially at the origin (adapted
from [179])

Example 4.6.1. Suppose we have a degree four planar B�ezier curve whose
control points are given by

(�0:5; 0:0625); (�0:25;�0:0625); (0; 0:0625); (0:25;�0:0625); (0:5; 0:0625) ;

as shown in Fig. 4.8. This B�ezier curve is equivalent to the explicit curve
y = x4 (�0:5 � x � 0:5). Apparently the curve intersects with x-axis tan-
gentially at (x; y) = (0; 0). However, if the curve has been translated by +1
in the y direction and translated back to the original position by moving by
� 1

3 three times during a geometric processing session, the curve will gen-
erally not be the same as the original curve if oating point arithmetic is
used for the computation. For illustration, let us assume a decimal computer
with a four-digit mantissa, and the computer rounds o� intelligently rather
than truncating. Then the rational number � 1

3 will be stored in the decimal
computer as �0:3333� 100 and after the processing the new control points
will be

(�0:5; 0:0631); (�0:25;�0:0624); (0; 0:0631); (0:25;�0:0624); (0:5; 0:0631) :

If we evaluate the curve at parameter value t = 0:5, we obtain (0, 0.00035)
instead of (0,0). Therefore there exists a numerical gap which could later lead
to inconsistency between topological structures and geometric equations. For
example, if these new control points are used for computing intersections with

92 4. Nonlinear Polynomial Solvers and Robustness Issues

the x-axis, the algorithm will return no solutions when the tolerance for the
function value is smaller than 0.00035.

The above problem illustrates the case when the error is created during the
formulation of the governing equations by various algebraic transformations.

Example 4.6.2. This example �nds the roots of a cubic polynomial equation
(x� 0:1)(x� 0:6)(x� 0:7) = 0 by the PP method over an interval 0 � x � 1
operating in FPA. Conversion to the Bernstein form was performed in exact
arithmetic. This particular example was run at a tolerance of 10�4 and the
binary subdivision was conducted when the box size did not reduce more
than 5% from the previous step. The algorithm output is listed in Table 4.1.
At iteration 9, PP algorithm loses the root 0.7 due to oating point rounding.

Table 4.1. (x� 0:1)(x� 0:6)(x� 0:7) = 0 solved by PP method operating in FPA
(adapted from [254])

Iter Bounding Box (FPA) Message

1 [0,1]

2 [0.0763636363636364, 0.856]

3 [0.098187732239346, 0.770083868323999]

4 [0.0999880766853688, 0.72387404781026] Binary Subdivision

5 [0.402239977003124, 0.704479954527487]

6 [0.550441290533288, 0.700214508664293]

7 [0.591018492648952, 0.700000534482207]

8 [0.599458794784619, 0.700000000003332] Binary Subdivision

9 [0.649998841568898, 0.699999999999999] No Root in Box

10 [0.599997683137796, 0.649998841568898] Root Found in Box

11 [0.099999999478761, 0.402239977003124] Root Found in Box

This example illustrates another serious problem which arises from the
usage of FPA in shape interrogation. To remedy such problems interval arith-
metic research in geometric modeling has become quite active as we will see
in subsequent Sects. 4.7 to 4.9.

4.7 Interval arithmetic

Interval techniques, primarily interval Newton's methods combined with bi-
section to ensure convergence, have been the focus of signi�cant attention,
see for example Kearfott [191], Neumaier [283]. Interval methods have been

4.7 Interval arithmetic 93

applied in geometric modeling and CAD. For example, Mudur and Koparkar
[276], Toth [421], Enger [90], Du� [80] and Snyder [399, 398] applied inter-
val algorithms to geometry processing, whereas Sederberg and Farouki [376],
Sederberg and Buehler [374] and Tuohy et al. [424] applied interval meth-
ods in approximation problems. In [376] Sederberg and Farouki introduced
the concept of interval B�ezier curve. Tuohy and Patrikalakis [425] applied
interval methods in the representation of functions with uncertainty, such as
geophysical property maps. Tuohy et al. [423] and Hager [147] applied in-
terval methods in robotics. Bliek [27] studied interval Newton methods for
design automation and inclusion monotonicity properties in interval arith-
metic for solving the consistency problem associated with a hierarchical de-
sign methodology. Interval methods are also applied in the context of solving
systems of nonlinear polynomial equations [178, 179, 253, 254], which we will
briey review in Sect. 4.8. More recently, Hu et al. [180, 181] extended the
concept of interval B�ezier curves [376] to interval non-uniform rational B-
splines (INURBS) curves and surfaces. INURBS di�er from classical NURBS
in that the real numbers representing control point coordinates are replaced
by interval numbers. In other words, the control point vectors are replaced
by rectangular boxes. This implies that in 3-D space an INURBS curve rep-
resents a slender tube and an INURBS surface patch represents a thin shell,
if the intervals are chosen su�ciently small. The numerical and geometric
properties of interval B-spline curves and surfaces are analyzed in Shen and
Patrikalakis [386], while their use in solid modeling is presented in Hu et al.
[179, 178, 180, 181], and boundary representation model recti�cation in Shen
[385], Shen et al. [388], Patrikalakis et al. [302] and Sakkalis et al. [359].

An interval is a set of real numbers de�ned below [272]:

[a; b] = fxja � x � bg : (4.35)

Two intervals [a; b] and [c; d] are said to be equal if

a = c and b = d : (4.36)

The intersection of two intervals is empty or [a; b] \ [c; d] = ;, if either
a > d or c > b ; (4.37)

otherwise,

[a; b] \ [c; d] = [max(a; c);min(b; d)] : (4.38)

The union of the two intersecting intervals is

[a; b] [[c; d] = [min(a; c);max(b; d)] : (4.39)

An order of intervals is de�ned by

[a; b] < [c; d] if and only if b < c : (4.40)

94 4. Nonlinear Polynomial Solvers and Robustness Issues

The width of an interval [a; b] is b� a.
The absolute value is

j[a; b]j = max(jaj; jbj) : (4.41)

Example 4.7.1.

[2; 4] \ [3; 5] = [max(2; 3);min(4; 5)] = [3; 4]

[2; 4] [[3; 5] = [min(2; 3);max(4; 5)] = [2; 5]

j[�7;�2]j = max(j � 7j; j � 2j) = 7

Interval arithmetic operations are de�ned by

[a; b] � [c; d] = fx � y j x 2 [a; b] and y 2 [c; d]g ; (4.42)

where � represents an arithmetic operation � 2 f+;�; �; =g. Using the end
points of the two intervals, we can rewrite equation (4.42) as follows:

[a; b] + [c; d] = [a+ c; b+ d] ;

[a; b]� [c; d] = [a� d; b� c] ; (4.43)

[a; b] � [c; d] = [min(ac; ad; bc; bd);max(ac; ad; bc; bd)] ;

[a; b]=[c; d] = [min(a=c; a=d; b=c; b=d);max(a=c; a=d; b=c; b=d)] ;

provided 0 62 [c; d] in the division operation.

Example 4.7.2.

[2; 4] + [3; 5] = [2 + 3; 4 + 5] = [5; 9]

[2; 4]� [3; 5] = [2� 5; 4� 3] = [�3; 1]
[2; 4] � [3; 5] = [min(2 � 3; 2 � 5; 4 � 3; 4 � 5);max(2 � 3; 2 � 5; 4 � 3; 4 � 5)] = [6; 20]

[2; 4]=[3; 5] = [min(2=3; 2=5; 4=3; 4=5);max(2=3; 2=5; 4=3; 4=5)] = [2=5; 4=3]

Now let us introduce the algebraic properties of interval arithmetic. In-
terval arithmetic is commutative,

[a; b] + [c; d] = [c; d] + [a; b]; (4.44)

[a; b] � [c; d] = [c; d] � [a; b]; (4.45)

and associative

[a; b] + ([c; d] + [e; f]) = ([a; b] + [c; d]) + [e; f] ; (4.46)

[a; b] � ([c; d] � [e; f]) = ([a; b] � [c; d]) � [e; f] : (4.47)

But it is not distributive; however, it is subdistributive

[a; b] � ([c; d] + [e; f]) � [a; b] � [c; d] + [a; b] � [e; f] : (4.48)

Example 4.7.3.

[1; 2] � ([1; 2]� [1; 2]) = [1; 2] � ([�1; 1]) = [�2; 2] � [1; 2] � [1; 2]� [1; 2] � [1; 2]
= [1; 4]� [1; 4] = [�3; 3]

4.8 Rounded interval arithmetic and its implementation 95

4.8 Rounded interval arithmetic and its implementation

If oating point arithmetic is used to evaluate these interval arithmetic equa-
tions there is no guarantee that the roundings of the bounds are performed
conservatively.1 Rounded interval arithmetic (RIA) [253, 254, 4] ensures that
the computed end points always contain the exact interval as follows:

[a; b] + [c; d] = [(a+ c)� "`; (b+ d) + "u] ;

[a; b]� [c; d] = [(a� d)� "`; (b� c) + "u] ; (4.49)

[a; b] � [c; d] = [min(a�c; a�d; b�c; b � d)� "`;max(a�c; a�d; b�c; b�d) + "u] ;

[a; b] = [c; d] = [min(a=c; a=d; b=c; b=d)� "`;max(a=c; a=d; b=c; b=d) + "u] ;

where "` and "u are the units{in{last{place denoted by ulp` and ulpu for each
separate oating point number resulting from the oating point operations
giving the lower and upper bounds in (4.49). When performing standard
operations for interval numbers using RIA, the lower bound is extended to
include its previous consecutive FP number, which is smaller than the lower
bound by ulp`. Similarly, the upper bound is extended by ulpu to include
its next consecutive FP number. Thus, the width of the result is enlarged by
ulp` + ulpu and the resulting enlarged interval contains the exact interval.
The RIA concept has been applied to topologically reliable approximation of
curves and surfaces [58, 57], robust visualization [426], and approximation of
uncertain measured data [424].

Before describing the details of the PP algorithm in RIA, let us briey
summarize the IEEE standard binary representation for double precision
oating point numbers [4].

4.8.1 Double precision oating point arithmetic

Most commercial processors implement oating point arithmetic using the
representation de�ned by ANSI/IEEE Std 754{1985, Standard for Binary
Floating Point Arithmetic [10]. This standard de�nes the binary represen-
tation of the oating point number X in terms of a sign bit s, an integer
exponent E, for Emin � E � Emax, and a p{bit signi�cand B, where

X = (�1)s2EB : (4.50)

The signi�cand B is a sequence of p bits b0b1 � � � bp�1, where bi = 0 or 1,
with an implied binary point (analogous to a decimal point) between bits b0
and b1. Thus, the value of B is calculated as:

1 This statement is true only for the default IEEE-754 rounding mode of round
towards nearest [10]. The subject of hardware rounding modes will be discussed
thoroughly later.

96 4. Nonlinear Polynomial Solvers and Robustness Issues

B = b0:b1b2 � � � bp�1 = b02
0 +

p�1X
i=1

bi2
�i : (4.51)

For double precision arithmetic, the standard de�nes p = 53, Emin =
�1022, and Emax = 1023. The number X is represented as a 64{bit quantity
with a 1-bit sign s, an 11{bit biased exponent e = E + 1023, and a 52{
bit fractional mantissa m composed of the bit string b1b2 � � � b52. Since the
exponent can always be selected such that b0 = 1 (and thus, 1 � B < 2),
the value of b0 is constant and it does not need to be stored in the binary
representation.

63 62 � � � 52 51 � � � 0
s e m

The integer value of the 11-bit biased exponent e is calculated as:

e = e0e1 � � � e10 =
10X
i=0

ei2
10�i : (4.52)

The standard divides the set of representable numbers into the following
�ve categories:

1. If e = 2047 and m 6= 0, then the value of X is the special ag NaN (not
a number).

2. If e = 2047 and m = 0, then the value of X is �1 depending upon the
sign bit: positive if s = 0 and negative if s = 1.

3. If 0 < e < 2047, then X is called a normalized number, and

X = (�1)s2e�10231:m = (�1)s2e�1023

1 +

52X
i=1

bi2
�i
!
: (4.53)

4. If e = 0 and m 6= 0, then X is called a denormalized number, and

X = (�1)s2�10220:m = (�1)s2�1022

52X
i=1

bi2
�i
!
: (4.54)

5. If e = 0 and m = 0, then the value of X is �0 depending upon the sign
bit. Although they have unique binary representations, arithmetically
�0 � +0.

Table 4.2 summarizes all of the representable double precision numbers.
The binary representation is presented with spaces separating the four 16{
bit subsets of the 64{bit value, and the symbol � separating the sign bit,
exponent bits, and mantissa bits. The numbers in the �rst column refer to
the aforementioned �ve categories of representable numbers.

4.8 Rounded interval arithmetic and its implementation 97

Table 4.2. Representable double{precision numbers and special values (adapted
from [4])

NaN in binary representation
1�11111111111�1111 1111111111111111 1111111111111111 1111111111111111

1 � � �
NaN in binary representation
1�11111111111�0000 0000000000000000 0000000000000000 0000000000000001

2 �1 in binary representation
1�11111111111�0000 0000000000000000 0000000000000000 0000000000000000

�1:7976931348623157 � 10+308 in binary representation
1�11111111110�1111 1111111111111111 1111111111111111 1111111111111111

� � �
�8:9884656743115795 � 10+307 in binary representation
1�11111111110�0000 0000000000000000 0000000000000000 0000000000000000

3 � � �
�4:4501477170144023 � 10�308 in binary representation
1�00000000001�1111 1111111111111111 1111111111111111 1111111111111111

� � �
�2:2250738585072014 � 10�308 in binary representation
1�00000000001�0000 0000000000000000 0000000000000000 0000000000000000

�2:2250738585072009 � 10�308 in binary representation
1�00000000000�1111 1111111111111111 1111111111111111 1111111111111111

4 � � �
�4:9406564584124654 � 10�324 in binary representation
1�00000000000�0000 0000000000000000 0000000000000000 0000000000000001

�0:0 in binary representation
1�00000000000�0000 0000000000000000 0000000000000000 0000000000000000

5 +0:0 in binary representation
0�00000000000�0000 0000000000000000 0000000000000000 0000000000000000

+4:9406564584124654 � 10�324 in binary representation
0�00000000000�0000 0000000000000000 0000000000000000 0000000000000001

4 � � �
+2:2250738585072009 � 10�308 in binary representation
0�00000000000�1111 1111111111111111 1111111111111111 1111111111111111

+2:2250738585072014 � 10�308 in binary representation
0�00000000001�0000 0000000000000000 0000000000000000 0000000000000000

� � �
+4:4501477170144023 � 10�308 in binary representation
0�00000000001�1111 1111111111111111 1111111111111111 1111111111111111

3 � � �
+8:9884656743115795 � 10+307 in binary representation
0�11111111110�0000 0000000000000000 0000000000000000 0000000000000000

� � �
+1:7976931348623157 � 10+308 in binary representation
0�11111111110�1111 1111111111111111 1111111111111111 1111111111111111

2 +1 in binary representation
0�11111111111�0000 0000000000000000 0000000000000000 0000000000000000

98 4. Nonlinear Polynomial Solvers and Robustness Issues

It is possible that the result of an operation on two normalized numbers
will not itself be representable as a normalized number. Consider the nor-
malized numbers x = 1:25 � 10�306 and y = 1:23 � 10�306. Clearly, x 6= y.
However, in �nite precision normalized oating point arithmetic x � y = 0
because x � y = 0:02� 10�306 = 2:0� 10�308, which is too small to be rep-
resented as a normalized number. It is therefore rounded to the value of 0
[128, pp. 23{24].

The use of denormalized numbers ensures that the relationship

x = y () x� y = 0 ; (4.55)

always holds true for all normalized numbers. It will also hold true for denor-
malized numbers where jx� yj � 4:9406564584124654� 10�324, the smallest
positive representable denormalized number.

The IEEE standard can represent 2046 �252 � 9:2�1018 normalized num-
bers, but only 252 � 1 � 4:5 � 1015 denormalized numbers. Denormalized
numbers are generally not encountered in routine calculations. The ratio of
denormalized to normalized numbers is 1=2046 � 4:8 � 10�4. Furthermore,
the denormalized numbers are not uniformly distributed throughout the rep-
resentable oating point space; rather, they occupy two contiguous groups on
either side of 0. Certain operations, however, such as root �nding, iteratively
generate numbers that are increasingly close to 0. Therefore it is important to
allow for the possibility of encountering denormalized numbers when creating
robust arithmetic software.

4.8.2 Extracting the exponent from the binary representation

To calculate ulp it is necessary to extract the integer value of the exponent
from the binary representation. Recall that the value of the signi�cand B of
a double precision number X is:

B = 1 + b12
�1 + b22

�2 + � � �+ b522
�52 ; (4.56)

and that the double precision value X = (�1)s2EB. The value of the least
signi�cant bit b52 is 2

�52. Thus, the value of ulp is 2E2�52 = 2E�52.
The value of ulp can be computed using the standard C mathematical

functions frexp() and ldexp() [194, pp. 250-51] as follows [245, 4]:

Algorithm 4.1

#include <math.h> /* standard C math library header */

double ulp(double x)
{
double ulp; /* ulp of x */
int exp; /* exponent of x, where exp = E+1 */

4.8 Rounded interval arithmetic and its implementation 99

frexp(x, &exp); /* extract exponent of x */
ulp = ldexp(0.5, exp-52); /* calculate ulp = 0.5^(exp-52) */

return ulp /* return ulp */
}

(Note that the function frexp() assumes that 0:5 � B < 1. Recall that the
unbiased exponent E de�ned by IEEE-754 assumes that 1 � B < 2, thus
exp = E + 1. In papers [58, 57, 178, 179, 180, 181, 245, 253, 254, 424, 426]
the convention of assuming 0:5 � B < 1 is followed.)

Because of the use of standard library functions, this implementation is
slow. To avoid using the library functions and to construct the ulp directly,
recall that the biased exponent e occupies bits 62 through 52. If we could
manipulate the binary representation as a 64{bit integer, we could extract
e by dividing by 252, which would right{shift the bit pattern by 52 bits,
placing e in bits 10 through 0. The sign bit s, which would then occupy bit
11, could be removed by performing a bitwise logical AND with the 64{bit
mask 0 � � � 011111111111 [4].

Most commercially available processors and programming languages, how-
ever, do not support 64{bit integers; generally, only 8, 16, and 32{bit integers
are available. To overcome this, we can overlay the storage location of the
64{bit double precision number with an array of four 16{bit (short) integers:

63 62 � � � 52 51 � � � 0
s e m

short[0] short[1] short[2] short[3]
63 � � � 48 47 � � � 32 31 � � � 16 15 � � � 0

In C or C++ this can be accomplished using the union data structure:

typedef union {
double dp; /* the 64-bit double precision value */
unsigned short sh[4]; /* overlay an array of */

} Double; /* 4 16-bit integers */

After the assignment:

double x; /* the double precision value */
Double D; /* copy of x */

D.dp = x;

the exponent of the variable x can be extracted from D.sh[0], whose 16 bits
contain the sign bit s (bit 15), the 11{bit biased exponent e (bits 14 through
4), and the 4 most signi�cant bits b1b2b3b4 of the mantissa m (bits 3 through
0):

15 14 � � � 4 3 2 1 0
s e b1b2b3b4

The biased exponent e can be extracted from D.sh[0] by performing a
bitwise logical AND with the 16{bit mask 0111111111110000 to zero{out the

100 4. Nonlinear Polynomial Solvers and Robustness Issues

sign bit and the four most signi�cant bits of the mantissa:

15 14 � � � 4 3 2 1 0
0 e 0 0 0 0

and then right{shifting e by 4 bits:
15 � � � 11 10 � � � 0
0 � � � 0 e

Then the unbiased exponent E = e� 1023.

Some processor architectures order the four 16{bit elements of the array
sh in the reverse order, in other words, sh[0] is the rightmost (least signi�-
cant) 16{bit word, not the leftmost (most signi�cant). To avoid the problem,
we can de�ne the constant MSW to indicate the proper index of the left-most
16 bit array element:

#define MSW 0 /* 0 if the left-most 16-bit short is sh[0] */
/* 3 if the left-most 16-bit short is sh[3] */

When the ulp is a denormalized number a special case needs to be taken.
Recall that ulp = 2E�52 and E must be greater than �1023. Thus, if E �
�971 (or equivalently, e � 52, since e = E + 1023) then 2E�52 can only be
represented as a denormalized number with biased exponent eulp = 0 and
mantissa mulp = bi, for 0 � i � 51, where:

bi =

�
1 if i = e� 1
0 otherwise :

(4.57)

If e > 52 then ulp can be represented by the normalized number with eulp =
e� 52 and mulp = 0 � � � 0.

The following function directly constructs ulp as the appropriate normal-
ized or denormalized number [4]:

Algorithm 4.2
static unsigned short mask[16] = { /* bit masks for bits 0 - 15 */

0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000};

double ulp(double x)
{
Double U, /* ulp of x */

X; /* working copy of x */
int bit, /* position of bit e-1 in 16-bit word */

e1, /* biased exponent - 1 */
word; /* index of 16-bit word containing bit e-1 */

X.dp = x;
X.sh[MSW] &= 0x7ff0; /* isolate exponent in 16-bit word */

/* X.sh[0] now holds the exponent in bits 14-4 */

4.8 Rounded interval arithmetic and its implementation 101

U.dp = 0.0; /* initialize exponent and mantissa to 0 */

if (X.sh[MSW] > 0x0340) /* ulp is normalized number */
U.sh[MSW] = X.sh[MSW]-0x0340; /* set exponent to e-52 */

/* the value 0x0340 is 52 left-shifted 4 bits,
i.e. 0x0340 = 832 = 52<<4 */

else { /* ulp is denormalized number */
e1 = (X.sh[MSW]>>4) - 1; /* biased exponent - 1 */
word = e1>>4; /* find 16-bit word containing bit e-1 */
if (MSW == 0) word = 3 - word; /* compensate for word

ordering */
bit = e1%16; /* find the bit position in this word */
U.sh[word] |= mask[bit]; /* set the bit to 1 */

}

return U.dp; /* return ulp */
}

(Note that the C right-shift operation n >> m is equivalent to integer divi-
sion, n=2m. Similarly, the left-shift n << m is equivalent to integer multipli-
cation, n � 2m.)

This implementation correctly and e�ciently computes the ulp. For ex-
ample, for the value X = +2.2250738585072014 � 10�308 (the smallest pos-
itive normalized double precision number) the ulp = +4.9406564584124654
� 10�324, which has the denormalized binary representation:

0�00000000000�0000 0000000000000000 0000000000000000 0000000000000001
For the value X = -1.7976931348623157 � 10+308 (the largest negative

normalized number) the ulp = +1.9958403095347198 � 10+292, which has
the normalized binary representation:

0�11111001010�0000 0000000000000000 0000000000000000 0000000000000000

4.8.3 Comparison of two di�erent unit� in� the � last� place

implementations

The following table gives a comparison of the running times between Algo-
rithms 4.1 and 4.2 for computing ulp. The timings (in CPU seconds) were
taken on a 100 MHz RISC processor (SGI Indy with MIPS R4000 proces-
sor). The reported values are the accumulated CPU times to perform 100,000
calculations of the ulp of various representative values of X .

The time required by Algorithm 4.1 increases as the ulp becomes smaller,
while the time required by Algorithm 4.2 is constant for normalized ulp's
and the time for denormalized ulp's is also constant, but slower by a factor
of 1 23 . In most of the applications in the context of shape interrogation, RIA

102 4. Nonlinear Polynomial Solvers and Robustness Issues

Table 4.3. CPU time (in seconds) for the two implementations (adapted from [4])

X ulp (approx.) Algorithm 4.1 Algorithm 4.2

�1:25 +2:22� 10�16 0.10 0.03

�1:25� 10�100 +2:54� 10�116 1.59 0.03

�1:25� 10�200 +1:45� 10�216 3.11 0.03

�1:25� 10�285 +1:87� 10�301 4.40 0.03

�1:25� 10�295 +2:17� 10�311 y 6.68 0.05
y This ulp is a denormalized number.

implementations are an order of magnitude more expensive than non{robust
oating point algorithms [4].

4.8.4 Hardware rounding for rounded interval arithmetic

Since oating point numbers are represented in �nite precision, many values
may need to be rounded to a representable bit pattern [4]. The IEEE-754
standard de�nes four rounding modes [10]: 1) Round to nearest (the de-
fault mode); 2) Round to positive in�nity; 3) Round to negative in�nity; and
4) Round to zero. We can examine the e�ects of these rounding modes by
calculating intermediate values between two adjacent exactly representable
oating point numbers:

X1 = +2:0000000000000009

= 0�10000000000�0000 0000000000000000 0000000000000000 0000000000000010

X2 = +2:0000000000000013

= 0�10000000000�0000 0000000000000000 0000000000000000 0000000000000011

which di�er only in the last bit of the mantissa.
Since IEEE-754 represents the mantissa with 52 bits, to exactly represent

the three uniformly spaced intermediary values,X1+
1
4 (X2�X1),X1+

1
2 (X2�

X1), and X1+
3
4 (X2�X1), would require two additional bits in the mantissa,

as shown in Table 4.4. To represent the negative values �X1 and �X2 only
the sign bit is changed from 0 to 1; the exponent and mantissa bit patterns
remain the same. The rounding mode round to zero is not depicted in the
table since it is not relevant to our application. Round to zero is equivalent to
round to negative in�nity for positive values, and to round to positive in�nity
for negative values.

For a given unlimited precision oating- point value x, which may not be
exactly representable under IEEE-754 (i.e. it may require more than 52 bits
to represent the mantissa of x), we want to construct the tightest possible
interval [x`; xu] such that the lower bound x` is the largest possible repre-
sentable number not greater than x, and the upper bound xu is the smallest
possible representable number not less than x:

4.8 Rounded interval arithmetic and its implementation 103

Table 4.4. Comparison of rounding modes (adapted from [4])

Actual Round To Nearest Round To +1
Value Mantissa Rounded Represented Rounded Represented

52 bits +2 Mantissa Value Mantissa Value
+2:0 : : : 009 00 : : : 010 00 00 : : : 010 +2:0 : : : 009 00 : : : 010 +2:0 : : : 009
+2:0 : : : 010 00 : : : 010 01 00 : : : 010 +2:0 : : : 009 00 : : : 011 +2:0 : : : 013
+2:0 : : : 011 00 : : : 010 10 00 : : : 010 +2:0 : : : 009 00 : : : 011 +2:0 : : : 013
+2:0 : : : 012 00 : : : 010 11 00 : : : 011 +2:0 : : : 013 00 : : : 011 +2:0 : : : 013
+2:0 : : : 013 00 : : : 011 00 00 : : : 011 +2:0 : : : 013 00 : : : 011 +2:0 : : : 013
�2:0 : : : 009 00 : : : 010 00 00 : : : 010 �2:0 : : : 009 00 : : : 010 �2:0 : : : 009
�2:0 : : : 010 00 : : : 010 01 00 : : : 010 �2:0 : : : 009 00 : : : 010 �2:0 : : : 009
�2:0 : : : 011 00 : : : 010 10 00 : : : 010 �2:0 : : : 009 00 : : : 010 �2:0 : : : 009
�2:0 : : : 012 00 : : : 010 11 00 : : : 011 �2:0 : : : 013 00 : : : 010 �2:0 : : : 009
�2:0 : : : 013 00 : : : 011 00 00 : : : 011 �2:0 : : : 013 00 : : : 011 �2:0 : : : 013

Actual Round To �1
Value Mantissa Rounded Represented

52 bits +2 Mantissa Value
+2:0 : : : 009 00 : : : 010 00 00 : : : 010 +2:0 : : : 009
+2:0 : : : 010 00 : : : 010 01 00 : : : 010 +2:0 : : : 009
+2:0 : : : 011 00 : : : 010 10 00 : : : 010 +2:0 : : : 009
+2:0 : : : 012 00 : : : 010 11 00 : : : 010 +2:0 : : : 009
+2:0 : : : 013 00 : : : 011 00 00 : : : 011 +2:0 : : : 013
�2:0 : : : 009 00 : : : 010 00 00 : : : 010 �2:0 : : : 009
�2:0 : : : 010 00 : : : 010 01 00 : : : 011 �2:0 : : : 013
�2:0 : : : 011 00 : : : 010 10 00 : : : 011 �2:0 : : : 013
�2:0 : : : 012 00 : : : 010 11 00 : : : 011 �2:0 : : : 013
�2:0 : : : 013 00 : : : 011 00 00 : : : 011 �2:0 : : : 013

x` � x � xu : (4.58)

This condition is satis�ed by rounding to negative in�nity when calculating
the lower bound, and rounding to positive in�nity when calculating the upper
bound. Note that if x is exactly representable, then x` = x = xu.

4.8.5 Implementation of rounded interval arithmetic

For implementational simplicity when switching between ulp rounding and
hardware rounding, we have developed a C++ class (shown in fragmentary
form below) for interval numbers operating in oating point numbers [4]:

class Interval {

private:

double low; // lower bound of interval

double upp; // upper bound of interval

public:

Interval() { low = upp = 0.0; } // class constructors

friend Interval add(Interval, Interval, Interval &);

// utility function

104 4. Nonlinear Polynomial Solvers and Robustness Issues

};

Interval operator + (Interval a, Interval b)

// overloaded addition operator

{

Interval c;

add(a, b, c); // call appropriate utility function

return c; // return sum of a and b

}

Software rounding using the ulp is implemented by overloading the arithmetic
operators as shown in the following example for addition:

Interval add(Interval a, Interval b, Interval &c)
{

double low = a.low + b.low; // calculate the lower bound
double upp = a.upp + b.upp; // calculate the upper bound

c.low = low - ulp(low); // extend the lower bound by ulp
c.upp = upp + ulp(upp); // extend the upper bound by ulp

}

where ulp() is the function described previously for calculating the ulp.
Hardware rounding is implemented by overloading the arithmetic opera-

tors as follows:

Interval add(Interval a, Interval b, Interval &c)
{

swapRM(ROUND_TO_MINUS_INFINITY); // set round to -infinity mode
c.low = a.low + b.low; // calculate the lower bound
swapRM(ROUND_TO_PLUS_INFINITY); // set round to +infinity mode
c.upp = a.upp + b.upp; // calculate the upper bound

}

where swapRM() is the SGI-speci�c function for setting the IEEE-754 round-
ing mode. (Although requiring the implementation of the four rounding
modes, the standard does not specify the mechanism by which the modes
are set.)

The software rounding method is computationally more expensive than
hardware rounding, requiring an extra addition and subtraction and the com-
putation of the ulp of two values. Note that the software rounding method
extends the upper and lower bounds of the interval during every arithmetic
operation; the hardware rounding method only extends the bounds when the
result of the operation cannot be exactly represented, producing tighter inter-
val bounds. Thus, the relationship between an in�nite precision value x and
its interval under ulp rounding is x` < x < xu, while for hardware rounding
it is x` � x � xu.

4.9 Interval Projected Polyhedron algorithm 105

4.9 Interval Projected Polyhedron algorithm

Maekawa [245] and Maekawa and Patrikalakis [253, 254] extended the PP
algorithm to operate in rounded interval arithmetic (RIA) in order to solve
a nonlinear polynomial system robustly, which we refer to as Interval Pro-
jected Polyhedron (IPP) algorithm. Rounded interval arithmetic operations
can be implemented e�ectively in object-oriented languages such as C++
as we discussed in Sect. 4.8. Other than overloading the arithmetic oper-
ations, we need to pay attention in intersecting each convex hull with the
horizontal axis (see Sect. 4.4). The computed parametric values result in in-
terval numbers ulow = [ua; ub] and uup = [uc; ud]. We simply replace them
by ulow = [ua; ua] and uup = [ud; ud] to keep the parameter as real numbers
or in other words degenerate interval numbers.

We illustrated the e�ectiveness of the IPP algorithm using the single
polynomial equation (x� 0:1)(x� 0:6)(x� 0:7) = 0 that we used in Example
4.6.2. The output of this computation is listed in Table 4.5. If we compare
the bounding boxes of Tables 4.1 and 4.5 for each iteration, we can easily
recognize that the bounding boxes of the RIA are always conservative with
respect to the FPA. Also at iteration 9, FPA loses the root 0.7 due to oating
point error, while RIA �nds it.

Table 4.5. (x-0.1)(x-0.6)(x-0.7)=0 solved by IPP algorithm (adapted from [254])

Iter Bounding Box (RIA) Message

1 [0, 1]
2 [0.076363636363635, 0.856000000000001]

3 [0.0981877322393447, 0.770083868324001]

4 [0.0999880766853675, 0.723874047810262] Binary Sub.

5 [0.402239977003124, 0.704479954527489]

6 [0.550441290533286, 0.700214508664294]

7 [0.591018492648947, 0.700000534482208]

8 [0.599458794784611, 0.700000000003333] Binary Sub.

9 [0.649998841568894, 0.7] Root Found

10 [0.599997683137788, 0.649998841568895] Root Found

11 [0.0999999994787598, 0.402239977003124] Root Found

4.9.1 Formulation of the governing polynomial equations

As we have seen in Example 4.6.1, we may introduce numerical errors during
the formulation of the governing equations in a shape interrogation problem.
Formulation of the governing simultaneous nonlinear polynomial equations

106 4. Nonlinear Polynomial Solvers and Robustness Issues

in multivariate Bernstein form for shape interrogation usually involves arith-
metic operations in Bernstein form (see Sect. 1.3.2) starting from the given
input B�ezier curve or surface. Therefore to achieve an accurate formulation
[254, 253], we suggest:

� Use of rational arithmetic (RA) or rounded interval arithmetic (RIA) [272]
(see also Sect. 4.8), if the control points of the given curve or surface
are oating point numbers to maintain a pristine or guaranteed precision
statement of the problem, respectively.

� Use of RIA if the control points of the given curve or surface are irra-
tional numbers to avoid any numerical contamination by standard FPA.
This happens, for example, when the curve or surface is rotated, since the
rotation matrix involves cosines and sines, which are generally irrational.

� Conversion of the coe�cients of the nonlinear equations in Bernstein form
into intervals with FP number boundaries if rational arithmetic is used in
the formulation.

Rational and rounded interval arithmetic operations can be implemented
e�ectively in object-oriented languages such as C++. Computation time com-
parison for various combinations of arithmetic for the formulation of the gov-
erning equations and their solution is presented in [245].

4.9.2 Comparison of software and hardware rounding

We have compared the software and hardware rounding methods in solving
the following two examples using the IPP solver. The �rst example is the
degree 20 Wilkinson polynomial, which we introduced in Sect. 1.3.3, whose
roots are known for their numerical instability. For a tolerance of �10�8 both
methods found all 20 roots. However, as reported in Table 4.6 the hardware
rounding method was 2.4% faster (24.7 versus 25.3 CPU seconds) and had
marginally tighter interval bounds.

For a second example, we used the IPP solver to �nd the self-intersection
points of the o�set curve of a planar degree six B�ezier curve originally inves-
tigated by Maekawa and Patrikalakis [253]. For a tight tolerance of �10�12

both methods correctly �nd two pairs of roots for each of the two self-
intersection points (see Fig. 11.11 (a)). However, as shown in Table 4.7 the
hardware rounding method was 25.8% faster than the software ulp method.

We have compared two methods for performing robust rounded interval
arithmetic. The intervals produced by the software ulp method are slightly
larger, as this method performs the rounding conservatively, extending the
upper and lower bounds by ulp during every arithmetic operation. The hard-
ware rounding method only extends the bounds when the result of the oper-
ation cannot be exactly represented.

The di�erences in the running times of the two methods reect the relative
times required to compute the ulp versus setting the hardware rounding mode
ag. In our experiments performed on an SGI Indy workstation the hardware

4.9 Interval Projected Polyhedron algorithm 107

rounding method is consistently faster than the ulp method, with problem-
speci�c performance increases between 2 and 25%. Other researchers have
found that hardware rounding is approximately 15% slower than the ulp
method on a Power Macintosh [310]. Thus, it appears that the computational
e�ciency of the two methods is dependent on the host system architecture.

108 4. Nonlinear Polynomial Solvers and Robustness Issues

Table 4.6. Root �nding for degree 20 Wilkinson polynomial for software and hard-
ware rounding. The reported times are the accumulated CPU seconds necessary to
solve for the roots 50 times (adapted from [4])

Root Software rounding

1.0 [0:9999999949999983; 1:000000005]
0.95 [0:9499999949999989; 0:9500000050000008]
0.9 [0:8999999949959929; 0:9000000049959949]
0.85 [0:8499999949999413; 0:8500000049999432]
0.8 [0:7999999900304406; 0:8000000000304426]
0.75 [0:7499999949438847; 0:7500000049438866]
0.7 [0:6999999949920326; 0:7000000049920345]
0.65 [0:6499999949869547; 0:6500000049869566]
0.6 [0:5999999949383569; 0:6000000049383588]
0.55 [0:5499999949774965; 0:5500000049774985]
0.5 [0:4999999949594102; 0:5000000049594113]
0.45 [0:4499999950181615; 0:4500000050181623]
0.4 [0:3999999950865321; 0:4000000050865329]
0.35 [0:3499999950804608; 0:3500000050804616]
0.3 [0:2999999950142164; 0:3000000050142173]
0.25 [0:2499999949978854; 0:2500000049978859]
0.2 [0:1999999950002637; 0:2000000050002642]
0.15 [0:1499999950005055; 0:1500000050005059]
0.1 [0:09999999500015867; 0:1000000050001589]
0.05 [0:04999999524378046; 0:05000000524378057]

CPU 25.3

Root Hardware rounding

1.0 [0:9999999949999999; 1:000000005]
0.95 [0:9499999949999994; 0:9500000049999997]
0.9 [0:899999994995992; 0:9000000049959923]
0.85 [0:8499999949999332; 0:8500000049999337]
0.8 [0:7999999900306577; 0:8000000000306582]
0.75 [0:7499999949787219; 0:7500000049787222]
0.7 [0:6999999949980986; 0:7000000049980991]
0.65 [0:6499999949944346; 0:6500000049944349]
0.6 [0:599999994956996; 0:6000000049569965]
0.55 [0:5499999949777089; 0:5500000049777094]
0.5 [0:4999999949696504; 0:5000000049696507]
0.45 [0:4499999950891842; 0:4500000050891845]
0.4 [0:3999999950232258; 0:400000005023226]
0.35 [0:3499999950964761; 0:3500000050964763]
0.3 [0:2999999950216165; 0:3000000050216168]
0.25 [0:2499999950006767; 0:250000005000677]
0.2 [0:199999995000106; 0:2000000050001061]
0.15 [0:1499999950003841; 0:1500000050003842]
0.1 [0:09999999500016345; 0:1000000050001635]
0.05 [0:04999999524378028; 0:05000000524378029]

CPU 24.7

4.9 Interval Projected Polyhedron algorithm 109

Table 4.7. Results of �nding self-intersections of o�set of degree six B�ezier curve
(adapted from [4]). Timings are reported in CPU seconds

Method CPU Roots

Software 168.0 12
Hardware 124.6 12

5. Intersection Problems

5.1 Overview of intersection problems

Intersections are fundamental in computational geometry, geometric model-
ing and design, analysis and manufacturing applications [275, 19, 175, 294,
299]. Examples of intersection problems include:

� Contouring of surfaces through intersection with a series of parallel planes
or coaxial circular cylinders or cones for visualization (see Fig. 5.1).

� Numerical control machining (milling) involving intersection of o�set sur-
faces with a series of parallel planes, to create machining paths for ball
(spherical) cutters (see Fig. 5.2, and Sect. 11.1.2).

� Representation of complex geometries in the Boundary Representation (B-
rep) scheme; for example, the description of the internal geometry and of
structural members of automobiles, airplanes, and ships involves
{ Intersections of free-form parametric surfaces with low order algebraic
surfaces (planes, quadrics, torii, cyclides [83]);

{ Intersections of low order algebraic surfaces (see Fig. 5.26);
in a process called boundary evaluation, in which the Boundary Representa-
tion is created by evaluating a Constructive Solid Geometry (CSG) model
of the object [342, 260, 56, 167, 341, 343]. During this process, intersections
of the surfaces of primitives (see Fig. 5.3) must be found during Boolean
operations. Boolean operations on point sets A, B include (see Fig. 5.4)
union A [B, intersection A \ B, and di�erence A�B.
All such operations involve intersections of surfaces to surfaces. In order

to solve general surface to surface (S/S) intersection problems, the following
auxiliary intersection problems need to be considered:

1. point/point (P/P)
2. point/curve (P/C)
3. point/surface (P/S)
4. curve/curve (C/C)
5. curve/surface (C/S)

All above six types of intersection problems are also useful in geometric mod-
eling, robotics, collision avoidance, manufacturing simulation, scienti�c vi-
sualization, etc. When the geometric elements involved in intersections are

112 5. Intersection Problems

Fig. 5.1. A marine propeller is visualized
through intersection with a series of parallel
planes

nonlinear (curved), intersection problems typically reduce to solving systems
of nonlinear equations, which may be either polynomial or more general func-
tions.

Solution of nonlinear systems is a very complex process in general in
numerical analysis and there are specialized textbooks on the topic [292, 69,
273]. However, geometric modeling applications pose severe robustness, accu-
racy, automation, and e�ciency requirements on solvers of nonlinear systems.
Therefore, geometric modeling researchers have developed specialized solvers
to address these requirements explicitly using geometric formulations as we
have seen in Chap. 4.

When studying intersection problems, the type of curves and surfaces that
we consider can be classi�ed as follows:

� Rational polynomial parametric (RPP)
� Procedural parametric (PP)
� Implicit algebraic (IA)
� Implicit procedural (IP)

where procedural curves and surfaces are de�ned by means of an evaluation
method without explicit use of the speci�c analytical properties of the de�n-
ing formula. For example, procedural curves include o�sets and evolutes,
procedural surfaces include o�sets, evolutes, blends and generalized cylinders
(e.g. pipe and canal surfaces). However, some of the above procedural curves

5.2 Intersection problem classi�cation 113

0
20

40
60

80
100

0

20

40

60

80

100

−10

0

10

20

X (mm)

Y (mm)

Z
 (

m
m

)

Fig. 5.2. O�set surface is intersected with a series of parallel planes to generate a
tool path for 3-D NC machining (adapted from [222])

and surfaces under special conditions can be expressed in the RPP or the IA
form, in which case the corresponding methods can be used (see for example
[101, 240, 255, 237, 238]).

5.2 Intersection problem classi�cation

The fundamental issue in intersection problems is the e�cient discovery and
description of all features of the solution with high precision commensurate
with the tasks required from the underlying geometric modeler [294, 299].
Reliability of intersection algorithms is a basic prerequisite for their e�ective
use in any geometric modeling system and is closely associated with the
way features of the solution such as constrictions (near singular or singular
situations), small loops and partial surface overlap are handled. The solutions
resulting from most present techniques, implemented in practical systems, are
further complicated by imprecisions introduced by numerical errors present
in �nite precision computations.

Intersection problems can be classi�ed according to the dimension of the
problem and according to the type of geometric equations involved in de�ning
the various geometric elements (points, curves and surfaces). The solution

114 5. Intersection Problems

Block Cylinder

P1

P2

R

Cone

RP1

P2

P1

P2

Ri

Ro

P1

Sphere

R

Torus

P1 P2

P4

P3

Fig. 5.3. Primitive solids

of intersection problems can also vary according to the number system in
which the input is expressed and the solution algorithm is implemented. Such
intersection problem classi�cation is addressed in the next three subsections.
Only the most important intersection problems are addressed in detail in
Sects. 5.3 to 5.8.

5.2.1 Classi�cation by dimension

Using the abbreviation in Sect. 5.1, intersection problems can be classi�ed
in three subcategories, where one intersecting entity is a point or curve or
surface as below:

1. P/P, P/C, P/S
2. C/C, C/S
3. S/S

5.2.2 Classi�cation by type of geometry

In this subsection, we classify the various types of geometric speci�cation of
points, curves and surfaces that we will use in formulating various intersection
problems:

5.2 Intersection problem classi�cation 115

Two Primitives Union

DifferenceIntersection

Fig. 5.4. Example of Boolean operations

1. Points
a) Explicit: r0 = (x0; y0; z0)

T .
b) Procedural: Intersection of two procedural curves, a procedural curve

and a procedural surface, or three procedural surfaces.
c) Implicit algebraic: Intersection of three implicit surfaces, or equiva-

lently f(r) = g(r) = h(r) = 0, where f , g, h are polynomial functions
and r = (x; y; z)T .

2. Curves
a) Parametric: r = r(t), 0 � t � 1.

i. (Rational) (piecewise) polynomial: B�ezier, rational B�ezier, B-
spline, NURBS.

ii. Procedural: o�sets, evolutes, etc.
b) Implicit algebraic: A 2-D planar curve is given by z = 0; f(x; y) =

0, while a 3-D space curve is given by intersection of two implicit
algebraic surfaces f(r) = g(r) = 0.

3. Surfaces
a) Parametric: r = r(u; v), 0 � u; v � 1.

i. (Rational) (piecewise) polynomial: B�ezier, rational B�ezier, B-
spline, NURBS.

ii. Procedural: o�sets, blends, generalized cylinders, etc.
b) Implicit algebraic: f(r) = 0.

116 5. Intersection Problems

5.2.3 Classi�cation by number system

In our discussion of intersection problems, we will refer to various classes of
numbers:

1. Rational numbers, m=n, n 6= 0, where m;n are integers.
2. Floating point (FP) numbers in a computer (which are a subset of ratio-

nal numbers, see Sect. 4.8.1 and [4]).
3. Algebraic numbers (roots of polynomials with integer coe�cients).
4. Real numbers, e.g. transcendental numbers such as e, �, trigonometric,

etc.
5. Interval numbers, [a; b], where a; b are real numbers.
6. Rounded interval numbers, [c; d], where c; d are FP numbers.

Issues relating to oating point and interval numbers a�ecting the robust-
ness of intersection algorithms were addressed in Chap. 4 in the context of
nonlinear solvers as well as in [4, 105, 179, 178, 391].

5.3 Point/point intersection

Point/point intersection problems reduce to checking the Euclidean distance
between two points r1 and r2, i.e.

jr1 � r2j < " ; (5.1)

where " represents the maximum allowable tolerance. Choice of tolerances in
a geometric modeler is a di�cult open question [308]. For example it may
cause incidence intransitivity. Figure 5.5 gives an example of three points r1,
r2 and r3 where r1 = r2 since jr1 � r2j < ", r2 = r3 since jr2 � r3j < ",
but r1 6= r3, since jr1 � r3j > ". When points are represented procedurally
or via implicit algebraic equations, P/P intersection can be typically reduced
to comparison of intervals which contain such isolated points. In Hu et al.
[180, 181] interval point equality is de�ned in an alternate manner: if the
intervals representing the points intersect, assuming these intervals are very
small, then the points are considered coincident and a new interval point
(the minimal rectangular box with faces parallel to the coordinate planes) is
used to replace the two coincident points. With this construction, incidence
transitivity is guaranteed in the context of interval solid modeling but at the
cost of reduced resolution (accuracy).

5.4 Point/curve intersection

5.4.1 Point/implicit algebraic curve intersection

Intersection between a point and a planar implicit curve is de�ned as:

5.4 Point/curve intersection 117

r1

r2

r3

ε

ε

Fig. 5.5. Intersection of points within a tolerance is intransitive

r0 \ fz = 0; f(x; y) = 0g ; (5.2)

where f(x; y) is usually a polynomial and f(x; y) = 0 represents an algebraic
curve. In an exact arithmetic context, we can substitute r0 in fz; f(x; y)g
and verify if the results are zero. Similarly, we could handle

r0 \ ff(r) = g(r) = 0g ; (5.3)

where f(r) = g(r) = 0 represents an implicit 3-D space curve. However, if
oating point arithmetic is used in evaluating f(x; y), the result will not be
exactly zero due to round o� errors.

Now let us examine the distance between a point r0 = (x0; y0)
T and a

planar implicit curve f(x; y) = 0. The geometric distance is given by:

d = minjr� r0j ; (5.4)

where r = (x; y)T must satisfy f(r) = 0. The true geometric distance is
di�cult and expensive to compute (especially if we need to deal with a large
set of points as in inspection problems). As an alternative, we can compute
an approximate distance. We Taylor expand f(x; y) = 0 about (x0; y0) up to
the �rst order as follows:

f(x; y) = f(x0; y0) + fx(x0; y0)�x + fy(x0; y0)�y = 0 ; (5.5)

where �x = x � x0 and �y = y � y0. From the stationary condition of the
distance jr� r0j, we can deduce the orthogonality condition

fy(x; y)�x � fx(x; y)�y = 0 : (5.6)

Since we do not know the footpoint (x; y) on the implicit curve which gives
the minimum distance, we will also Taylor expand fx(x; y) and fy(x; y) about
(x0; y0) up to the �rst order as follows:

118 5. Intersection Problems

fx(x; y) = fx(x0; y0) + fxx(x0; y0)�x + fxy(x0; y0)�y ; (5.7)

fy(x; y) = fy(x0; y0) + fyx(x0; y0)�x + fyy(x0; y0)�y : (5.8)

After substituting (5.7) and (5.8) into (5.6) and neglecting the second order
terms we have

fy(x0; y0)�x � fx(x0; y0)�y = 0 : (5.9)

Equations (5.5) and (5.9) form a linear system in �x and �y which can be
solved as

�x = � f(x0; y0)fx(x0; y0)

f2x(x0; y0) + f2y (x0; y0)
; �y = � f(x0; y0)fy(x0; y0)

f2x(x0; y0) + f2y (x0; y0)
;

(5.10)

provided the denominators are not zero. Therefore the �rst order approxima-
tion to the true geometric distance (5.4) reduces to

d =
p
(�x)2 + (�y)2 =

jf(x0; y0)j
jrf(x0; y0)j ; (5.11)

provided that jrf(x0; y0)j6=0. Consequently if the algebraic distance jf(x0; y0)j
< " � 1 where " is a small positive constant and f is normalized so that
jf(x; y)j � 1 in the domain of interest including r0, then an approximate
minimum distance check can be performed by evaluating the non-algebraic
distance (5.11).

f(r)=0

g(r)=0

ro

Fig. 5.6. Algebraic curves meet at small angle

Having evaluated the approximate minimum distance (5.11), we can now
address a complex point to point intersection problem which further eluci-
dates the notion of geometric distance for use in intersection problems. We
discuss an intersection problem, where we need to check if the intersection
point of the two planar algebraic curves crossing at a small angle, intersects
a point r0 as illustrated in Fig. 5.6 or more precisely

r0 \ fz = 0; f(x; y) = g(x; y) = 0g ; (5.12)

where

5.4 Point/curve intersection 119���� rfjrf j � rgjrgj
���� ' 1 ; (5.13)

evaluated at the intersection point f = g = 0. Even if f(x; y) and g(x; y)
satisfy

jf(x0; y0)j < "� 1 and �1 =
jf(x0; y0)j
j 5 f(x0; y0)j < � � 1 ; (5.14)

jg(x0; y0)j < "� 1 and �2 =
jg(x0; y0)j
j 5 g(x0; y0)j < � � 1 ; (5.15)

it is not enough to guarantee proximity of r0 to the intersection of f(x; y) = 0,
g(x; y) = 0 as shown in Fig. 5.6.

f(r)=0

g(r)=0

φδ1

δ2

ro

δ3

Fig. 5.7. Algebraic curves approximated by straight lines

In such cases, using a linear approximation, and letting

� ' cos�1

���� 5f(x0; y0)j 5 f(x0; y0)j �
5g(x0; y0)
j 5 g(x0; y0)j

���� ; (5.16)

be the angle of intersection as in Fig. 5.7 near the intersection point, a bet-
ter criterion for evaluating if r0 is near the intersection of f(x; y) = 0 and
g(x; y) = 0 is given by

�3 =
1

�

� jf(x0; y0)j
j 5 f(x0; y0)j +

jg(x0; y0)j
j 5 g(x0; y0)j

�
< � � 1 : (5.17)

5.4.2 Point/rational polynomial parametric curve intersection

Mathematically, an intersection between a point and a rational polynomial
parametric (RPP) curve is de�ned as

r0 \ r = r(t) =

�
X(t)

W (t)
;
Y (t)

W (t)
;
Z(t)

W (t)

�T
; 0 � t � 1 ; (5.18)

where X(t), Y (t) , Z(t) and W (t) are polynomials.

120 5. Intersection Problems

Elementary method. We solve each of the following three nonlinear poly-
nomial equations separately using a numerical scheme such as Newton's
method or Laguerre's iteration method [69] and we search for common real
roots in 0 � t � 1:

x(t)� x0 = 0; y(t)� y0 = 0; z(t)� z0 = 0 : (5.19)

In principle, this elementary approach is easy, however in practice, this pro-
cess is complex and ine�cient and prone to numerical inaccuracies.

Bounding box and subdivision followed by minimization method.
We use a bounding box of r(t) to eliminate easily resolvable cases, with some
level of subdivision to reduce box size. For a rational polynomial curve with
control points (xi; yi; zi), the bounding box is given by

min(xi) � x(t) � max(xi) ; (5.20)

min(yi) � y(t) � max(yi) ; (5.21)

min(zi) � z(t) � max(zi) ; (5.22)

as shown in Fig. 5.8 for a planar curve case. A tighter bounding box can be
obtained by axis reorientation [207]. To eliminate numerical error in the sub-
division process (which can lead to erroneous decisions), rational arithmetic
may be employed (if the input coe�cients of r(t) are rational or oating point
numbers). This can be easily done in object-oriented languages such as C++
using operator overloading. We continue subdivision until the bounding box
is small. Then, we could use a numerical technique [69], for example:

F (t) = minfjr0 � r(t)j2g; t 2 I ; (5.23)

and use some values of t from the interval I as the initial approximation.
Use of the square of the distance function is necessary to avoid possible
divergence of the derivative of the distance function, if it approaches zero. If
the minimization process converges to t0 and

p
F (t0) < ", then t = t0 is the

desired solution.

Distance function method. A more robust method than the above is to
compute the stationary points of the squared distance function D = D(t)
between a point and a variable point on a rational polynomial curve. We
search for zeros of the derivative _D(t) and then examine if at those zeros the
squared distance function attains a minimum. Detailed formulation is given
in Chap. 7, and a robust solution method based on the IPP algorithm is
provided in Chap. 4.

Implicitization. As we have discussed in Sect. 5.4.1, point/implicit curve
intersection problem is conceptually very simple. Therefore it is natural to
consider conversion of the curve equation from a parametric form to an im-
plicit form. Sederberg et al. [370, 371, 373, 377, 379] used implicitization,

5.4 Point/curve intersection 121

min(xi) max(xi)

min(yi)

max(yi)

x

y

Fig. 5.8. Bounding box of a rational polynomial curve

which originates in classical algebraic geometry [436, 216, 2, 412], to com-
pute such intersections.

Let us consider two polynomial equations x = x(t), y = y(t) of degree m
and n respectively as follows:

x = amt
m + am�1t

m�1 + � � �+ a1t+ a0 ; (5.24)

y = bnt
n + bn�1t

n�1 + � � �+ b1t+ b0 ; (5.25)

where am 6= 0 and bn 6= 0. Or equivalently

amt
m + am�1t

m�1 + � � �+ a1t+ a0 � x = 0 ; (5.26)

bnt
n + bn�1t

n�1 + � � �+ b1t+ b0 � y = 0 : (5.27)

Now we form the following (m + n) � (m + n) matrix by generating auxil-
iary equations by multiplying (5.26) and (5.27) by appropriate monomials as
follows:

n rows

m rows

8><
>:8><
>:

0
BBBBBBBBB@

a0 � x a1 � � � am
a0 � x a1 � � � am

� � � � � � � � � � � � � � � � � �
a0 � x a1 � � � am

b0 � y b1 � � � bn
b0 � y b1 � � � bn

� � � � � � � � � � � � � � � � � �
b0 � y b1 � � � bn

1
CCCCCCCCCA

0
BBBBBBBBB@

1
t
t2

� � �
� � �
� � �
� � �

tm+n�1

1
CCCCCCCCCA

122 5. Intersection Problems

=

0
BBBBBBBBB@

0
0
0
� � �
� � �
� � �
� � �
0

1
CCCCCCCCCA

; (5.28)

where all blanks correspond to zeros. The resultant of the two polynomials
(5.26), (5.27), which is denoted by f(x; y), is the determinant of the above
matrix [216]. The vanishing of the resultant, i.e. f(x; y) = 0 is a necessary
and su�cient condition for the polynomials (5.26) and (5.27) to have a com-
mon root. In other words, all x, y values that satisfy f(x; y) = 0 lie on the
parametric curve, and hence f(x; y) = 0 is the implicit form of the parametric
equation x = x(t), y = y(t).

Evidently, f(x; y) has degree n;m in x; y, respectively. Furthermore,
McKay and Wang [265] proved that the leading form f+(x; y), which consists
of the terms rijx

iyj with mi + nj = mn, is equal to (�1)m [am
n=dym=d �

bn
m=dxn=d]d, where d is the greatest common divisor of m and n. Therefore,

if m = n, f+(x; y) has the form (�1)m[amy � bmx]m, and thus the highest
total degree of the implicit algebraic representation of the curve is m. An al-
ternate geometric way of visualizing this is to consider the maximum number
of intersections of a straight line �x+ �y + = 0, with the planar paramet-
ric curve x = amt

m + � � � + a1t + a0; y = bnt
n + � � � + b1t + b0, which upon

substitution into the (linear) equation of the line leads to the conclusion that
the highest total degree is max(m;n). Note that the curve x = tm, y = tm

can be represented implicitly using resultants as (�1)m(y � x)m = 0. The
exponent m of (y � x) arises in order to reect the m complex roots for the
parameter t of x = tm or y = tm for given x or y.

Once we have the implicit form, we check if f(x0; y0) = 0 in an exact
arithmetic context to verify if (x0; y0) is on the initial curve. Resultants can be
computed exactly (in rational arithmetic) in symbolic manipulation programs
such asMathematica [445],Maple [51], but the evaluation procedure tends
to be slow for high degree cases.

Finally we may need to determine the corresponding parameter value t on
the parametric curve at the point (x0; y0). This process is called inversion. We
set x = x0 and y = y0 in (5.28) and discard any row of the resultant matrix
and solve for any of the ratio of tp=tp�1 (1 � p � m + n � 1) which gives
the parameter value t [373]. The implicitization and inversion methods are
e�cient for low degree polynomials but there are no guarantees on accuracy
and robustness, if these methods are implemented in oating point arithmetic.
Subdivision methods are preferable for higher degrees, and as we have seen in
Chap. 4 when coupled with rounded interval arithmetic, they become robust
and accurate. Intersection of points (x0; y0; z0) and 3-D polynomial curves

5.5 Point/surface intersection 123

r = r(t) via implicitization involves a process of projection on xy-plane and
�nding t0 by inversion and veri�cation of z0 = z(t0).

5.4.3 Point/procedural parametric curve intersection

Mathematically, an intersection between a point and a procedural parametric
(PP) curve is de�ned as:

r0 \ r(t); 0 � t � 1 : (5.29)

In general there is no known and easily computable convex box decreasing
in size arbitrarily with subdivision for a procedural parametric curve. An
approximate solution method may involve minimization of

F (t) = jr(t)� r0j2 ; (5.30)

where t 2 [0; 1]. This would also involve the checking of end points, i.e. if F (0)
or F (1) are zero. Initial estimate for the possible minima, may be found by
using linear approximation of r(t) to start the process. However, convergence
of the above minimization processes is not guaranteed in general and there
may exist more than one minima. Furthermore convergence to local and not
global minimum (where F (t) 6= 0) is possible.

For certain classes of procedural curves such as o�sets and evolutes of
rational curves involving radicals of polynomials, it is possible to use the
auxiliary variable method described in Sect. 4.5 [169, 253, 252] to reduce the
problem to a set of nonlinear polynomial equations. Such systems can be
solved robustly and e�ciently using the IPP algorithm described in Chap. 4.
Alternatively, some procedural curves admit a rational parametrization (e.g.
o�sets [237, 238, 323]) in which case the problem reduces to the formulation
of Sect. 5.4.2.

5.5 Point/surface intersection

5.5.1 Point/implicit algebraic surface intersection

The mathematical description for a point and an implicit surface f(r) = 0
intersection is given by

r0 \ f(r) = 0 : (5.31)

Similar to the point implicit curve intersection case, the condition for
intersection is given by

jf(r0)j < ";
jf(r0)j
jrf(r0)j < � ; (5.32)

where "; � are small positive constants, provided jrf(r0)j 6= 0.

124 5. Intersection Problems

5.5.2 Point/rational polynomial parametric surface intersection

Point/rational polynomial parametric (RPP) surface intersection is de�ned
as:

r0 \ r = r(u; v) =

�
X(u; v)

W (u; v)
;
Y (u; v)

W (u; v)
;
Z(u; v)

W (u; v)

�T
; 0 � u; v � 1 :

(5.33)

Implicitization. Implicitization is possible for RPP surfaces but it is com-
putationally expensive for high degree surfaces and with the necessary use
of exact rational arithmetic for robustness. For a rational polynomial surface
with maximum degrees in u and v equal to m and n, i.e. r = r(um; vn), the
implicit equation is of the form f(r) = 0 where the highest total degree of
the polynomial f(r) is q � 2mn [373]. Therefore, for m = n = 3, q � 18
and for m = n = 2, q � 8. The implicitization method is useful for special
surfaces such as cylindrical and conical ruled surfaces, surfaces of revolution,
etc:

1. Implicitization of a surface of revolution

z

r

r

x

y

Fig. 5.9. Surface of revolution

Let us consider a planar pro�le curve to be a rational polynomial of
degree n

r(t) = (r(t); z(t))T ; (5.34)

as illustrated in Fig. 5.9. By simple implicitization of r = r(t), we obtain

f(r; z) = anr
n + an�1(z)r

n�1 + � � �+ a0(z) = 0 ; (5.35)

where f is a polynomial in r and z of total degree n. Also,

5.5 Point/surface intersection 125

x2 + y2 � r2 = 0 : (5.36)

Next we eliminate r from (5.35) and (5.36) by implicitization. The resul-
tant of the two polynomial equations is

R =

������������

a0(z) a1(z) � � � an�1(z) an(z) 0
0 a0(z) � � � an�2(z) an�1(z) an(z)

x2 + y2 0 �1 � � �
x2 + y2 0 �1

. . .

x2 + y2 0 �1

������������
= 0 ;

(5.37)

and R = f(x; y; z) = 0 is a polynomial in x, y and z of total degree 2n.
For example, a torus results in a degree four algebraic surface.

2. Implicitization of a cylindrical ruled surface

x

z

ya

rb=rb(t)

t

u

Fig. 5.10. Cylindrical
ruled surface

Let

xb = xb(t); yb = yb(t) ; (5.38)

be a planar base curve or directrix of a ruled surface as shown in Fig.
5.10. The directrix is a rational polynomial curve of degree n in the xy
plane. The resulting implicit equation of the curve

f(xb; yb) = 0 ; (5.39)

is a polynomial in xb and yb of total degree n. Let

126 5. Intersection Problems

a = (a1; a2; a3)
T ; (5.40)

be a constant direction unit vector which gives the direction of the ruling
at each point on the directrix, then the three equations

x = xb + ua1 ; (5.41)

y = yb + ua2 ; (5.42)

z = ua3 ; (5.43)

describe a cylindrical ruled surface. If we assume a3 6= 0, we can eliminate
u = z

a3
by substituting into the �rst two equations. Then solving for xb

and yb the implicit cylindrical ruled surface equation becomes:

f

�
x� z

a3
a1; y � z

a3
a2

�
= 0 : (5.44)

This equation can be expanded to a standard form using a symbolic
manipulation program such as Mathematica [445], Maple [51] etc.

3. Implicitization of a conical ruled surface

x

z

y

u

t

rb=rb(t)

r0

Fig. 5.11. Conical ruled
surface

Let a conical ruled surface be de�ned by its apex

r0 = (x0; y0; z0)
T ; (5.45)

and its planar base curve

xb = xb(t); yb = yb(t) ; (5.46)

5.5 Point/surface intersection 127

which is a degree n planar rational polynomial curve on the xy plane. Its
implicit equation

f(xb; yb) = 0 ; (5.47)

is a total degree n polynomial. The equation of the resulting conical ruled
surface is

x = x0(1� u) + xbu ; (5.48)

y = y0(1� u) + ybu ; (5.49)

z = z0(1� u) : (5.50)

Eliminating u by substituting u = 1 � z
z0

into (5.48) and (5.49), where
we assume z 6= z0, and solving for xb; yb yields:

f

�
z0

z0 � z x�
x0

z0 � z z;
z0

z0 � z y �
y0

z0 � z z
�
= 0 : (5.51)

This equation can be expanded to the standard form using a symbolic
manipulation program such as Mathematica [445], Maple [51] etc.

Newton's method. We start with preprocessing using the bounding box
of the RPP surface patch coupled with some level of subdivision. Then we
solve a system x0 = x(u; v), y0 = y(u; v) using Newton's method and verify
the results with the third equation z0 = z(u; v). Projection of r0 onto a
planar approximation of the surface (faceting) may provide a good initial
approximation.

Bounding box and subdivision followed by minimization method.
We can easily extend the point/curve intersection case to the point/surface
intersection case.

Distance function method. Similarly to the point/curve intersection case,
detailed formulation of the squared distance function between a point and a
rational polynomial parametric surface is given in Chap. 7, and the solution
method is provided in Chap. 4.

5.5.3 Point/procedural parametric surface intersection

Procedural surfaces may include o�set surfaces, generalized cylinder surfaces,
blending surfaces etc. The typical solution method is minimization [69]. In
this case, no convex box assistance is available in general, and we need a
dense sampling for an initial approximation which may be expensive, and no
rigorous guarantees for the solution's reliability are generally available.

For certain classes of procedural surfaces such as o�sets and evolutes of
rational surfaces involving radicals of polynomials, it is possible to use the
auxiliary variable method, described in Sect. 4.5, to remove radicals from the

128 5. Intersection Problems

formulation, followed by solution via the IPP algorithm of Chap. 4. Alterna-
tively, some procedural surfaces admit a rational parametrization (e.g. o�sets
[239, 323], pipe and canal surfaces [240, 255]) in which case the problem re-
duces to the formulation of Sect. 5.5.2.

5.6 Curve/curve intersection

Curve to curve intersection cases are identi�ed in Table 5.1. Conceptually,
case D3 (RPP/IA curve intersections) is the simplest of the above cases of
intersection to describe and use for illustrating various general di�culties of
intersection problems (see Sect. 5.6.1). The next case of interest is case D1
(RPP/RPP curve intersections) from Table 5.1 and this is analyzed in Sect.
5.6.2. Next cases D2 and D5 (RPP/PP and PP/PP curve intersections) from
Table 5.1 are analyzed in Sect. 5.6.3. These are followed by cases D6 (PP/IA
curve intersections) and D8 (IA/IA curve intersections) analyzed in Sects.
5.6.4 and 5.6.5, respectively. Cases D4, D7, D9 and D10 are not addressed
here, however the reader should be able to analyze those cases based on the
cases treated in this section.

Table 5.1. Classi�cation of curve/curve intersections

Curve type
Curve type RPP PP IA IP

RPP D1 D2 D3 D4
PP D5 D6 D7
IA D8 D9
IP D10

5.6.1 Rational polynomial parametric/implicit algebraic curve
intersection (Case D3)

2-D planar case. We start with an intersection problem of a planar RPP
curve and an implicit algebraic curve which is de�ned as:

r = r(t) =

�
X(t)

W (t)
;
Y (t)

W (t)

�T
\ f(x; y) = 0; 0 � t � 1 : (5.52)

Let us denote the degree of planar RPP curve by n and the total degree
of the implicit algebraic curve by m. Furthermore we describe the implicit
curve by

f(x; y) =

mX
i=0

m�iX
j=0

cijx
iyj = 0 : (5.53)

5.6 Curve/curve intersection 129

Substitution of x = X(t)
W (t) and y = Y (t)

W (t) into the implicit form and multipli-

cation of Wm(t) leads to a polynomial of degree up to mn

F (t) =
mX
i=0

m�iX
j=0

cijX
i(t)Y j(t)Wm�i�j(t) =

mnX
i=0

ait
i = 0 : (5.54)

Therefore the problem of intersection is equivalent to �nding the real
roots of F (t) in 0 � t � 1. The most usual form of F (t) is the power basis.
The coe�cients can be evaluated symbolically by substitution and collection
of terms. This can be readily done in a standard symbolic manipulation
program such as Mathematica [445], Maple [51] etc. This can be followed
by numerical evaluation of the coe�cients ideally in exact rational arithmetic.
Symbolic manipulation programs are oriented to processing rational numbers
exactly.

Example 5.6.1. Let the algebraic curve be an ellipse x2

4 +y2�1 = 0, and the
parametric curve be a cubic B�ezier curve with control points (0,1), (1, -4),
(2,1) and (2,0) as illustrated in Fig. 5.12. The ellipse and B�ezier curve are
chosen to be tangent at (2,0).

Using a symbolic manipulation program and simplifying, we get in exact
arithmetic mode:

F (t) = 1025t6 � 3840t5 + 5514t4 � 3728t3 + 1149t2 � 120t = 0 :

Next we �nd the real roots of F (t) in t 2 [0; 1] using factoring over the
integers, which leads to

F (t) � t(t� 1)2G(t) ;

where

G(t) = 1025t3 � 1790t2 + 909t� 120 :

Using a standard numerical solver for polynomials in oating point such
as [134, 135], we obtain the following numbers as solutions of G(t) = 0

t = 0:9228 � � � ; 0:61843 � � � ; 0:2051 � � � :

Alternately solving F (t) = 0 using the same routine leads to the following
six complex and real roots

tR 1 1 0:9228 0:6183 0:2051 0
tI �0:22� 10�6 0:22� 10�6 0 0 0 0

where t = tR + itI , and i is the imaginary unit.

130 5. Intersection Problems

x

2

y

1

Fig. 5.12. Intersection of ellipse
and cubic B�ezier curve

Notice the sensitivity to errors for the 6th degree polynomial, especially
for the double root t = 1. In oating point arithmetic, such roots may split
into conjugate complex numbers. Obviously, complex roots are not usable as
we require only the real intersection points. The consequence is lost roots,
which implies an erroneous solution of the intersection problem.

An alternate basis for the representation of F (t) = 0 is the Bernstein
basis, which leads to better stability for its real roots under perturbations of
its coe�cients than the power form [105] as we discussed in Sect. 1.3.3.

Setting F (t) =
P6

i=0 ciBi;6(t) in the above example of the ellipse and
cubic B�ezier curve, we have c0 = 0, c1 = -20, c2 =

183
50 , c3 = � 83

50 , c4 =
8
5 , c5

= 0, and c6 = 0. Here the conversion is done exactly using rational arithmetic
(given that the conversion itself is not in general numerically well conditioned
[106]). By the use of linear precision property

t =

mnX
i=0

i

mn
Bi;mn(t) ; (5.55)

we can construct a graph

f(t) = (t; F (t))T =
mnX
i=0

�
i
mn
ci

�
Bi;mn(t) ; (5.56)

5.6 Curve/curve intersection 131

which is now a degree mn B�ezier curve as shown in Fig. 5.13. Now we can
apply the IPP method introduced in Chap. 4 which converts the problem of
�nding roots of polynomials into a problem of �nding the intersection of the
B�ezier curve with the parameter axis.

t
1

F(t)

0

Fig. 5.13. Intersection of a B�ezier curve/straight line

Notice that in our example c0 = 0 which implies that t = 0 is a root. Also
c5 = c6 = 0 implies that t = 1 is a double root.

3-D space curve. The intersection problem of a 3-D rational polynomial
parametric curve and a 3-D implicit curve is de�ned as:

r = r(t) =

�
X(t)

W (t)
;
Y (t)

W (t)
;
Z(t)

W (t)

�T
\ f(r) = g(r) = 0; 0 � t � 1 :

(5.57)

If we denote the total degree of implicit algebraic surfaces f(x; y; z) = 0

and g(x; y; z) = 0 as m, and substituting x = X(t)
W (t) , y = Y (t)

W (t) and z = Z(t)
W (t)

132 5. Intersection Problems

into the implicit forms f(x; y; z) = 0 and g(x; y; z) = 0 and multiplying by
Wm(t), we obtain two univariate nonlinear polynomial equations F1(t) = 0
and F2(t) = 0. One way to solve this problem is to compute the resultant of
F1(t), F2(t), where all the coe�cients of the two polynomials are known. If
the resultant R(F1(t); F2(t)) � 0, then there is a common root between the
two polynomials and hence we can use the inversion algorithm to �nd t.

A robust way to solve this overconstrained problem F1(t) = F2(t) = 0 (2
equations with 1 unknown) is to use the IPP algorithm (see Chap. 4). In such
cases, the substitution must be conducted in exact arithmetic, to maintain a
pristine or guaranteed precision statement of the problem.

Alternatively one could directly solve the overconstrained �ve-equation
system in four variables (x, y, z, t)

X(t)� x W (t) = 0 ; (5.58)

Y (t)� y W (t) = 0 ; (5.59)

Z(t)� z W (t) = 0 ; (5.60)

f(x; y; z) = 0 ; (5.61)

g(x; y; z) = 0 ; (5.62)

using the IPP algorithm as in Chap. 4.

5.6.2 Rational polynomial parametric/rational polynomial
parametric curve intersection (Case D1)

We can de�ne the intersection problem as:

r = r1(t) =

�
X1(t)

W1(t)
;
Y1(t)

W1(t)
;
Z1(t)

W1(t)

�T
; 0 � t;� 1 ; (5.63)

\ r = r2(�) =

�
X2(�)

W2(�)
;
Y2(�)

W2(�)
;
Z2(�)

W2(�)

�T
; 0 � � � 1 :

Setting r1(t) = r2(�) leads to 3 nonlinear polynomial equations with 2
unknowns t, � (overconstrained system). There are several approaches to
solve this intersection problem.

1. The bounding box and subdivision method followed by minimization that
we described in Sect. 5.4.2 can be applied to this problem. If two bound-
ing boxes intersect, and they are of �nite size, we can �nd roots using
linear approximation. However, in the presence of tangential intersection
the following cases may happen. The boxes intersect but the linear ap-
proximations do not, and the curves intersect as illustrated in Fig. 5.14
(a) for planar curves. Similar behavior is observed in (b) where polygon
is used as the curve approximation. Hodographs indicate the range of tan-
gent directions of a B�ezier curve. Sederberg and Meyers [378] construct a

5.6 Curve/curve intersection 133

bounding wedge, which is a bounding angular sector of a hodograph, con-
taining all tangent vectors of the given B�ezier curve (see shaded triangle
in Fig. 5.15). The bounding wedges are useful in predicting the number of
intersection points of two curves. We �rst translate the bounding wedges
of the two B�ezier curves so that their vertices are coincident. If the two
wedges do not overlap, the curves cannot intersect more than once. This
is a su�cient condition but not a necessary condition. Figure 5.15 (a)
shows non-overlapping wedges, while (b) shows overlapping wedges. In
both �gures, hodographs together with their control polygons for each
B�ezier curve are superposed on the corresponding wedges.
If we combine the bounding box subdivision technique with the bounding
wedge technique, we are able to locate the intersection points more ef-
fectively. For a precisely tangential intersection, this method would lead
to in�nite subdivision steps.

2. Another possible approach is to choose 2 equations to solve for t, �, and
then substitute the results into the third equation for veri�cation. We can

implicitize x = X2(�)
W2(�)

and y = Y2(�)
W2(�)

to obtain f(x; y) = 0 followed by the

substitution of x = X1(t)
W1(t)

and y = Y1(t)
W1(t)

into f(x; y) yielding F (t) = 0.

Then solve it for real roots in [0; 1] and use the inversion algorithm to

�nd �. Finally we verify the solution by checking if Z1(t)
W1(t)

becomes equal

to Z2(�)
W2(�)

. This method needs to be implemented in rational arithmetic

for robustness.
3. Hawat and Piegl [156] studied the application of a genetic algorithm to the

curve/curve intersection problems. First a number of points are selected
on each curve in a random manner, then a pair of points from each curve
are coupled. Finally the genetic algorithm is applied to create generations
of couples that minimize the distance between them. The probabilistic
nature of genetic algorithms is discussed in [266].

4. Solve directly the overconstrained 3-equations with 2-unknowns system
using the IPP algorithm described in Chap. 4. If the parametric curves
are in integral/rational B-spline form, the �rst step is to subdivide the
integral/rational B-spline curve into a number of integral/rational B�ezier
curves. This method guarantees a robust solution (no missing roots).

5.6.3 Rational polynomial parametric/procedural parametric and
procedural parametric/procedural parametric curve intersections
(Cases D2 and D5)

These intersection problems are de�ned as:

r = r1(t) \ r = r2(�); 0 � t; � � 1 ; (5.64)

where we have 3 equations with 2 unknowns t and �. Unlike the RPP/RPP
curve intersection, there is no known and easily computable convex box de-
creasing arbitrarily with subdivision for PP curves.

134 5. Intersection Problems

(a) (b)

Fig. 5.14. Linear approximation of curves in �nding intersections: (a) approxima-
tion by linear segments, (b) approximation by polygon

BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB

BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB

BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB
BBBBBBBBBBBB

BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB

(a)

(b)

Fig. 5.15. Bounding wedges

A possible approach is to minimize the squared distance function D be-
tween RPP curve and PP curve or between two PP curves

D = F (t; �) = jr1(t)� r2(�)j2; 0 � t; � � 1 ; (5.65)

using numerical techniques [69]. Initial approximation may be obtained by us-
ing linear approximations of r1(t) and r2(�). In general there is no guarantee
to �nd all the stationary points.

5.6 Curve/curve intersection 135

For o�sets and evolutes of rational polynomial curves, we are able to
avoid the square roots of polynomials by using the auxiliary variable method,
described in Sect. 4.5, so that we can apply the IPP algorithm to enhance
robustness.

5.6.4 Procedural parametric/implicit algebraic curve intersection
(Case D6)

The intersection problem is de�ned as:

r = r(t) \ f(r) = g(r) = 0; 0 � t � 1 : (5.66)

This can be reduced to PP curve/IA surface intersection (see Sect. 5.7.4), i.e.
r = r(t) \ f(r) = 0 and r = r(t) \ g(r) = 0, and comparison of solutions.

5.6.5 Implicit algebraic/implicit algebraic curve intersection
(Case D8)

The planar case is of interest in processing trimmed patches and the de�nition
of this intersection problem is given as

f(u; v) = 0 \ g(u; v) = 0; 0 � u; v � 1 : (5.67)

Implicitization. We can eliminate v to form the resultant F (u), then solve
F (u) = 0 for u and use the inversion algorithm to obtain v.

Example 5.6.2. Let us consider an ellipse and a circle

f =
x2

4
+ y2 � 1 = 0 ;

g = (x� 1)2 + y2 � 1 = 0 ;

as in Fig. 5.16.
First we eliminate y from these two equations. This leads to

3x2 � 8x+ 4 = 0 ;

which has two real roots x = 2 and x = 2
3 . These lead to y2 = 0 and y2 = 8

9 ,
respectively.

However there are possible numerical problems at the tangential inter-
section point x = 2; y = 0. Let us assume that due to error � > 0, we
have

x = 2 + " ;

hence
y2 = �"(1 + "

4
) < 0 :

This implies that y is imaginary and that no real roots exist. This would have
as a consequence missing an intersection solution, leading to a robustness
problem.

136 5. Intersection Problems

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Fig. 5.16. Ellipse and circle intersection

Newton's method. After tracing of f(u; v) = 0 and g(u; v) = 0, based on
the technique which will be discussed in Sect. 5.8.1, linear approximation of
each algebraic curve is available. By �nding intersections of linear approxima-
tions and minimum distance points between them, we can initiate a Newton's
method on the system f = g = 0 or a minimization of F = f2+ g2. However,
no general robustness guarantees exist with such method.

Interval Projected Polyhedron solver. A robust and e�cient method is
based on use of the IPP algorithm, described in Chap. 4 for two equations
with two unknowns.

5.7 Curve/surface intersection

Curve to surface intersections are classi�ed in Table 5.2. Such intersection
problems are useful in solving the more general surface to surface intersection
problems. When the curve is a straight line, the curve/surface intersection is
useful for

� ray tracing in computer graphics and visualization;
� point classi�cation in solid modeling;
� procedural surface interrogation.

In Sects. 5.7.1 to 5.7.6 several of the most frequent curve to surface inter-
section problem cases E3, E1, E2/E6, E7, E11, E9 are analyzed in some detail.
The remaining cases are not analyzed in detail, but the reader should be able
to analyze them via the cases addressed in this section. We will start with
case E3 (RPP curve to IA surface intersection), which is quite representative
of the complexities of this type of problem.

5.7 Curve/surface intersection 137

Table 5.2. Classi�cation of curve/surface intersections

Surface type
Curve type RPP PP IA IP

RPP E1 E2 E3 E4
PP E5 E6 E7 E8
IA E9 E10 E11 E12
IP E13 E14 E15 E16

5.7.1 Rational polynomial parametric curve/implicit algebraic
surface intersection (Case E3)

The intersection problem is de�ned as:

r = r(t) =

�
X(t)

W (t)
;
Y (t)

W (t)
;
Z(t)

W (t)

�T
\ f(r) = 0; 0 � t � 1 : (5.68)

Let us consider an implicit algebraic surface of total degree m

f(x; y; z) =

mX
i=0

m�iX
j=0

m�i�jX
k=0

cijkx
iyjzk = 0 : (5.69)

We substitute x = X(t)
W (t) , y =

Y (t)
W (t) and z =

Z(t)
W (t) of degree n into the implicit

equation and multiply by Wm(t) leading to

F (t) =

mX
i=0

m�iX
j=0

m�i�jX
k=0

cijkX
i(t)Y j(t)Zk(t)Wm�i�j�k(t) = 0 ; (5.70)

of degree � mn in t. We then �nd its real roots in [0; 1], as described in
Sect. 5.6.1.

Alternatively, the problem can be formulated as a nonlinear polynomial
system of four equations in four unknowns (x, y, z, t) and solved using the
IPP algorithm.

5.7.2 Rational polynomial parametric curve/rational polynomial
parametric surface intersection (Case E1)

The intersection problem between a rational polynomial parametric curve
and a rational polynomial parametric surface is de�ned as:

r = r1(t) =

�
X1(t)

W1(t)
;
Y1(t)

W1(t)
;
Z1(t)

W1(t)

�T
; 0 � t � 1 ; (5.71)

\ r = r2(u; v) =

�
X2(u; v)

W2(u; v)
;
Y2(u; v)

W2(u; v)
;
Z2(u; v)

W2(u; v)

�T
; 0 � u; v � 1 :

138 5. Intersection Problems

The equation consists of three nonlinear equations r1(t) = r2(u; v) in three
unknowns t, u, v. A preprocessing step of checking bounding boxes for absence
of intersection is helpful.

Implicitization. Implicitization of r2(u; v) (which is recommended for low
degree surfaces) reduces this problem to Case E3 described in Sect. 5.7.1.

Bounding box and subdivision followed by minimization method.
Use of bounding boxes coupled with recursive subdivision will lead us to
small bounding boxes which may contain intersection points. Then we use a
linear approximations for r1 and r2 to obtain approximate initial solutions,
which can be used to initiate a Newton's method on r1(t)� r2(u; v) = 0 or a
minimization method on F (t; u; v) = jr1(t)� r2(u; v)j2. However, no general
robustness guarantees exist with such method.

Interval Projected Polyhedron solver. A robust and e�cient way is
to solve the three equations with three unknowns using the IPP algorithm
discussed in Chap. 4.

5.7.3 Rational polynomial parametric/procedural parametric and
procedural parametric/procedural parametric curve/surface
intersections (Cases E2/E6)

The intersection problem between a rational polynomial parametric curve or
a procedural parametric curve and a procedural parametric surface is de�ned
as:

r = r1(t) \ r = r2(u; v); 0 � t; u; v � 1 : (5.72)

Similar to Case E1, this problem reduces to three nonlinear equations in
three unknowns involving non-polynomial functions, for which bounds are
not generally available.

A possible approach is to use the minimization technique

F (t; u; v) = jr1(t)� r2(u; v)j2 ; (5.73)

in a cube 0 � t; u; v � 1. Comments under the point/PP curve intersection
case (see Sect. 5.4.3) also apply to this problem.

5.7.4 Procedural parametric curve/implicit algebraic surface
intersection (Case E7)

The intersection problem between a procedural parametric curve and an im-
plicit algebraic surface is de�ned as:

r = r(t) \ f(r) = 0; 0 � t � 1 : (5.74)

This leads to four nonlinear equations in four unknowns t, r. We could use
Newton's method initiated by a linear approximation of r = r(t), which can
be intersected more easily with f(r) = 0 using the method of Case E3 (see
Sect. 5.7.1). However, no robustness guarantees exist in general.

5.8 Surface/surface intersections 139

5.7.5 Implicit algebraic curve/implicit algebraic surface
intersection (Case E11)

Implicit algebraic curve and implicit algebraic surface intersection problem
is de�ned as:

f(r) = g(r)| {z }
curve

= h(r)|{z}
surface

= 0 : (5.75)

The formulation comprises three nonlinear equations in three unknowns r.
Possible solution approaches include elimination methods, Newton's method,
minimization methods with objective function F (r) = f2 + g2 + h2, approx-
imating f(r) = g(r) = 0 curve with a linear spline reducing to Case E3 and
re�nement using minimization, and the IPP algorithm.

5.7.6 Implicit algebraic curve/rational polynomial parametric
surface intersection (Case E9)

The implicit algebraic curve and rational polynomial parametric surface in-
tersection is de�ned as:

f(r) = g(r) = 0 \ r = r(u; v) =

�
X(u; v)

W (u; v)
;
Y (u; v)

W (u; v)
;
Z(u; v)

W (u; v)

�T
;

0 � u; v � 1 : (5.76)

By substituting r = r(u; v) into f(r) = 0 and g(r) = 0 we obtain two algebraic
curves F (u; v) = 0 and G(u; v) = 0. This formulation reduces to IA/IA curve
intersection, Case D8 in Sect. 5.6.5 (see Fig. 5.17). A more detailed discussion
of algebraic curves is given in Sect. 5.8.1.

5.8 Surface/surface intersections

Surface to surface intersection cases are identi�ed in Table 5.3. The solu-
tion of a surface/surface intersection problem may be empty, or include a
curve (possibly made of several branches), a surface patch, or a point. In
Sects. 5.8.1 to 5.8.3 several of the most frequent surface to surface intersec-
tion problem cases F3, F1, and F8 are studied in detail. The remaining cases
are not analyzed, but could be addressed based on cases F3, F1 and F8,
although without general robustness guarantees. Conceptually, RPP/IA sur-
face intersection (Case F3) is the simplest of the above cases and may serve
as illustrating general di�culties of surface to surface intersection problems.

140 5. Intersection Problems

u

v

G(u,v)=0

F(u,v)=0

Fig. 5.17. Intersection of two al-
gebraic curves

Table 5.3. Classi�cation of surface/surface intersections

Surface type
Surface type RPP PP IA IP

RPP F1 F2 F3 F4
PP F5 F6 F7
IA F8 F9
IP F10

5.8.1 Rational polynomial parametric/implicit algebraic surface
intersection (Case F3)

We start with a rational polynomial parametric surface to implicit algebraic
surface intersection problem de�ned as:

r = r(u; v) =

�
X(u; v)

W (u; v)
;
Y (u; v)

W (u; v)
;
Z(u; v)

W (u; v)

�T
\ f(r) = 0; 0 � u; v � 1 :

(5.77)

This leads to four algebraic equations in �ve unknowns r; u; v (undercon-
strained system). For the usual low degree surfaces f(r) and low degree
patches r(u; v), we can substitute r(u; v) into f(r) = 0 to obtain an im-
plicit algebraic curve in u; v [124, 332, 210, 301, 211]. Examples of low order
implicit algebraic surfaces in practical use are planes (degree 1), the natural
quadrics (cylinder, sphere, cone) (degree 2), and torii (degree 4). In fact in
a survey of mechanical parts (mechanical elements), over 90% of all surfaces
involved are of these types [149]. It is also well known that low order implicit
algebraic surfaces have a low degree rational polynomial parametric repre-
sentation (which can be easily obtained [313]), so that when two such low

5.8 Surface/surface intersections 141

order implicit algebraic surfaces are intersected, the methods of this section
may be also used.

Formulation. Now let us denote the implicit algebraic surface f(x; y; z) = 0
of total degree m by

f(x; y; z) =

mX
i=0

m�iX
j=0

m�i�jX
k=0

cijkx
iyjzk : (5.78)

By substituting x = X(u;v)
W (u;v) ; y = Y (u;v)

W (u;v) ; z = Z(u;v)
W (u;v) , where X(u; v),

Y (u; v), Z(u; v) and W (u; v) are all of maximum degree p in u and q in v
into (5.78) and multiplying by Wm(u; v) leads to an algebraic curve

F (u; v) =

mX
i=0

m�iX
j=0

m�i�jX
k=0

cijkX
i(u; v)Y j(u; v)Zk(u; v)Wm�i�j�k(u; v) = 0 ;

(5.79)

of maximum degreeM = mp and N = mq in u; v, respectively. Consequently,
the problem of intersection reduces to the problem of tracing F (u; v) = 0
without omitting any special features of the curve, e.g. small loops, singu-
larities, and accurately computing all its branches. This is a fundamental
problem in algebraic geometry [436] and much work has been done to un-
derstand its solution. In the context of algebraic geometry the coe�cients of
F (u; v) = 0 are integers. In the context of CAD and computer implementa-
tion, the coe�cients of F = 0, and r = r(u; v) are oating point numbers.
Therefore, if the above substitution is performed in oating point arithmetic
the coe�cients of F (u; v) = 0 involve error, which may considerably modify
the problem being solved. To avoid such error, rational arithmetic may be
used for robustness. These issues are discussed in the Chap. 4.

The algebraic curve

F (u; v) =

MX
i=0

NX
j=0

cMij u
ivj = 0 ; (5.80)

can be reformulated in terms of Bernstein polynomials using (4.18) as follows:

F (u; v) =

MX
i=0

NX
j=0

cBijBi;M (u)Bj;N (v) = 0 ; (5.81)

where (u; v) 2 [0; 1]2.
As an example, consider a plane in an implicit form

ax+ by + cz + d = 0 ; (5.82)

and a rational B�ezier patch of degree m in u, n in v

142 5. Intersection Problems

border points

singular
points

u

v

F=Fu=Fv=0

v turning point

F=Fu=0

u turning point

F=Fv=0

loop Fig. 5.18. Parameter space
of r(u; v) and resulting
algebraic curve F (u; v) = 0

r(u; v) =

Pm
i=0

Pn
j=0 wijbijBi;m(u)Bj;n(v)Pm

i=0

Pn
j=0 wijBi;m(u)Bj;n(v)

; (5.83)

where bij = (xij ; yij ; zij)
T and weights wij � 0.

The resulting algebraic curve is of the form of equation (5.81) with

cBij = (axij + byij + czij + d)wij : (5.84)

In fact the power basis form of F (u; v) = 0 need not be computed at all, if
polynomial arithmetic for Bernstein polynomials, described in Sect. 1.3.2, is
used (see also [106]).

The advantage of the Bernstein form is the higher numerical stability of
the roots in comparison to the power basis and the convex hull property. If
cBij > 0 or cBij < 0 for all i; j, there is no solution and the two surfaces do
not intersect. More precisely, the entire algebraic surface f(r) = 0 does not
intersect the surface patch r = r(u; v) for (u; v) 2 [0; 1]2. Obviously, when
all cBij = 0 the two surfaces coincide in their entirety. A somewhat complex
algebraic curve F (u; v) = 0 is shown in Fig. 5.18 involving various branches
(from border to border), internal loops, and singularities.

Tracing method. Given a point on every branch of an algebraic curve, we
are able to trace the curve using di�erential curve properties. The idea is to
�nd increments �u and �v such that F (u + �u; v + �v) = 0, when we have
F (u; v) = 0.

Let us Taylor expand F (u; v)

5.8 Surface/surface intersections 143

(u,v)

δu

δv
δvL

Correction

F(u,v)=0

P

Q

Fig. 5.19. A zoomed view of an algebraic curve near a point (u; v)

F (u+ �u; v + �v) = F (u; v) + Fu�u+ Fv�v (5.85)

+
1

2
(Fuu�u

2 + 2Fuv�u�v + Fvv�v
2) + � � � :

When Fu and Fv are not both zero or F
2
u+F

2
v > 0, in order to have F (u; v) =

0 and F (u+ �u; v + �v) = 0 to the �rst order approximation, we must have

Fu�u+ Fv�v = 0 ; (5.86)

or

�vL = �Fu
Fv
�u ; (5.87)

assuming Fv 6= 0. However, as illustrated in Fig. 5.19 �vL leads to a point Q
which may be far from the curve F (u; v) = 0. Newton's method on F (u +
�u; v) = 0 with initial approximation vI = v + �vL may be used to compute
�v with high accuracy and in an e�cient manner. For vertical branches, i.e.
when jFv j is very small, we may use �uL = �Fv

Fu
�v.

To avoid these special stepping procedures, (5.86) may be rewritten as

Fu _u+ Fv _v = 0 ; (5.88)

where u, v are considered as functions of a parameter t. The solution to the
di�erential equation is given by

_u = �Fv(u; v) ; (5.89)

_v = ��Fu(u; v) ; (5.90)

where � is an arbitrary nonzero factor. For example, � can be chosen to
provide arc length parametrization using the �rst fundamental form (3.13)
of the surface as a normalization condition

144 5. Intersection Problems

� = � 1p
EF 2

v � 2FFuFv +GF 2
u

; (5.91)

where E, F and G are �rst fundamental form coe�cients of the paramet-
ric surface evaluated at u, v. Equations (5.89) and (5.90) form a system of
two �rst order nonlinear di�erential equations which can be solved by the
Runge-Kutta or other methods with adaptive step size [69, 126]. For the
tracing method to work properly, we must provide all the starting points of
all branches in advance. Step size selection is complex and too large a step
size may lead to straying or looping [124], as in Fig. 5.20, in the presence
of constrictions where F 2

u + F 2
v is very small. Tracing through singularities

(F 2
u +F 2

v = 0) is also problematic. When �
p
F 2
u + F 2

v is small then the right
hand sides of (5.89) and (5.90) are small and step size needs to be reduced
for topologically reliable tracing of the curve.

straying looping

Fig. 5.20. Step size problems in tracing method

Characteristic points. Starting points for tracing algebraic curves are
identi�ed by looking for characteristic points de�ned below:

1. Border points: The intersections of F (u; v) = 0 with all four boundary
edges of the parameter space [0; 1]2, e.g. F (0; v) = 0; 0 � v � 1.

2. Turning points: The u-turning points are the points where the tangent of
F (u; v) = 0 is parallel to the u = 0 axis, which satis�es the simultaneous
equations F = Fv = 0 (with Fu 6= 0). On the other hand the v-turning
points are the points where the tangent of F (u; v) = 0 is parallel to
the v = 0 axis, which satis�es the simultaneous equations F = Fu = 0
(with Fv 6= 0). Both types of turning points are shown in Fig. 5.18. If
F has a degree of (M;N) in (u; v), then the degrees of Fu and Fv will

5.8 Surface/surface intersections 145

be (M � 1; N) and (M;N � 1), respectively. It can be shown that the
total number of roots of two simultaneous polynomial equations in two
variables whose degrees are (m;n) and (p; q), respectively, ismq+np [95].
Therefore the number of u-turning points and v-turning points can be
at most 2MN �M and 2MN �N , respectively over the entire complex
plane. However within the square parameter space [0; 1]2, the number
of turning points is typically much reduced in practice and therefore
methods that use the [0; 1]2 square as the search space of the roots such
as the IPP algorithm in Sect. 4.9 or interval Newton methods [159] would
typically outperform other methods.

3. Singular points: The points on the curve which satisfy the following three
simultaneous equations F = Fu = Fv = 0 are called singular points.
Noting that f(x; y; z) = 0, and F (u; v) =Wm(u; v)f(x; y; z), we deduce

Fu = mWm�1Wuf +Wm

�
@f

@x

@x

@u
+
@f

@y

@y

@u
+
@f

@z

@z

@u

�
=Wmrf � ru :

(5.92)

Similarly we obtain Fv =Wmrf � rv , and hence at singular points rf �
ru = rf � rv = 0. This means that rf k ru � rv or that the normals of
two surfaces are parallel and since f(u; v) = 0 at these points the two
surfaces intersect tangentially. If F has a degree of (M;N) in (u; v), the
degrees of Fu and Fv will be (M � 1; N) and (M;N � 1), respectively,
thus the number of singular points can be at most 2MN �M �N + 1
[95] over the entire complex plane and typically much less in number in
[0; 1]2. If the systems F = Fu = 0 and F = Fv = 0 are already solved,
a small extra evaluation can identify their common roots which are the
singular points. Alternatively the IPP algorithm for the overconstrained
system F = Fu = Fv = 0 can be used to �nd the singular points.

From the above discussions we can get upper bounds for the maximum
number of u-turning, v-turning and singular points as listed in Table 5.4.
These bounds refer to the maximum possible number of solutions (u; v) in the
entire complex plane. Biquadratic and bicubic surfaces in the �rst column of
Table 5.4 are degree 8 and 18 implicit algebraic surfaces. It turns out that the
number of such points in the real square [0; 1]2 is much smaller, but can still
be quite large. Consequently, methods which focus only on the real solutions
in [0; 1]2 are advantageous, such as IPP algorithm described in Chap. 4 or
interval Newton's method [159].

Analysis of singular points. Let us construct a parametric equation of a
straight line L through a point (u0; v0) on the algebraic curve F (u; v) = 0

u = u0 + �t; v = v0 + �t ; (5.93)

where � and � are constants and t is a parameter [436, 95, 107]. We �nd the
intersections between L and the algebraic curve F (u; v) = 0 by determining

146 5. Intersection Problems

Table 5.4. Maximum number of turning and singular points in various cases

algebraic max max max
curve number number number

S1 S2 F (u; v) u-turning v-turning singular
degree pts pts points
M;N 2MN �M 2MN �N 2MN �M

�N + 1
plane biquadratic 2, 2 6 6 5
plane bicubic 3, 3 15 15 13
quadric biquadratic 4, 4 28 28 25
quadric bicubic 6, 6 66 66 61
torus biquadratic 8, 8 120 120 113
torus bicubic 12, 12 276 276 265

biquadratic biquadratic 16, 16 496 496 481
bicubic biquadratic 36, 36 2556 2556 2521
bicubic bicubic 54, 54 5778 5778 5725

the roots of F (u0 + �t; v0 + �t) = 0. Since F (u0; v0) = 0, Taylor expansion
of the left hand side gives

(�Fu + �Fv)t+
1

2
(�2Fuu + 2��Fuv + �2Fvv)t

2 + � � � = 0 ; (5.94)

where partial derivatives of F are evaluated at (u0; v0).
When Fu and Fv are not both zero (F 2

u + F 2
v > 0) at (u0; v0), (5.94) has

a simple root t = 0 and every line through (u0; v0) has a single intersection
with the algebraic curve at (u0; v0) except for one case where �Fu+�Fv = 0
for certain values of � and �. In such cases (5.94) has a double root t =
0, provided at least one of the second order partial derivatives is not zero
(F 2

uu + F 2
uv + F 2

vv > 0), and L is tangent to the curve at (u0; v0).
When (u0; v0) is a singular point (Fu(u0; v0) = Fv(u0; v0) = F (u0; v0) =

0), and at least one of Fuu, Fuv , Fvv is not zero (F 2
uu + F 2

uv + F 2
vv > 0), then

t = 0 is a double root and has at least two intersections at (u0; v0) except for
the values of � and � which satisfy

�2Fuu + 2��Fuv + �2Fvv = 0 : (5.95)

In such cases, t = 0 is a triple root, provided at least one of the third order
partial derivatives is not zero (F 2

uuu +F
2
uuv +F

2
uvv +F

2
vvv > 0). We can solve

the quadratic equation (5.95) for �
� or �

� which leads to the following three
possibilities:

(1) Two real distinct roots: These values correspond to two distinct tangent
directions at the singular point, which implies the algebraic curve has a
self-intersection. The Folium of Descartes, which is shown in Fig. 1.1, has
such singularity at the origin.

5.8 Surface/surface intersections 147

(2) One real double root: This value corresponds to one tangent direction at
the singular point, which implies a cusp. An illustrative example, which
is a semi-cubical parabola, is given in Fig. 2.3.

(3) Two complex roots: No real tangents at the singular point imply an
isolated point. An example of an isolated point is given in Example 5.8.1
(see Fig. 5.21).

Example 5.8.1. Let the algebraic curve be F (u; v) = u3 + u2 + v2 = 0 [436],
then

Fu = u(3u+ 2); Fv = 2v; Fuu = 6u+ 2; Fuv = 0; Fvv = 2 ;

Fuuu = 6 ; Fuuv = Fuvv = Fuuv = Fvvv = 0 :

The u-turning points can be found by �nding the roots of F = Fv = 0
and Fu 6= 0. We immediately deduce v = 0. Upon substitution to F = 0 we
obtain u = 0; �1. Since Fu(0; 0) = 0, (0,0) is not a u-turning point. Therefore
(-1,0) is the only u-turning point. On the other hand v-turning points, which
satisfy F = Fu = 0 and Fv 6= 0, have no real solutions. It is apparent from
the above discussion that u = v = 0 is the only singular point. Tangents at
u = v = 0 can be obtained from �2Fuu + 2��Fuv + �2Fvv = 2�2 + 2�2 = 0,
which gives (��)

2+1 = 0, and hence no real solution. Therefore, u = v = 0 is

an isolated point. If the domain of interest is [�2; 1]� [�1; 1], border points
are (�1:465;�1). The above algebraic curve is depicted in Fig. 5.21.

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u

v

Fig. 5.21. Algebraic curve with an isolated point at (0,0)

148 5. Intersection Problems

Example 5.8.2. We have studied the semi-cubical parabola F (u; v) = u3 �
v2 = 0 in Example 2.1.1. The curve has a singular point at u = v = 0. Since

Fu = 3u2; Fv = �2v; Fuu = 6u; Fuv = 0; Fvv = �2 ;
Fuuu = 6 ; Fuuv = Fuvv = Fuuv = Fvvv = 0 ;

we have �2Fuu + 2��Fuv + �2Fvv = 6u�2 � 2�2 = 0. At (0,0) we have a
double root � = 0. Thus, at the singular point (0,0) we have a cusp whose
tangent direction is along the v = 0 axis as shown in Fig. 2.3.

Example 5.8.3. Let us consider the equation

F (u; v) = (u+ 1)u(u� 1)(v + 1)v(v � 1) +
1

20
= 0 ;

within the domain [�2; 2]2, taken from Geisow [124]. This is a degree 6 alge-
braic curve illustrated in Fig. 5.22. On every border line segment, there are
three border points. The curve has no singular points, but involves two (inter-
nal) loops and six border-to-border branches. The algebraic curve F (u; v) = 0
in this example has degrees M = 3; N = 3 in u and v. Consequently, using
the previous formulae the number of u turning points, v turning points and
singular points (in the entire complex plane) is bounded by 2MN �M = 15,
2MN � N = 15, and 2MN �M �N + 1 = 13. However, as we can see in
Fig. 5.22, these numbers overestimate the actual number of such points in
the real square [�2; 2]2.
Computing starting points for all branches. Starting points for tracing
algebraic curves could be border points, turning points and singular points.
Border points involve solution of a univariate polynomial equation, e.g. for
border along u = 0, using (5.81)

F (0; v) =

NX
j=0

cB0jBj;N (v) = 0 : (5.96)

Turning and singular point computation involve the �rst order partial
derivatives:

Fu(u; v) = M

M�1X
i=0

NX
j=0

(cBi+1;j � cBij)Bi;M�1(u)Bj;N (v) ; (5.97)

Fv(u; v) = N
MX
i=0

N�1X
j=0

(cBi;j+1 � cBij)Bi;M (u)Bj;N�1(v) : (5.98)

Consequently, computation of turning points (F = Fu = 0 and F = Fv = 0)
is equivalent to solving a system of two nonlinear polynomial equations in two
variables, and computation of singularities F = Fu = Fv = 0 is equivalent to
solving an overconstrained system of three nonlinear polynomial equations
in two variables. Robust and e�cient solution of these systems of nonlinear
polynomial equations is addressed in Chap. 4.

5.8 Surface/surface intersections 149

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 5.22. A degree six algebraic curve (adapted from [124])

5.8.2 Rational polynomial parametric/rational polynomial
parametric surface intersection (Case F1)

Rational polynomial parametric surface to rational polynomial parametric
surface intersection is de�ned as:

r = r1(�; t) =

�
X1(�; t)

W1(�; t)
;
Y1(�; t)

W1(�; t)
;
Z1(�; t)

W1(�; t)

�T
; 0 � �; t � 1 ; (5.99)

\ r = r2(u; v) =

�
X2(u; v)

W2(u; v)
;
Y2(u; v)

W2(u; v)
;
Z2(u; v)

W2(u; v)

�T
; 0 � u; v � 1 :

Formulation can be provided by setting r1(�; t) = r2(u; v) which leads to
three nonlinear polynomial equations for four unknowns �; t; u; v. It is an
underconstrained system with 3 equations and 4 unknowns. This system can
be solved by the IPP algorithm of Chap. 4. However, as the solutions are
typically not isolated points but curves, such approach is very slow when
small tolerances are used. One could also implicitize r1(�; t) to the form

f(x; y; z) = 0 and substitute x = X2(u;v)
W2(u;v)

, y = Y2(u;v)
W2(u;v)

and z = Z2(u;v)
W2(u;v)

into

f to reduce the problem to Case F3 for low degree surfaces [211]. Heo et al.
[160] studied the intersection of two ruled surfaces which is simpler than the
general parametric surface to surface intersection problem.

150 5. Intersection Problems

There are three major techniques for solving RPR/RPP surface intersec-
tions. Detailed reviews can be found in [294, 299].

Lattice methods. Lattice method reduces the dimensionality of surface in-
tersections by computing intersections of a number of iso-parametric curves
of one surface with the other surface followed by connection of the result-
ing discrete intersection points to form di�erent solution branches [351]. For
intersections of parametric patches, the method reduces to the solution of
a large number of independent systems of nonlinear equations. The reduc-
tion of problem dimensionality in lattice methods involves an initial choice
of grid resolution, which, in turn, may lead the method to miss important
features of the solution, such as small loops and isolated points which reect
near tangency or tangency of intersecting surfaces, and to provide incorrect
connectivity. Appropriate methods for the solution of the resulting nonlinear
equations in the present context are identi�ed in Chap. 4.

Subdivision methods. Subdivision methods in their most basic form, in-
volve recursive decomposition of the problem into simpler similar problems
until a level of simplicity is reached, which allows simple direct solution, (e.g.
plane/plane intersection [177, 294]). This is followed by a connection phase
of the individual solutions to form the complete solution. Dokken [77] trans-
forms surface/surface intersection problems to �nding zeroes of functions of
four variables using recursive subdivision techniques [220]. Initially conceived
in the context of intersections of polynomial parametric surfaces [219], they
can be extended to the computation of RPP/IA and IA/IA surface inter-
sections [301]. A simple subdivision algorithm employs uniform subdivision
which leads to a uniform quadtree data structure shown in Fig. 5.23. Sub-
division techniques do not require starting points as marching methods, an
important advantage. General non-uniform subdivision allows selective re-
�nement of the solution providing the basis for an adaptive intersection tech-
nique. A disadvantage of subdivision techniques used in the evaluation of the
entire intersection set is that, in actual implementations with �nite subdivi-
sion steps, correct connectivity of solution branches in the vicinity of singular
or near-singular points is di�cult to guarantee, small loops may be missed (in
methods with polyhedral surface approximations) or extraneous loops may
be present in the approximation of the solution. Furthermore, if subdivision
methods are used for high precision evaluation of the entire intersection set,
they lead to data proliferation and are consequently slow, and, therefore,
unattractive. There are many applications in CAD/CAM, that require high
accuracy, for which pure subdivision methods are impractical. However, adap-
tive subdivision methods coupled with e�cient local techniques to get high
accuracy, o�er the best known practical approach for the computation of sig-
ni�cant points. These points can then be used in initiating e�cient marching
methods for tracing intersection curves.

Marching methods. Marching methods involve generation of sequences of
points of an intersection curve branch by stepping from a given point on

5.8 Surface/surface intersections 151

BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB
BBBBBBBBBBBBBBB

@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@

@@@@@
@@@@@
@@@@@
@@@@@
@@@@@

@@@@@
@@@@@
@@@@@
@@@@@
@@@@@
@@@@@

@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@

@@
@@

Quadtree

@@@
@@@

@@@
@@@

@@
@@
@@

@@@
@@@
@@@

Fig. 5.23. Subdivision method

the required curve in a direction prescribed by the local di�erential geometry
[17, 19, 20, 209, 453], as we have studied in tracing the planar algebraic curve
F (u; v) = 0 in Sect. 5.8.1. However, such methods are by themselves incom-
plete in that they require starting points for every branch of the solution. In
order to identify all connected components of the intersection curve, a set of
important points on the intersection curve (signi�cant points) can be de�ned.
As seen in Sect. 5.8.1, such a set may include border, turning and singular
points of the intersection and provides at least one point on any connected
intersection segment and identi�es all singularities. For a 3-D RPP/RPP in-
tersection case a more convenient set of such points su�cient to discover all
connected components of the intersection, includes border and collinear nor-
mal points between the two surfaces. Collinear normal points provide points
inside all intersection loops and all singular points.

Border points are points of the intersection at which at least one of the
parametric variables �; t; u; v takes a value equal to the border of the �-t
or u-v parametric domain. To compute border points, a piecewise rational
polynomial curve to piecewise rational polynomial surface intersection capa-
bility is required, e.g., r1(0; t) = r2(u; v), which we discussed in Sect. 5.7.2.
M�ullenheim [277] addressed a local method to �nd starting points for two
parametric surfaces. Abdel-Malek and Yeh [1] introduced two local meth-
ods, iterative optimization and the Moore-Penrose pseudo-inverse method to

152 5. Intersection Problems

determine starting points on the intersection curve between two parametric
surfaces.

Sederberg et al. [375] �rst recognized the importance of collinear normal
points in detecting the existence of closed intersection loops in intersection
problems of two distinct parametric surface patches. These are points on the
two parametric surfaces at which the normal vectors are collinear. Collinear
normal points are a subset of parallel normal points �rst used by Sinha et al.
[395] in surface intersection loop detection methods.

To simplify the notation, we replace r1(�; t) by p(�; t) and r2(u; v) by
q(u; v). Then the collinear normal points satisfy the following equations [375]

(p� � pt) � qu = 0; (p� � pt) � qv = 0 ;

(p� q) � p� = 0; (p� q) � pt = 0 : (5.100)

Equations (5.100) form a system of four nonlinear polynomial equations
that can be solved using the robust methods of Chap. 4. Now we split the
patches in (at least) one parametric direction at these collinear normal points.
Consequently, starting points are only border points on the boundaries of all
subdomains created. Grandine and Klein [133] follow a systematic approach
for topology resolution of B-spline surface intersections. In this process, they
determine the structure of the intersection curves including closed loops prior
to numerical tracing (following a marching method based on numerical inte-
gration of a di�erential algebraic system of equations). Topology resolution in
this context relies on an extension of the PP algorithm (see Sect. 4.4) to the B-
spline case implemented in oating point (with normalization of the equations
in the range [-1,1] and normalization of the knot vector in each subdomain in
the range [0,1] at each iteration step of the process to capitalize on the higher
density of oating point numbers in this range, thereby improving numerical
robustness of the algorithm). An alternate way to detect closed intersection
loops is to use topological methods [235, 53, 263, 209, 244, 243, 435, 434]. Also
bounding pyramids [208, 381] can be used e�ectively to assure the nonexis-
tence of closed surface to surface intersection loops. These earlier methods
need to be implemented in exact or RIA for robustness.

In order to trace the intersection curve, starting points must be located
prior to tracing. An intersection curve branch can be traced if its pre-image
starts from the parametric domain boundary in either parameter domain
[19]. The marching direction coincides with the tangential direction of the
intersection curve c(s) which is perpendicular to the normal vectors of both
surfaces. Therefore, the marching direction can be obtained as follows:

c0(s) =
P(�; t) �Q(u; v)

jP(�; t) �Q(u; v)j ; (5.101)

where the normalization forces c(s) to be arc length parametrized and

P(�; t) = p� � pt; Q(u; v) = qu � qv ; (5.102)

5.8 Surface/surface intersections 153

are the normal vectors of p and q, respectively. When the two surfaces in-
tersect tangentially, we cannot use (5.101) since the denominator vanishes.
In such cases we must �nd the marching direction in an alternate way which
will be discussed in Sect. 6.4.

The intersection curve can also be viewed as a curve on the two inter-
secting surfaces. A curve � = �(s), t = t(s) in the �t-plane de�nes a curve
r = c(s) = p(�(s); t(s)) on a parametric surface p(�; t), as well as a curve
u = u(s) v = v(s) in the uv-plane de�nes a curve r = c(s) = q(u(s); v(s))
on a parametric surface q(u; v). We can derive the �rst derivative of the
intersection curve as a curve on the parametric surface using the chain rule:

c0(s) = p��
0 + ptt

0; c0(s) = quu
0 + qvv

0 : (5.103)

Since we know the unit tangent vector of the intersection curve from
(5.101), we can �nd �0 and t0 as well as u0 and v0 by taking the dot product
on both hand sides of the �rst equation of (5.103) with p� and pt and the
second equation with qu and qv , which leads to two linear systems [178]. The
solutions are immediately obtained as

�0 =
det(c0;pt;P(�; t))
P(�; t) �P(�; t) ; t0 =

det(p� ; c
0;P(�; t))

P(�; t) �P(�; t) ; (5.104)

u0 =
det(c0;qv;Q(u; v))

Q(u; v) �Q(u; v)
; v0 =

det(qu; c
0;Q(u; v))

Q(u; v) �Q(u; v)
; (5.105)

where det denotes the determinant.
The points of the intersection curves are computed successively by inte-

grating the initial value problem for a system of nonlinear ordinary di�erential
equations (5.104) and (5.105) using numerical techniques such as the Runge-
Kutta or adaptive stepping methods [69, 126]. Figure 5.24 presents the inter-
section of a rational quadratic-linear B-spline patch (representing a cylinder)
with a biquadratic B�ezier patch representing an elliptic paraboloid [207].
Figure 5.25 presents the intersection between two biquartic B�ezier patches
(nearly coincident surfaces) [209].

5.8.3 Implicit algebraic/implicit algebraic surface intersection
(Case F8)

Implicit algebraic surface to implicit algebraic surface intersection is de�ned
as follows:

f(r) = 0 \ g(r) = 0 ; (5.106)

where f; g are polynomial functions. Here we have two equations in three
unknowns r. Bajaj et al. [17] developed a marching method for IA/IA surface
intersection as well as for parametric surfaces.

154 5. Intersection Problems

Fig. 5.24. Cylinder - elliptic paraboloid intersection (adapted from [207])

Fig. 5.25. Intersection of two biquartic B�ezier patches forming four small loops
(adapted from [209])

A method for low order f , g is to eliminate one variable (e.g. z) to �nd
projection of intersection curves on the plane of other two variables (e.g. x,
y), then trace the algebraic curve and use the inversion algorithm to �nd z.
Intersections of low degree implicit algebraic surfaces are of special interest
in the boundary evaluation of the Constructive Solid Geometry models. A
more complete analysis of the special intersections of two quadric surfaces

5.8 Surface/surface intersections 155

(used frequently in CAD/CAM of mechanical parts) can be found in [232,
233, 366, 104, 442, 389, 267].

Example 5.8.4. Consider the intersection of a sphere and a circular cylinder
given by

f = x2 + y2 + z2 � 1 = 0 ;

g = x2 + (y � 1

2
)2 � 1

4
= 0 ;

as shown in Fig. 5.26. The projection of the intersection curves on the three
coordinate planes is illustrated in Fig. 5.27.

Hartmann [155] proposed the idea of numerical implicitization which al-
lows treatment of intersection problems of not only parametric surfaces but
also non-standard surfaces such as an o�set of an implicit surface, a Voronoi
surface, an envelope of a one parametric family of spheres etc. The key idea
is that in tracing the intersection curve of two implicit surfaces, we are only
required to calculate the implicit function values and the gradients of the
implicit functions at the intersection points as in Bajaj et al. [17]. In other
words, we do not need to know the functions explicitly. Therefore if we can
implicitize any two surfaces numerically we are able to trace the intersection
curve using the IA/IA surface intersection algorithm of Bajaj et al. [17].

Fig. 5.26. Intersection of two implicit quadrics (sphere and cylinder)

156 5. Intersection Problems

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

y

z

(b)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

z

(c)

Fig. 5.27. (a) Projection of intersection curve on z = 0 (xy) plane, i.e. x2 + (y �
1
2
)2� 1

4
= 0, (b) projection of intersection curve on x = 0 (yz) plane, i.e. y = 1�z2,

(c) projection of intersection curve on y = 0 (xz) plane, i.e. x2 + z4 � z2 = 0

5.9 Overlapping of curves and surfaces 157

5.9 Overlapping of curves and surfaces

So far we have focused mainly on transversal intersection problems of regular
curves and surfaces. However, in real engineering problems we may encounter
curve/curve (see Fig. 5.28), curve/surface or surface/surface overlapping of
curves and surfaces.

We will illustrate the curve/curve overlapping case using two planar cubic
B�ezier curves r1(t) (AB) and r2(�) (CD) whose control points are given by
(0,0), (0.8,0.8), (1.6,0.32), (2.4,0.608) and (0.6,0.392), (1.4,0.68), (2.2,0.2),
(3,1) (see Fig. 5.28). If we use the IPP algorithm to compute the intersections
of the two curves, the rate of convergence of the solver drops signi�cantly due
to an extensive amount of binary subdivision [179]. In such cases we may run
the IPP solver with a fairly coarse level of accuracy, for example � = 10�2

or 10�3. If we observe a number of boxes overlap to one another, as shown
in Fig. 5.29, it is very likely that overlap exists. Figure 5.29 shows the boxes
of roots of the intersection points of two curves computed with � = 10�2.
We can observe that the curve AB overlaps with curve CD from t = 0:25 to
t = 1 and the curve CD overlaps with curve AB from � = 0 to � = 0:75.

x

y

A

B

C

D

Fig. 5.28. Two cubic B�ezier curves AB and CD overlapping each other at CB
(adapted from [179])

Hu et al. [179, 178] discuss the treatment of curve/curve, curve/surface
as well as surface/surface overlapping problems based on interval polynomial
curves and surfaces with the IPP solver. They also introduced the follow-
ing theorem which can be used to �nd the starting and end points of the
overlapping segment.

Theorem 5.9.1. If two C1 curve segments r1(t) and r2(�) overlap along a
�nite part of their length, they must overlap everywhere. Otherwise, they end
at boundary points.

158 5. Intersection Problems

 t

 σ

 0.00 0.25 0.50 0.75 1.00
 0.00

 0.33

 0.67

 1.00

Fig. 5.29. The coarse boxes that contain roots of intersection of two overlapping
curves (adapted from [179])

This theorem means it is impossible that two C1 curves, such as two para-
metric polynomial curves, overlap along a �nite part of their length and sep-
arate from each other at one point, as illustrated in Fig. 5.30. This theorem
can be proven contrapositively.

separation point

overlapping segment

p

end point of C1

starting point of C2 overlapping segment

end point of C1

starting point of C1
overlapping segment

C1

(a) (b) (c)

C1

C2
C2

C1

C2

Fig. 5.30. Overlap of two C1 curves along a �nite segment. (a) is an impossible
con�guration, and (b) and (c) are the two possible con�gurations (adapted from
[178])

5.10 Self-intersection of curves and surfaces 159

Proof: Assume that there exist two C1 curves r1(t) and r2(�) which
overlap partially. This means that there is an interior point p (referred to
as separation point) that ends the overlapping segment of r1(t) and r2(�),
as illustrated in Fig. 5.30. Let tp and �p be the parameters of r1(t) and
r2(�) at p, respectively. Suppose further that the two curves are arc length
parametrized, and have the same orientation. Since the two curves are C1,
their overlapping segment should be also C1, i.e.,

r
(i)
1 (tp) = r

(i)
2 (�p) ; (5.107)

where superscript (i) denotes derivative of order i valid for all nonnegative
integers i. Therefore, from the Taylor expansion theorem, we have

r1(tp + �) = p+

1X
i=1

r
(i)
1 (tp)

i!
�i ; (5.108)

r2(�p + �) = p+

1X
i=1

r
(i)
2 (�p)

i!
�i : (5.109)

From (5.107), (5.108) and (5.109), we have r1(tp + �) = r2(�p + �), which
means that p cannot be an interior point. Hence, Theorem 5.9.1 is proven.

Further discussions on curve/surface and surface/surface overlapping
problems can be found in [178].

5.10 Self-intersection of curves and surfaces

So far we have focused mainly on intersection problems of regular curves
and surfaces without self-intersections. In this section we will show how to
compute self-intersections of curves and surfaces.

Self-intersection of a planar rational polynomial parametric curve can be
formulated as �nding pairs of distinct parameter values � 6= t such that

r(�) = r(t) ; (5.110)

or in terms of components as

X(�)

W (�)
� X(t)

W (t)
= 0 ;

Y (�)

W (�)
� Y (t)

W (t)
= 0 ; (5.111)

where

X(t) =

nX
i=0

wixiBi;n(t); Y (t) =

nX
i=0

wiyiBi;n(t); W (t) =

nX
i=0

wiBi;n(t) :

(5.112)

160 5. Intersection Problems

Lasser [224] presents an algorithm to �nd all the self-intersection points of
a B�ezier curve by subdividing the B�ezier polygon instead of the curve itself.
Finally the self-intersection points are approximated by straight line inter-
sections of the re�ned B�ezier polygon.

Here we introduce a method to �nd all the self-intersection points of
a planar rational polynomial parametric curve based on the IPP algorithm
introduced in Chap. 4. Multiplying by the denominators of (5.111), we obtain

X(�)W (t)�X(t)W (�) = 0 ; Y (�)W (t) � Y (t)W (�) = 0 : (5.113)

These equations can be rewritten as

nX
i=0

nX
j=0

wiwjxi[Bi;n(�)Bj;n(t)�Bj;n(�)Bi;n(t)] = 0 ; (5.114)

nX
i=0

nX
j=0

wiwjyi[Bi;n(�)Bj;n(t)�Bj;n(�)Bi;n(t)] = 0 : (5.115)

which form a system of two nonlinear polynomial equations in � and t. Since

Bi;n(�)Bj;n(t)�Bj;n(�)Bi;n(t)

� � t (5.116)

= Bj;n(t)
Bi;n(�) �Bi;n(t)

� � t �Bi;n(t)
Bj;n(�) �Bj;n(t)

� � t ;

we can easily factor out (��t) from (5.114) and (5.115) to exclude the trivial
solutions � = t.

Self-intersections of a rational polynomial parametric surface are de�ned
by �nding pairs of distinct parameter values (�; t) 6= (u; v) such that

r(�; t) = r(u; v) : (5.117)

Barnhill et al. [19] compute surface self-intersections by their procedural sur-
face/surface intersection algorithm. Also Lasser [223] introduces a method to
compute all the self-intersection curves of a B�ezier surface patch by subdi-
viding the B�ezier control net instead of the surface patch itself. Finally the
self-intersection curves are approximated by the polygons resulting from the
plane/plane intersections of the re�ned B�ezier control net. Andersson et al.
[6] provide necessary and su�cient conditions to preclude self-intersections
of composite B�ezier curves and patches.

Unlike the curve self-intersection case, it is ine�cient to solve surface self-
intersection problems with the IPP solver (see Chap. 4). The key di�culty
arises in the removal of the trivial solutions. We cannot divide out factors ��u
and t�v from the system directly, since terms x(�; t)�x(u; v), y(�; t)�y(u; v)
and z(�; t)� z(u; v) do not necessarily exactly involve the factors � � u and
t � v. A technique to remove such trivial solutions is given in [252] and in
Sect. 11.3.5.

Self-intersections of o�sets of curves and surfaces, which are more di�cult
to compute, are discussed fully in Chap. 11.

5.11 Summary 161

5.11 Summary

Some important outstanding issues in the area of intersection problems are
summarized below [299]. While solving nonlinear polynomial systems, as a
preliminary step in computing characteristic points of surface intersections, it
is frequently necessary to deal with solution sets that are not zero-dimensional
(e.g. the solution sets are one-dimensional, two-dimensional etc.). Most of
the methods experience serious numerical and e�ciency di�culties in those
cases. Methods to deal e�ectively with these problems need to be developed,
including methods to identify and, if possible, parameterize these higher-
dimensional solution sets.

Extension of current intersection methods applied on rational B-spline
surfaces, to more general and complex surfaces requires further study. Such
surfaces include o�set, generalized cylinder (pipe or canal surfaces in partic-
ular), blending, and medial surfaces and surfaces arising from the solution of
partial di�erential equations or via recursion techniques (subdivision surfaces
[353]). Intersections of such surfaces with the basic low order algebraic and
rational B-spline surfaces, commonly used in CAD need to be explored. How-
ever, a basic element of a solution of many of these problems is the auxiliary
variable method described in [169, 252, 299], where the problem is reduced
to a higher dimension nonlinear polynomial system. In some cases, recent
research has indicated that some special instances of these general surfaces
can be exactly expressed as rational polynomial surfaces [323, 240, 255, 249]
of higher degree and therefore these problems are reducible at least in princi-
ple to the problems addressed in this chapter. Further research is needed to
implement this idea in a practical setting and examine the relative e�ciency
of competing approaches.

Investigating the e�ects of oating point arithmetic on the implementa-
tion of intersection algorithms has been an important area for basic research
during the last decade. Ways to enhance the precision of intersection com-
putation, to monitor numerical error contamination and alternate means of
performing arithmetic, not relying on imprecise oating point computation
alone, have been explored in some detail. Researchers in surface intersection
problems during the last decade have already obtained a good understand-
ing of robustness problems when employing oating point arithmetic and of
methods to mitigate these problems based on normalization of the system
[133] and rounded interval arithmetic [178]. However, these methods are not
a panacea since they cannot resolve e�ectively non-zero-dimensional solution
sets of nonlinear systems or achieve very high precision in reasonable compu-
tation times. A related active problem area has been the recti�cation of solid
models expressed in the Boundary Representation form, which attempts to
resolve intersection inconsistencies in such models and create topologically
and geometrically consistent models [302, 359, 387, 388].

As a result of these de�ciencies, recent research tends to focus on exact
methods involving rational arithmetic [195, 355, 357]. Much research remains

162 5. Intersection Problems

to be done in bringing such methods to the CAD practice, generalizing the
arithmetic to go beyond rational and algebraic numbers (eg. involving tran-
scendental numbers of trigonometric form), and to explore more e�cient
alternatives that are generally applicable in low and high degree problems
alike. Finally, a general and comprehensive comparison and mapping of the
e�ciency properties of all available methods for solving nonlinear systems
robustly would be valuable as a guide for future research.

6. Di�erential Geometry of Intersection Curves

6.1 Introduction

In Chap. 5 we have studied the classi�cation, detection, and solution of in-
tersection problems. In this chapter we focus on the di�erential geometry
properties of intersection curves of two surfaces. To compute the intersection
curves more accurately and e�ciently, higher order approximation of inter-
section curves may be needed. This requires the computation of not only
the tangents of the intersection curves, but also curvature vectors and higher
order derivative vectors, i.e. higher order di�erential properties of the curves.

The two types of surfaces commonly used in geometric modeling sys-
tems are parametric and implicit surfaces that lead to three types of surface-
surface intersection problems: parametric-parametric, implicit-implicit and
parametric-implicit. While di�erential geometry of a parametric curve can be
found in textbooks such as in [411, 443, 76], there is little literature on di�er-
ential geometry of intersection curves. Faux and Pratt [116] give a formula for
the curvature of an intersection curve of two parametric surfaces. Willmore
[443] describes how to obtain the unit tangent t, the unit principal normal n,
and the unit binormal b, as well as the curvature � and the torsion � of the
intersection curve of two implicit surfaces. Hartmann [154] provides formulae
for computing the curvature � of intersection curves for all three types of
intersection problems. They all assume transversal intersections where the
tangential direction at an intersection point can be computed simply by the
cross product of the normal vectors of the both surfaces.

However, when the two normals are parallel to each other, the tangent
direction cannot be determined by this method. We call such intersection
points tangential intersection points. Kruppa describes in his book [212] that
the tangential direction of the intersection curve at a tangential intersection
point corresponds to the direction from the intersection point towards the in-
tersection of the Dupin's indicatrices of the two surfaces. Cheng [53], Markot
and Magedson [263, 262] give solutions for parametric surfaces at isolated
tangential intersection points, based on the analysis of the plane vector �eld
function de�ned by the gradient of an oriented distance function of one sur-
face from the other. The plane �eld function will vanish at the tangential
intersection point, and higher-order expansion of the function is required at
such points to determine the marching direction for the intersection curve.

164 6. Di�erential Geometry of Intersection Curves

Kriezis [207] and Kriezis et al. [209] determine the marching direction for
tangential intersection curves based on the fact that the determinant of the
Hessian matrix of the oriented distance function is zero. Luo et al. [241]
present a method to trace such tangential intersection curves for parametric-
parametric surfaces employing the marching method. The marching direction
is obtained by solving an underdetermined system based on the equality of
the di�erentiation of the two normal vectors and the projection of the Tay-
lor expansion of the two surfaces onto the normal vector at the intersection
point. Ye and Maekawa [457] developed algorithms to compute unit tan-
gent vectors, curvature vectors, binormal vectors, curvatures, torsions, and
algorithms to evaluate the higher order derivatives for transversal as well as
tangential intersections for all three types of intersection problems.

6.2 More di�erential geometry of curves

Let x = x(s), y = y(s), z = z(s) or in vector form r = c(s) be the intersection
curve with arc length parametrization. Then from (2.5) and (2.20), we have

c0(s) = t ; (6.1)

c00(s) = k = �n ; (6.2)

where t is the unit tangent vector and k is the curvature vector, which is the
rate of change of the tangent vector. From (6.2) it follows that

�2 = k � k = c00 � c00 : (6.3)

Now let us evaluate the third derivative c000(s) by di�erentiating (6.2)

c000(s) = �0n+ �n0 ; (6.4)

where we can replace n0 by the second equation of the Frenet-Serret formulae
(2.56) yielding

c000(s) = ��2t+ �0n+ ��b : (6.5)

Since the vectors t, n, b are a right-handed orthonormal triplet, the torsion
can be obtained from (6.5) as

� =
b � c000
�

; (6.6)

provided that the curvature does not vanish.
Classical di�erential geometry textbooks [411, 205, 443, 76] do not cover

the case � = 0, which is addressed below following Ye and Maekawa [457].
When � = 0 (6.2) does not de�ne the unit principal normal vector. To obtain
the principal normal vector at points where � = 0, higher order derivatives

6.2 More di�erential geometry of curves 165

of the curve are involved. If � � 0, then the curve is a straight line, and the
Frenet frame of the curve is not de�ned. We assume here that � = 0 occurs
only at isolated points. In such case, (2.56) is valid. If � = 0 and �0 6= 0, the
third order derivative (6.4) reduces to

c000(s) = �0n ; (6.7)

which de�nes the unit principal normal vector where �0 is obtained from
(�0)2 = c000 � c000. If � = �0 = 0 and �00 6= 0, we need to evaluate the fourth
order derivative by di�erentiating (6.4) yielding

c(4)(s) = �00n ; (6.8)

where (�00)2 = c(4) �c(4). In general, if � = �0 = � � � = �(j�1) = 0 and �(j) 6= 0,
then

c(j+2)(s) = �(j)n ; (6.9)

where (�(j))2 = c(j+2) � c(j+2).
The evaluation of torsion when the curvature vanishes can be performed

as follows. If � = 0 and �0 6= 0, we need to evaluate the fourth order derivative
of c(s), i.e. c(4)(s). This can be obtained by di�erentiating (6.5) and replacing
t0, n0, b0 using the Frenet-Serret formulae which results in:

c(4)(s) = �3��0t+ (�00 � ��2 � �3)n+ (2�0� + �� 0)b : (6.10)

In this case (6.10) further reduces to

c(4)(s) = �00n+ 2�0�b ; (6.11)

thus

� =
b � c(4)
2�0

: (6.12)

Similarly we have

c(5)(s) = (�4��00 � 3(�0)2 + �4 + �2�2)t+ (�000 � 6�2�0 � 3�0�2 � 3��� 0)n

+ (3�00� + 3�0� 0 � �3� � ��3 + �� 00)b : (6.13)

and hence, if � = �0 = 0 and �00 6= 0, then � becomes

� =
b � c(5)
3�00

: (6.14)

In general, if � = �0 = � � � = �(j�1) = 0 and �(j) 6= 0, then [457]

� =
b � c(j+3)

(j + 1)�(j)
: (6.15)

166 6. Di�erential Geometry of Intersection Curves

Let x = xA(uA; vA), y = yA(uA; vA), z = zA(uA; vA) and x = xB(uB; vB),
y = yB(uB ; vB), z = zB(uB ; vB) or in vector form, r = rA(uA; vA) and
r = rB(uB ; vB), be the two parametric surfaces. Also, let us denote the two
implicit surfaces as fA(x; y; z) = 0 and fB(x; y; z) = 0. We assume that these
surfaces are all regular. In other words

rAuA � rAvA 6= 0; rBuB � rBvB 6= 0; rfA 6= 0; rfB 6= 0 : (6.16)

The unit normal vector of a parametric surface and an implicit surface are
given by (3.3) and (3.9).

So far, we have studied the intersection curve independent of the two
intersecting surfaces. However, the intersecting curve can also be viewed as a
curve on the two intersecting surfaces. A curve u = u(s), v = v(s) in the uv-
plane de�nes a curve r = c(s) = r(u(s); v(s)) on a parametric surface r(u; v),
while a curve x = x(s); y = y(s); z = z(s) with constraint f(x(s); y(s); z(s)) =
0 de�nes a curve on an implicit surface f(x; y; z) = 0.

We can easily derive the �rst three derivatives of the intersection curve
c0(s), c00(s), c000(s) as a curve on a parametric surface using the chain rule:

c0(s) = ruu
0 + rvv

0 ; (6.17)

c00(s) = ruu(u
0)2 + 2ruvu

0v0 + rvv(v
0)2 + ruu

00 + rvv
00 ; (6.18)

c000(s) = ruuu(u
0)3 + 3ruuv(u

0)2v0 + 3ruvvu
0(v0)2 + rvvv(v

0)3 (6.19)

+3(ruuu
0u00 + ruv(u

00v0 + u0v00) + rvvv
0v00) + ruu

000 + rvv
000 :

Similarly we can evaluate df
ds ,

d2f
ds2 and d3f

ds3 as follows:

df

ds
= fxx

0 + fyy
0 + fzz

0 = 0 ; (6.20)

d2f

ds2
= fxx(x

0)2 + fyy(y
0)2 + fzz(z

0)2 + 2(fxyx
0y0 + fyzy

0z0 + fxzx
0z0) (6.21)

+fxx
00 + fyy

00 + fzz
00 = 0 ;

d3f

ds3
= fxxx(x

0)3 + fyyy(y
0)3 + fzzz(z

0)3 + 3(fxxy(x
0)2y0 + fxxz(x

0)2z0 (6.22)

+fxyyx
0(y0)2 + fyyz(y

0)2z0 + fxzzx
0(z0)2 + fyzzy

0(z0)2 + 2fxyzx
0y0z0)

+3(fxxx
0x00 + fyyy

0y00 + fzzz
0z00 + fxy(x

00y0 + x0y00)

+fyz(y
00z0 + y0z00) + fxz(x

00z0 + x0z00)) + fxx
000 + fyy

000 + fzz
000 = 0 :

6.3 Transversal intersection curve

6.3.1 Tangential direction

The tangent vector of the transversal intersection curve c(s) lies on the tan-
gent planes of both surfaces. Therefore it can be obtained as the cross product

6.3 Transversal intersection curve 167

of the unit surface normal vectors of the two surfaces at P as illustrated in
Fig. 6.1:

t =
NA �NB

jNA �NB j ; (6.23)

where NA and NB are the unit surface normal vectors of the two surfaces
which are given either by (3.3) or by (3.9) according to the type of two
intersecting surfaces. When the two normals are parallel to each other, the
tangent direction cannot be determined by (6.23). This happens when the
two surfaces intersect tangentially and the tangent direction must be treated
in a di�erent way. We will investigate the tangential intersection case in Sect.
6.4.

t

NB

B

A

k
κBnNB

κAnNA
NA

c(s)θ
P

Fig. 6.1. Transversal intersection of two surfaces (adapted from [457])

6.3.2 Curvature and curvature vector

The curvature vector of the intersection curve at P , being perpendicular to
t, must lie in the normal plane spanned by NA andNB . Thus we can express
it as

k = �NA + �NB ; (6.24)

where � and � are the coe�cients that we need to determine. The normal
curvature at P in direction t is the projection of the curvature vector k onto
the unit surface normal vector N at P given by

168 6. Di�erential Geometry of Intersection Curves

�n = k �N : (6.25)

By projecting (6.24) onto the normals of both surfaces (see Fig. 6.1) we have

�An = �+ � cos � ;

�Bn = � cos � + � ; (6.26)

where � is the angle between NA and NB and is evaluated by

cos � =NA �NB : (6.27)

Solving the coe�cients � and � from linear system (6.26), and substituting
into (6.24) yields

k =
�An � �Bn cos�

sin2�
NA +

�Bn � �An cos�
sin2�

NB : (6.28)

It follows that if we can evaluate the two normal curvatures �An and �Bn at
P , we are able to obtain the curvature vector of the intersection curve at P
from (6.28). Note that (6.28) does not depend on the type of surfaces. Let
us �rst derive the normal curvature for a parametric surface. Recall that the
curvature vector of the intersection curve is also given by (6.18) considered
as a curve on the parametric surface. The normal curvature is obtained by
projecting (6.18) onto the unit surface normal

�n = L(u0)2 + 2Mu0v0 +N(v0)2 ; (6.29)

where L, M , N are the second fundamental form coe�cients (3.28).
We still need to evaluate u0, v0 to compute (6.29). Since we know the unit

tangent vector of the intersection curve from (6.23), we can �nd u0 and v0 by
taking the dot product on both hand sides of (6.17) with ru and rv , which
leads to a linear system

Eu0 + Fv0 = ru � t ; (6.30)

Fu0 +Gv0 = rv � t ; (6.31)

where E, F , G are the �rst fundamental form coe�cients given in (3.12).
Thus,

u0 =
(ru � t)G� (rv � t)F

EG� F 2
; v0 =

(rv � t)E � (ru � t)F
EG� F 2

; (6.32)

where EG � F 2 6= 0, since we are assuming regular surfaces (see (6.16)).
Similarly we can compute the normal curvature of the implicit surface by
using (6.21). The projection of curvature vector c00 = (x00; y00; z00) onto the
unit normal vector rf

jrf j of the surface, from (6.21), is given by

6.3 Transversal intersection curve 169

�n =
fxx

00 + fyy
00 + fzz

00q
f2x + f2y + f2z

(6.33)

= �fxx(x
0)2 + fyy(y

0)2 + fzz(z
0)2 + 2(fxyx

0y0 + fyzy
0z0 + fxzx

0z0)q
f2x + f2y + f2z

;

where x0, y0, z0 are the three components of t given by (6.23).
Consequently, the curvature of the intersection curve c at P can be cal-

culated using (6.3), (6.27) and (6.28) as follows:

� =
p
k � k =

1

j sin �j
q
(�An)

2 + (�Bn)
2 � 2�An�

B
n cos � : (6.34)

6.3.3 Torsion and third order derivative vector

Since NA and NB lie on the normal plane, the terms �0n+ ��b in (6.5) can
be replaced by NA + �NB . Thus

c000(s) = ��2t+ NA + �NB : (6.35)

Now, if we project c000(s) onto the unit surface normal vector N at P and
denote by �n, we have

�An = + � cos � ;

�Bn = cos � + � : (6.36)

Solving the linear system for and �, and substituting them into (6.35) yields

c000 = ��2t+ �An � �Bn cos �

sin2 �
NA +

�Bn � �An cos �

sin2 �
NB : (6.37)

Similar to the curvature vector case in Sect. 6.3.2, we need to provide
�An and �Bn to evaluate c000. For a parametric surface, �n can be obtained by
projecting c000, which is the third order derivative of the intersection curve
as a curve on a parametric surface, i.e. (6.19), onto the unit surface normal
vector N, resulting in

�n = c000 �N = 3[Lu0u00 +M(u00v0 + u0v00) +Nv0v00] + III ; (6.38)

where

III = ruuu �N(u0)3 + 3ruuv �N(u0)2v0 + 3ruvv �Nu0(v0)2 + rvvv �N(v0)3 ;

(6.39)

and u00 and v00 in (6.38) are evaluated by taking the dot product on the both
sides of (6.18) with ru and rv . Noting that c00 = k leads to a linear system

170 6. Di�erential Geometry of Intersection Curves

Eu00 + Fv00 = k � ru � Eu
2
(u0)2 �Evu0v0 �

�
Fv � Gu

2

�
(v0)2 ; (6.40)

Fu00 +Gv00 = k � rv �
�
Fu � Ev

2

�
(u0)2 �Guu

0v0 � Gv

2
(v0)2 ; (6.41)

which can be solved for u00 and v00.
For an implicit surface, the projection of c000 = (x000; y000; z000) onto the unit

normal vector of the surface rf
jrf j can be obtained from (6.22) as

�n =
fxx

000 + fyy
000 + fzz

000q
f2x + f2y + f2z

= � F1 + F2 + F3q
f2x + f2y + f2z

; (6.42)

where

F1 = fxxx(x
0)3 + fyyy(y

0)3 + fzzz(z
0)3 ; (6.43)

F2 = 3(fxxy(x
0)2y0 + fxxz(x

0)2z0 + fxyyx
0(y0)2 + fyyz(y

0)2z0 + fxzzx
0(z0)2

+fyzzy
0(z0)2 + 2fxyzx

0y0z0) ; (6.44)

F3 = 3(fxxx
0x00 + fyyy

0y00 + fzzz
0z00 + fxy(x

00y0 + x0y00) + fyz(y
00z0 + y0z00)

+fxz(x
00z0 + x0z00)) ; (6.45)

and (x00; y00; z00) are given by (6.28).
Finally, the torsion can be obtained from (6.6) and (6.37) as follows

� =
1

� sin2 �
f[�An � �Bn cos �](b �NA) + [�Bn � �An cos �](b �NB)g ; (6.46)

where the binormal vector and curvature are evaluated by (2.40) and (6.34).

6.3.4 Higher order derivative vector

The algorithm introduced in Sect. 6.3.3 to compute the third order derivative
vector of the intersection curve can be generalized to compute the higher
order derivative vectors c(m) (m � 4), under the assumption that we have
evaluated c(j) for 1 � j � m � 1, u(j�1) and v(j�1) for 2 � j � m � 1. The
algorithm is as follows:

1. Evaluate the m-th (m � 4) order derivative vector c(m) by successively
di�erentiating (6.5). At each di�erentiation step replace t0, n0, and b0 by
�n, ��t + �b, and ��n using the Frenet-Serret formulae (2.56), which
leads to the equation

c(m) = ctt+ cnn+ cbb ; (6.47)

where ct, cb and cn are the coe�cients that depend exclusively on � and
� and their derivatives (see (6.10), (6.13) for reference). As we will see in

6.3 Transversal intersection curve 171

step 2, it is not necessary to evaluate cn and cb. The coe�cient ct consists
of �, � and their derivatives of order up to m � 3 (m � 4) and m � 5
(m � 6), respectively, which have already been evaluated in the earlier
stages of the computation. For example �0, � 0, �00, � 00 can be obtained by
taking the dot product between the curve derivative vectors with n or b,
thus from (6.5), (6.10) and (6.13):

�0 = c000 � n ; (6.48)

� 0 = (c(4) � b� 2�0�)=� ; (6.49)

�00 = c(4) � n+ �3 + ��2 ; (6.50)

� 00 = (c(5) � b+ �3� + ��3 � 3�00� � 3�0� 0)=� : (6.51)

2. Replace the terms cnn+ cbb in (6.47) by NA+ �NB since they both lie
on the normal plane:

c(m) = ctt+ NA + �NB : (6.52)

3. Evaluate �n by projecting c(m), which is the m-th derivative of the in-
tersection curve evaluated as a curve on a surface, onto the unit surface
normal.
� Parametric surface: Di�erentiate (6.19) with respect to the arc length
using the chain rule to evaluate c(m) as a curve on the parametric
surface. To compute c(m) we also need to obtain u(m�1) and v(m�1),
which can be done by taking the dot product on the both sides of
c(m�1) with ru and rv and solving the linear system. Project c(m)

onto two surface normal to obtain �n.
� Implicit surface: Di�erentiate (6.22) with respect to the arc length
successively. The resulting expression always involves the terms of the
form fxx

(m) + fyy
(m) + fzz

(m), which is the projection of c(m) onto
the surface normal rf . Thus, by moving the rest of the terms to the
right hand side we have

�n =
fxx

(m) + fyy
(m) + fzz

(m)q
f2x + f2y + f2z

(6.53)

= �
@mf
@xm (x

0)m + @mf
@ym (y0)m + @mf

@zm (z0)m + � � �q
f2x + f2y + f2z

:

The numerator involves terms x(j), y(j), z(j), for 1 � j � m � 1 (not
explicitly expressed here), are obtained by the components of c(j).

4. Project (6.52) onto both the unit surface normal vectors yielding

�An = + � cos �; �Bn = cos � + � ; (6.54)

where cos � = NA �NB .

172 6. Di�erential Geometry of Intersection Curves

5. Substitute �An and �Bn , obtained from Step 3, into (6.54), and solve the
linear system for and � and substitute into (6.52), resulting in

c(m) = ctt+
�An � �Bn cos �

sin2 �
NA +

�Bn � �An cos �

sin2 �
NB : (6.55)

6.4 Intersection curve at tangential intersection points

Now, let us assume that the two surfaces A and B intersect tangentially at
a point P on the intersection curve c(s), i.e. NA k NB at P . By orienting
the surfaces appropriately we can assume that NA = NB �N (see Fig. 6.2).
In this case, (6.23) is invalid. Therefore, we have to �nd new methods to
compute the di�erential geometry properties of c(s). In the following Sect.
6.4.1 we also classify these tangential contact points P in several categories.

A

B

c(s)

N=NA=NB

t

k

κnN

P

Fig. 6.2. Tangential intersection of two surfaces (adapted from [457])

6.4 Intersection curve at tangential intersection points 173

6.4.1 Tangential direction

The unit tangential vector t of c(s) at P must lie on the common tangent
plane of A and B. Therefore, t can be represented as a linear combination of
rAuA and rAvA , as well as r

B
uB and rBvB , as in (6.17), i.e.

t = rAuAu
0
A + rAvAv

0
A = rBuBu

0
B + rBvBv

0
B : (6.56)

Equation (6.56) consists of two linear equations with four unknowns (u0A; v
0
A;

u0B , v
0
B), since the tangent vector is constrained in the tangent plane and

does not have a normal component. Since NA = NB =N at P , we �nd that
�An = �Bn from (6.25). Thus, from (6.29) we have

LA(u0A)
2 + 2MAu0Av

0
A +NA(v0A)

2 = LB(u0B)
2 + 2MBu0Bv

0
B +NB(v0B)

2 :
(6.57)

This equation is a quadratic equation in (u0A; v
0
A; u

0
B ; v

0
B). Thus together with

the unit length constraint of the tangent vector, (6.56) and (6.57) form a
system of four nonlinear equations in four unknowns. This nonlinear system
can be solved by representing u0B and v0B in terms of linear combinations of u0A
and v0A from (6.56), and then substituting the results into (6.57). By taking
the cross product of both sides of (6.56) with rBuB and rBvB , and projecting
the resulting equations onto the common surface normal vector N at P , u0B
and v0B can be represented as the following linear combinations of u0A and v0A

u0B = a11u
0
A + a12v

0
A ; (6.58)

v0B = a21u
0
A + a22v

0
A ; (6.59)

where

a11 =
(rAuA � rBvB) �N
(rBuB � rBvB) �N

=
det(rAuA ; r

B
vB ;N)p

EBGB � (FB)2
; (6.60)

a12 =
(rAvA � rBvB) �N
(rBuB � rBvB) �N

=
det(rAvA ; r

B
vB ;N)p

EBGB � (FB)2
; (6.61)

a21 =
(rBuB � rAuA) �N
(rBuB � rBvB) �N

=
det(rBuB ; r

A
uA ;N)p

EBGB � (FB)2
; (6.62)

a22 =
(rBuB � rAvA) �N
(rBuB � rBvB) �N

=
det(rBuB ; r

A
vA ;N)p

EBGB � (FB)2
: (6.63)

Substituting (6.58) and (6.59) into (6.57), we have

b11(u
0
A)

2 + 2b12(u
0
A)(v

0
A) + b22(v

0
A)

2 = 0 ; (6.64)

where

b11 = a211L
B + 2a11a21M

B + a221N
B � LA ; (6.65)

b12 = a11a12L
B + (a11a22 + a21a12)M

B + a21a22N
B �MA ;

b22 = a212L
B + 2a12a22M

B + a222N
B �NA :

174 6. Di�erential Geometry of Intersection Curves

If we denote ! =
u0A
v0
A
when b11 6= 0 or � =

v0A
u0
A
when b11 = 0 and b22 6= 0, and

solve (6.64) for ! or �, then t can be computed as

t =
!rAuA + rAvA
j!rAuA + rAvA j

; (6.66)

or

t =
rAuA + �rAvA
jrAuA + �rAvA j

: (6.67)

There are four distinct cases to the solution of (6.64) depending upon the
discriminant b212 � b11b22:
1. Isolated tangential contact point: If b212 � b11b22 < 0 then (6.64) does not

have any real solution. Thus, P is an isolated contact point of A and B.
2. Tangential intersection curve: If b212 � b11b22 = 0 and b211 + b212 + b222 6= 0

then (6.64) has a double root and t is unique. Thus, A and B intersect
at P and at its neighborhood.

3. Branch Point: If b212 � b11b22 > 0 then (6.64) has distinct roots. Thus,
P is a branch point of the intersection curve c(s), i.e. there is another
intersection branch crossing c(s) at P .

4. Higher order contact point: If b11 = b12 = b22 = 0 then (6.64) vanishes
for any values of u0A and v0A. Thus, A and B has a contact of at least
second order (i.e., curvature continuous) at P . In related work by Pegna
and Wolter [304], they developed mathematical criteria for curvature
continuity between two surfaces. Those criteria were later generalized to
arbitrary higher order continuity (contact) in [161].

When P is a at point of one of the surfaces, say rB , then LB, MB , NB all
vanish, however we can still evaluate (6.64). When P is a at point of both
surfaces, then the two surfaces have a contact of order at least 2 at P which
is addressed under case 4.

There is a geometric interpretation to the tangent direction t at P . Re-
call that the Dupin's indicatrix of a surface at point P is a conic section (see
Sect. 3.6). Since A and B intersect tangentially at P , they have the same
tangent-plane at P . Equation (6.57) indicates that along t, the Dupin's in-
dicatrices of A and B at P intersect. Conversely, t is the vector(s) on the
common tangent-plane at P along which the Dupin's indicatrices of A and
B intersect. The two Dupin's indicatrices may not intersect at all (isolated
tangential contact point), or intersect at two points tangentially, or intersect
transversally at four points (branch point), or overlap (higher order contact
point). In the case of overlap, they must be the same at P , and A and B are at
least curvature continuous at P . Figure 6.3 shows the possible combinations
of Dupin's indicatrices of two surfaces for four distinct cases. Although the
coordinate system of the two indicatrices are chosen to be the same for sim-
plicity, in general they may have di�erent orientations. At hyperbolic points
the Dupin's indicatrix is a set of conjugate hyperbolas depending on which

6.4 Intersection curve at tangential intersection points 175

side of the tangent plane the normal section is locally lying. However, for sim-
plicity we have only illustrated the cases for one of the conjugate hyperbolas.
The Dupin's indicatrices of case 2 upper right in Fig. 6.3 are parallel to each
other and do not intersect. This is the case when two surfaces A and B inter-
sect tangentially at a parabolic point P where they have the same principal
directions. We assume without loss of generality that u� and v� parameter
curves are in the directions of the principal directions, where u = constant
being the principal direction with zero curvature. With these assumptions,
we have MA =MB = NA = NB = 0 and a12 = a21 = 0 thus (6.64) reduces
to

(a211L
B � LA)(u0A)2 = 0 ; (6.68)

Therefore it has a double root with unique direction (uA = constant) for t,
provided that a211L

B �LA 6= 0. When a211L
B �LA = 0, the two surfaces are

at least curvature continuous at P , and their Dupin's indicatrices overlap.
Implicit-implicit and parametric-implicit intersection cases can be han-

dled in a similar way. For the implicit-implicit intersection case we �rst equate
the normal curvatures of the two implicit surfacesA andB using (6.34), where
the unknowns are the unit tangent vector (x0; y0; z0). We can eliminate one
of the component, say z0, using (6.20) yielding the quadratic equation in x0

and y0 similar to (6.64).
For the parametric-implicit intersection case we equate the normal cur-

vatures (6.29) and (6.34) of the parametric and implicit surfaces where the
unknowns are x0, y0, z0, u0 and v0. We can replace x0, y0, z0 in terms of u0

and v0 using (6.17), which leads us to a quadratic equation similar to (6.64).
Upon solving the quadratic equation and applying the unit length constraint,
we obtain the unit tangent vector.

There are also four distinct cases for implicit-implicit and parametric-
implicit intersections, depending on the discriminant of the quadratic equa-
tion.

6.4.2 Curvature and curvature vector

The curvature vector k (see (6.2)) of the intersection curve c(s) at P can be
expressed as in (6.18) as follows:

c00(s) = rAuAuA(u
0
A)

2 + 2rAuAvAu
0
Av

0
A + rAvAvA(v

0
A)

2 + rAuAu
00
A + rAvAv

00
A

= rBuBuB (u
0
B)

2 + 2rBuBvBu
0
Bv

0
B + rBvBvB (v

0
B)

2 + rBuBu
00
B + rBvBv

00
B :

(6.69)

To obtain the curvature vector k=c00(s), we need to determine the coe�cients
(u00A; v

00
A) and (u

00
B ; v

00
B). Equation (6.69) introduces two constraints on the four

unknowns, since the normal components of both sides of (6.69) are the same
(see (6.57)). This can be seen clearly if we rewrite (6.69) as follows

176 6. Di�erential Geometry of Intersection Curves

33333
33333
33333

333333
333333
333333
333333
333333
333333

33333
33333
33333
33333
33333
33333

Case 1

Case 2

Case 4

Case 3

Fig. 6.3. Dupin's indicatrices of two tangentially intersecting surfaces (adapted
from [457])

rAuAu
00
A + rAvAv

00
A = rBuBu

00
B + rBvBv

00
B +� ; (6.70)

where

� = rBuBuB (u
0
B)

2 + 2rBuBvBu
0
Bv

0
B + rBvBvB (v

0
B)

2 � rAuAuA(u0A)2 (6.71)

6.4 Intersection curve at tangential intersection points 177

�2rAuAvAu0Av0A � rAvAvA(v0A)2 :

From (6.70), (u00B ; v
00
B) can be expressed by (u00A; v

00
A) as follows:

u00B = a11u
00
A + a12v

00
A + a13 ; (6.72)

v00B = a21u
00
A + a22v

00
A + a23 ; (6.73)

where a11; a12; a21 and a22 are coe�cients de�ned in (6.60) through (6.63),
a13 and a23 are coe�cients de�ned as follows:

a13 =
(�� rBvB) �N
(rBuB � rBvB) �N

=
det(�; rBvB ;N)p
EBGB � (FB)2

; (6.74)

a23 =
(rBuB ��) �N
(rBuB � rBvB) �N

=
det(rBuB ;�;N)p
EBGB � (FB)2

: (6.75)

We still need two more equations to solve for (u00A; v
00
A). One additional equa-

tion can be obtained by di�erentiating c(s) from c(s) = rA(uA(s); vA(s)) =
rB(uB(s); vB(s)) at P three times (see (6.19)) and projecting the resulting
vector equation onto the normal vector N, i.e. �An = �Bn (see (6.38), (6.39)):

3[LAu0Au
00
A +MA(u00Av

0
A + u0Av

00
A) +NAv0Av

00
A] + IIIA (6.76)

= 3[LBu0Bu
00
B +MB(u00Bv

0
B + u0Bv

00
B) +NBv0Bv

00
B] + IIIB :

Another additional equation can be obtained from the fact that the curvature
vector k is perpendicular to the tangent vector t, i.e.

c00 �t = (ru �t)u00A+(rv �t)v00A+(ruu �t)(u0A)2+2(ruv �t)u0Av0A+(rvv �t)(v0A)2 = 0 :
(6.77)

Upon substituting (6.72) and (6.73) into (6.76) we can solve the linear system
(6.76) and (6.77) for u00A and v00A, and hence, the curvature vector k can be
computed from (6.69), and the curvature � follows immediately from (6.34).

The curvature vector of the implicit-implicit intersection case, as well as
the parametric-implicit case, can be obtained by a similar procedure. We need
to evaluate (x00; y00; z00) for the implicit-implicit case by solving a linear system
of three equations. The �rst linear equation in (x00; y00; z00) is derived using
(6.21). The second equation is given by equating the projection of the third
derivative onto the unit surface normal vector, i.e. (6.42). Finally, the third
equation is obtained from the fact that the curvature vector is perpendicular
to the tangent vector, i.e. x0x00 + y0y00 + z0z00 = 0.

The parametric-implicit case can be obtained by solving a linear system of
two equations in u00 and v00. The �rst linear equation in (u00; v00) is derived by
equating the projection of the third derivative vector of c onto the unit normal
vector, i.e. (6.38) and (6.42). The �rst and second derivatives (x0; y0; z0) and
(x00; y00; z00) appear in (6.43) - (6.45) are replaced in terms of u0, v0, u00 and
v00 using (6.17) and (6.18). The second equation is given by (6.77).

178 6. Di�erential Geometry of Intersection Curves

6.4.3 Third and higher order derivative vector

The third and higher order derivative vector m � 3 can be obtained in a
manner similar to the curvature vector case. We assume that c(j) for 1 � j �
m � 1, and u(j�1) and v(j�1) for 2 � j � m� 1 are already evaluated. The
algorithm is given as follows:

Parametric-parametric.

1. Di�erentiate c(s) = rA(uA(s); vA(s)) = rB(uB(s); vB(s)) m times, from

which we can express u
(m)
B and v

(m)
B as linear combinations of u

(m)
A and

v
(m)
A (see (6.72), (6.73) for m = 2).

2. Di�erentiate c(s) = rA(uA(s); vA(s)) = rB(uB(s); vB(s)) m + 1 times
and project the resulting vectors onto the normal vector N, from which

we obtain a linear equation in u
(m)
A , v

(m)
A , u

(m)
B , v

(m)
B (see (6.76) for m =

2). Substitute u
(m)
B and v

(m)
B , which are obtained from Step 1, into the

resulting equation.
3. Another additional linear equation is obtained from c(m) � t = ct, where
c(m) is the m-th order derivative of SA(uA(s); vA(s)) and ct is de�ned
in (6.47) and depends exclusively on � and � and their derivatives (see
(6.76) for m = 2).

4. Solve the linear system for (u
(m)
A ; v

(m)
A) and substitute them into the

expression of c(m)(s) in Step 1.

Implicit-implicit.

1. Total di�erentiate f(x; y; z) = 0 m times with respect to s, which will
provide a linear equation in (x(m); y(m); z(m)).

2. Equate the projections of the (m+1)-th order derivative (x(m+1), y(m+1),
z(m+1)) of the two implicit surfaces onto the unit normal vector (see
(6.53)) to obtain a linear equation in (x(m); y(m); z(m)).

3. The third linear equation in (x(m); y(m); z(m)) can be obtained from
x0x(m)+ y0y(m)+ z0z(m) = ct, where ct, de�ned in (6.47), depends exclu-
sively on � and � and their derivatives.

4. Solve the system of three linear equations for (x(m), y(m), z(m)).

Parametric-implicit.

1. Equate the projection of the (m+1)-th order derivative vector of c with
respect to the arc length of the parametric and implicit surfaces onto
the unit normal vector, i.e. r(m+1)(u(s); v(s)) �N, and (6.53), to form a
linear equation in u(m) and v(m), where (x(j); y(j); z(j)), 1 � j � m, are
replaced by the components of r(j)(u(s); v(s)).

2. The second linear equation in u(m) and v(m) is obtained from c(m) �t = ct,
where c(m) = r(m)(u(s); v(s)) and ct, which depends exlusively on � and
� and their derivatives, is de�ned in (6.47).

3. Solve the linear system for (u(m); v(m)) and substitute them into r(m)(u(s),
v(s)).

6.5 Examples 179

6.5 Examples

For illustrative purposes we present two examples, one from transversal in-
tersection of parametric-implicit surfaces and the other from tangential in-
tersection of implicit-implicit surfaces.

6.5.1 Transversal intersection of parametric-implicit surfaces

In this example, the parametric surface A is a hyperbolic paraboloid given
by

r = r(u; v) = (u; v; uv)T ; 0:5 � u � 2 and 0 � v � 2 ; (6.78)

and the implicit surface B is a cone given by

f(x; y; z) = xz � y2 = 0 :

Figure 6.4 shows the two intersecting surfaces with two intersection curves,
one of which coincides with the x-axis. From (6.78) we have ru = (1; 0; v)T ,

z

8

6

4

2

0

y

2

1.5

1
0.5

0

x

2
1.8

1.6
1.4

1.2
1

0.8
0.6

Fig. 6.4. Transversal intersection of parametric-implicit surfaces (adapted from
[457])

rv = (0; 1; u)T , ruu = rvv = 0, ruv = (0; 0; 1)T and the partial derivatives of
order higher than two are all zero. The �rst and second fundamental form
coe�cients are readily given by E = 1+ v2, F = uv, G = 1+u2, L = N = 0,
M = 1p

u2+v2+1
.

Similarly we have fx = z, fy = �2y, fz = x, fxx = fxy = fyz = fzz = 0,
fyy = �2, fxz = 1 and the partial derivatives of order higher than two are
all zero.

180 6. Di�erential Geometry of Intersection Curves

The unit normal vectors of surfaces A and B and their dot product are
given by

NA =
(�v;�u; 1)Tp
u2 + v2 + 1

; NB =
rf
jrf j =

(z;�2y; x)Tp
x2 + 4y2 + z2

;

cos � =
x+ 2yu� zvp

u2 + v2 + 1
p
x2 + 4y2 + z2

:

Hence, the unit tangent vector of the intersection curve becomes

t = (x0; y0; z0)T =
(�xu+ 2y; xv + z; 2yv + zu)Tp

(�xu+ 2y)2 + (xv + z)2 + (2yv + zu)2
:

To evaluate the normal curvature of parametric surface A in the direction
of t, we start by computing (u0; v0) using (6.32) yielding

(u0; v0) =
(�xu+ 2y; xv + z)p

(�xu+ 2y)2 + (xv + z)2 + (2yv + zu)2
;

and hence

�An =
2(�xu+ 2y)(xv + z)p

u2 + v2 + 1[(�xu+ 2y)2 + (xv + z)2 + (2yv + zu)2]
:

The normal curvature of the implicit surface in the direction t can be obtained
from (6.34)

�Bn =
2(y0)2z � 2x0z0p
x2 + 4y2 + z2

:

By substitutingNA,NB, cos �, �An and �Bn into (6.28) we obtain the curvature
vector, and hence the curvature �.

The projection of the third order derivatives c000(s) onto the unit surface
normal vector can be computed using (6.38) and (6.42) for the parametric
and implicit surfaces, respectively, yielding

�An =
3(u0v00 + u00v0)p
u2 + v2 + 1

; �Bn =
�3(x0z00 + x00z0 � 2y0y00)p

x2 + 4y2 + z2
;

where (u00; v00) are obtained by solving the linear system (6.40) and (6.41)

u00 =
(k � ru � 2vu0v0)(1 + u2)� (k � rv � 2uu0v0)uv

u2 + v2 + 1
;

v00 =
(k � rv � 2uu0v0)(1 + v2)� (k � ru � 2vu0v0)uv

u2 + v2 + 1
:

Knowing �, t, NA, NB , cos �, �An , and �Bn , the third order derivative is
obtained from (6.37) and the torsion from (6.46).

6.5 Examples 181

6.5.2 Tangential intersection of implicit-implicit surfaces

In this example, the two implicit surfaces are ellipsoids given by

fA(x; y; z) =
x2

0:62
+

y2

0:82
+
z2

12
� 1 = 0 ;

fB(x; y; z) =
x2

0:452
+

y2

0:82
+

z2

1:252
� 1 = 0 :

The partial derivatives of the two implicit functions are readily computed as
fAx (x; y; z) =

x
0:18 , f

A
y = 3:125y, fAz = 2z, fAxx = 1

0:18 , f
A
yy = 3:125, fAzz = 2,

fAxy = fAyz = fAxz = 0, fBx (x; y; z) = x
0:10125 , f

B
y = 3:125y, fBz = 1:28z,

fBxx = 1
0:10125 , f

B
yy = 3:125, fBzz = 1:28, fBxy = fByz = fBxz = 0. The par-

tial derivatives higher than order two are all zero. It is clear that at the
intersection point P (0, 0.8, 0), rfA and rfB become parallel, thus P is a
tangential intersection point (see Fig. 11.17). Now let us compute the tangen-
tial direction and curvature vector of the intersection curves at the tangential
intersection point P . Since fAy 6= 0 at P , we can express y0 in terms of x0 and
z0

y0 = �f
A
x x

0 + fAz z
0

fAy
:

Furthermore y0 reduces to zero, because fAx = fAy = 0 at P . At P the normal
curvatures of both implicit surfaces in direction t are the same, thus from
(6.34) we have

fAxx(x
0)2 + fAzz(z

0)2

fAy
=
fBxx(x

0)2 + fBzz(z
0)2

fBy
:

This is a quadratic equation in x0 and z0 that can be solved for z0 in terms of
x0. By substituting x = z = 0, y = 0:8, we have z0 = � 25

27

p
7x0 and hence P

is a branch point. Normalization gives the unit tangent vector (x0; y0; z0) =�
27

4
p
319

; 0;� 25
p
7

4
p
319

�
.

Next, we evaluate the curvature vector as described in Sect. 6.4.2. The
�rst linear equation in (x00; y00; z00) is obtained from (6.21)

fAx x
00 + fAy y

00 + fAz z
00 = �fAxx(x0)2 � fAyy(y0)2 � fAzz(z0)2 : (6.79)

The second equation is given by equating the projections of the third deriva-
tives of the two implicit surfaces onto the normal vector of the surface

fAxxx
0x00 + fAyyy

0y00 + fAzzz
0z00q

(fAx)
2 + (fAy)

2 + (fAz)
2

=
fBxxx

0x00 + fByyy
0y00 + fBzzz

0z00q
(fBx)

2 + (fBy)
2 + (fBz)

2
: (6.80)

The third equation is due to the fact that the curvature vector is perpendic-
ular to the tangent vector, i.e.

182 6. Di�erential Geometry of Intersection Curves

x0x00 + y0y00 + z0z00 = 0 : (6.81)

Solving the linear system (6.79), (6.80) and (6.81) at point P , we have
(x00; y00; z00) = (0;� 320

319 ; 0), thus the curvature of the intersection curve at
P is � = 320

319 .

7. Distance Functions

7.1 Introduction

The computation of maximal and minimal distance between point sets in
Euclidean space is a basic problem in computational geometry and geometric
modeling. It is useful in surface intersections [209], numerical control ma-
chining, tolerance region and access space representation in solid modeling,
robotics, inspection of manufactured objects [352, 296, 3], and in feature
recognition through the construction of medial axis transforms [297, 81, 449].
For this purpose, it is important to have computational methods which are
e�cient and reliable to compute extrema for the distance between two vari-
able points where each of those variable points assumes all possible positions
in a given set. In practical situations, this set can be a surface, a curve, or a
single point.

In this chapter, we examine the computation of the stationary points of
the squared distance function in �ve cases [460]:

1. Between a given point and a variable point on a 3-D space parametric
curve.

2. Between a given point and a variable point on a parametric surface patch.
3. Between two variable points located on two given 3-D space parametric

curves.
4. Between two variable points, one of which is located on a 3-D space

parametric curve and the other is located on a parametric surface patch.
5. Between two variable points, located on two di�erent given parametric

surface patches.

We assume that the given curves and surfaces are rational polynomial
parametric. However, the methods can be extended to the cases where the
given curves and surfaces are represented by implicit polynomials using La-
grange multiplier methods (see Sects. 5.4.1 and 8.4). If the parametric curves
and surfaces are in integral/rational B-spline form, the �rst step is to subdi-
vide the integral/rational B-spline curve or surface patch into a number of
integral/rational B�ezier curves or patches. The problem thus becomes com-
puting the distances between two point sets, which can be a space point,
a integral/rational B�ezier curve or a integral/rational B�ezier surface patch.
The squared distance functions expressed in Bernstein form are developed

184 7. Distance Functions

here for such point sets. This development is based on direct addition and
multiplication of two Bernstein forms [106, 314] (see Sect. 1.3.2).

7.2 Problem formulation

7.2.1 De�nition of the distances between two point sets

The de�nitions of the squared distance function for �ve cases described in
Sect. 7.1 are given as follows:

1. The squared distance function between a point po = (xo yo zo)
T and an

arbitrary point on a parametric curve r(t) in three dimensional Cartesian
space is de�ned by

D(t) = jpo � r(t)j2 = (po � r(t)) � (po � r(t)) : (7.1)

2. The squared distance function between a point po = (xo yo zo)
T and

a parametric surface patch r = r(u; v) in three dimensional Cartesian
space is de�ned by

D(u; v) = jpo � r(u; v)j2 = (po � r(u; v)) � (po � r(u; v)) : (7.2)

3. The squared distance function between two parametric curves p = p(u)
and q = q(v) in three-dimensional Cartesian space is de�ned by

D(u; v) = jp(u)� q(v)j2 = (p(u)� q(v)) � (p(u)� q(v)) : (7.3)

4. The squared distance function between a parametric curve p = p(t) and
a parametric surface patch q = q(u; v) in three dimensional Cartesian
space is de�ned by

D(t; u; v) = jp(t)� q(u; v)j2 = (p(t)� q(u; v)) � (p(t)� q(u; v)) : (7.4)

5. The squared distance function between two parametric surface patches
p = p(�; t) and q = q(u; v) in three dimensional Cartesian space is
de�ned by

D(�; t; u; v) = jp(�; t)�q(u; v)j2 = (p(�; t)�q(u; v)) � (p(�; t)�q(u; v)) :
(7.5)

The parameters �, t, u, v in (7.1) - (7.5) satisfy the following inequalities
0 � �; t; u; v � 1. The general approach to locate local minima of the squared
distance function is to search for zeros of the gradient vector �eld rD and
then examine if at those zeros the squared distance function attains minima.
For each of the �ve cases, the condition rD = 0 becomes

7.2 Problem formulation 185

1. The stationary points of the squared distance function between a point
po = (xo yo zo)

T and an arbitrary point on a parametric curve r(t) satisfy
the following equation

Dt(t) = 0 ; (7.6)

which can be rewritten using (7.1) as

(po � r(t)) � rt(t) = 0 : (7.7)

2. The stationary points of the squared distance function between a point
po = (xo yo zo)

T and a parametric surface patch r = r(u; v) satisfy the
following two equations

Du(u; v) = Dv(u; v) = 0 ; (7.8)

which can be rewritten using (7.2) as

(po � r(u; v)) � ru(u; v) = (po � r(u; v)) � rv(u; v) = 0 : (7.9)

3. The stationary points of the squared distance function between two para-
metric curves p = p(u) and q = q(v) satisfy the following two equations

Du(u; v) = Dv(u; v) = 0 ; (7.10)

which can be rewritten using (7.3) as

(p(u)� q(v)) � pu(v) = (p(u)� q(v)) � qv(v) = 0 : (7.11)

4. The stationary points of the squared distance function between a para-
metric curve p = p(t) and a parametric surface patch q = q(u; v) satisfy
the following three equations

Dt(t; u; v) = Du(t; u; v) = Dv(t; u; v) = 0 ; (7.12)

which can be rewritten using (7.4) as

(p(t)� q(u; v)) � pt(t) = (p(t) � q(u; v)) � qu(u; v)
= (p(t) � q(u; v)) � qv(u; v) = 0 : (7.13)

5. The stationary points of the squared distance function between two para-
metric surfaces p = p(�; t) and q = q(u; v) satisfy the following four
equations

D�(�; t; u; v) = Dt(�; t; u; v) = Du(�; t; u; v) = Dv(�; t; u; v) = 0 ;
(7.14)

which can be rewritten using (7.5) as

(p(�; t) � q(u; v)) � p�(�; t) = (p(�; t) � q(u; v)) � pt(�; t) = 0 ;

(p(�; t) � q(u; v)) � qu(u; v) = (p(�; t) � q(u; v)) � qv(u; v) = 0 :

(7.15)

186 7. Distance Functions

When the parametric curves and surfaces are in rational form, the squared
distance D(u) between two point sets can be represented by:

D(u) =
P (u)

Q(u)
; (7.16)

where u is the vector (u1 u2 : : : un)
T. For the problems considered in this

chapter, n 2 f1; 2; 3; 4g. The gradient of D(u) is given by

rD =
rP (u)Q(u)� P (u)rQ(u)

Q2(u)
: (7.17)

If rD(u) = 0, the numerator of the above expression should be zero. Since
the numerator in (7.17) is a polynomial vector �eld, our problem is reduced
to �nding the singular points of an n-dimensional polynomial vector �eld,
i.e. the roots of a system of n nonlinear polynomial equations in n unknowns
within a given n-dimensional box [391, 299]. The solution of this problem is
discussed in Chap. 4.

Because the curves and surfaces involved in these distance problems are
bounded, it is necessary to break up the distance computation problem into a
number of subproblems which deal with interior and boundary points of the
geometric objects separately. The major steps of the algorithm are outlined
below:

1. Find the minimal and maximal distances in the interior domain of point
sets.

2. Find the distances at four corner points of the surface if one point set is
a surface.

3. Find the minimal and maximal distances along the four edges of the
surface if one point set is a surface.

4. Find the distances at end points if one point set is a curve.
5. Compare the distances to get the absolute minimum and maximum.

7.2.2 Geometric interpretation of stationarity of distance function

By examining the derivation of the equations in the preceding section, we can
interpret the stationary point condition rD = 0 in terms of the concept of
collinear normal points. This idea is used in [375, 208, 209] to detect closed
loops in surface-surface intersections (see (5.100)). Simply stated, two points
on two surfaces are said to be collinear normal points if their associated
normal vectors lie on the same line.

It is possible to interpret the conditions in (7.15) geometrically. Notice
that the line joining p(�; t) and q(u; v) must be orthogonal to the two par-
tial derivative vectors on p at (�; t) and to the two partial derivative vectors
on q at (u; v). As long as these derivatives do not degenerate, they span
the tangent planes to the two surfaces. Therefore the normals to these two

7.3 More about stationary points 187

surfaces must lie on the line joining the two points, and p(�; t) and q(u; v)
are collinear normal points as long as (7.15) are satis�ed. The di�erence be-
tween (5.100) and (7.15) is that when two surfaces transversally intersect,
i.e. p(�; t)=q(u; v) and (p� � pt) � (qu � qv) 6= 0 at the points of intersec-
tion, the �rst set of equations of (5.100) are not satis�ed, while (7.15) are
automatically satis�ed.

Similar geometrical interpretations may be made for other distance prob-
lems. In the point-surface distance problem, (7.9) states that for a point
(u0; v0) to be a stationary point, both partial derivatives to the surface at
that point must be orthogonal to the line joining p0 and r(u0; v0). If these
derivatives do not degenerate, an equivalent statement is that the normal
to the surface at (u; v) is collinear with the line joining the point and the
surface. In other words point r(u0; v0) is an orthogonal projection of p0 onto
a surface r(u; v). Pegna and Wolter [305] derived a set of di�erential equa-
tions to orthogonally project a space curve onto parametric surfaces as well
as implicit surfaces and solved them e�ciently as an initial value problem.
These methods were also applied in [3] for inspection of sculptured surfaces.

7.3 More about stationary points

If it is only necessary to determine the absolute maximum or absolute min-
imum of the squared distance function between two geometric objects, then
simply computing the maximum or minimum of the set of distances at the
stationary points is su�cient, provided that this set is �nite. However, it is
often necessary to classify each stationary point as a local maximum, local
minimum, or saddle point. Furthermore, the set of stationary points may not
be �nite (for example, consider the distance function between two concentric
circles) and it may be required to trace out these in�nite point sets. In this
section we examine these questions.

7.3.1 Classi�cation of stationary points

Let us �rst recall the de�nitions of local extrema at stationary points:

De�nition 7.3.1. Suppose that D : Rn ! R is a scalar �eld on Rn. Let u
be a stationary point of D, that is rD(u) = 0. Then

1. u is a local maximum if there exists a neighborhood U of u such that for
all v 2 U , D(v) � D(u).

2. u is a local minimum if there exists a neighborhood U of u such that for
all v 2 U , D(v) � D(u).

To illustrate the application of these de�nitions, let us begin with a
simple one-parameter function D(u) (which may arise, for example, in the

188 7. Distance Functions

point-curve distance problem). Suppose u0 is a stationary point of D(u), i.e.
_D(u0) = 0. Then a Taylor series expansion tells us that

D(u0 + h)�D(u0) = h _D(u0) +
1

2
h2 �D(u0 + ht)

=
1

2
h2 �D(u0 + ht) ; (7.18)

where t 2 [0; 1] is some speci�c value depending on h. From De�nition 7.3.1,
we see that u0 is a local maximum if the right hand side of (7.18) is never
positive for h close to 0 and a local minimum if the right hand side is non-
negative for h close to 0. Now, if �D(u0) 6= 0, then by continuity, there is some
� such that for jhj < �, �D(u0) has the same sign as �D(u0 + ht). Therefore,
if �D(u0) < 0, then h2 �D(u0 + ht) < 0 for jhj < � and hence u0 is a local
maximum. Similarly, if �D(u0) > 0, then u0 is a local minimum. These results
are familiar from calculus [166].

Unfortunately, the problem becomes more complicated if �D(u0) = 0. In
this case we can not say anything about the sign of �D(u0 + ht) and must
therefore expand the Taylor series to higher derivatives. For example, if the
second derivative is zero but the third derivative is nonzero, then we will
have neither a maximum nor a minimum but a point of inection. Consider
the function y = x3; in any neighborhood of the stationary point x = 0,
the function takes on both positive and negative values and thus x = 0 is
neither a maximum nor a minimum. If the third derivative is also zero, we
have to look at the fourth derivative, and so on. Fortunately, these exceptions
are rare, but a robust point classi�cation algorithm should be able to handle
such cases. In general, if D(n)(a) is the �rst derivative function that does not
vanish, then the function D(u) has [152]

� if n is odd; neither maximum nor minimum.
� if n is even;
{ if D(n)(a) < 0 ; maximum,
{ if D(n)(a) > 0 ; minimum.

Similar analysis can be performed with functions of more than one vari-
able. Consider a function D(u; v) of two variables, which might arise, for
example, in a curve-curve distance problem. A Taylor expansion around the
stationary point (u0; v0) to second order leads to

D(u0 + h; v0 + k)�D(u0; v0) =
h2

2
Duu(u0 + ht; v0 + kt)

+hkDuv(u0 + ht; v0 + kt)

+
k2

2
Dvv(u0 + ht; v0 + kt) ; (7.19)

where t 2 [0; 1]. Instead of one second order term, this time we have three
to deal with, which of course makes classi�cation more di�cult. However,

7.3 More about stationary points 189

by simply completing the square with the second order terms, we can easily
formulate conditions for minima, maxima, and saddle points. To see this, let
a � Duu

2 ; b � Duv

2 ; and c � Dvv

2 . Then we have

D(u0 + h; v0 + k)�D(u0; v0) = ah2 + 2bhk + ck2

= a(h2 +
2b

a
hk +

b2

a2
k2) + (c� b2

a
)k2

= a(h+
b

a
k)2 + (c� b2

a
)k2 : (7.20)

Now h and k appear only within squared expressions. This new form enables
us to ignore the signs of h and k and instead concentrate on the signs of the

coe�cients a and (c� b2

a). To see this, notice that within any arbitrarily small

neighborhood of (u0; v0), the ratio
h
k takes on all possible values between �1

and1, and therefore the �rst term of the right hand side of (7.20) can become
extremely small or extremely large compared to the second term. However,
the signs of each term are not so easily changed. These are determined solely

by the signs of a and (c � b2

a). If both coe�cients are nonzero at (u0; v0),
a continuity argument shows that the expressions Duu(u0 + ht; v0 + kt) and

Dvv(u0 + ht; v0 + kt)� D2
uv(u0+ht;v0+kt)

Duu(u0+ht;v0+kt)
do not change sign as long as (u0 +

ht; v0 + kt) is su�ciently close to (u0; v0). Therefore, in order to determine
the signs of these coe�cients within a small neighborhood of (u0; v0), we can
simply evaluate them at (u0; v0). If the coe�cients are nonzero there, then
their signs will enable us to classify the stationary point. For example, if both
coe�cients are positive at the stationary point, then clearly the right hand
side of (7.20) is positive within some neighborhood of the stationary point,
and hence (u0; v0) can be classi�ed as a minimum. If the �rst coe�cient is
negative and the second is positive, then because either term may be made
zero at di�erent parts of any neighborhood, the right hand side of (7.20) may
be positive or negative arbitrarily close to the stationary point, and thus
(u0; v0) is neither a maximum nor a minimum. The other possibilities lead
to the following theorem, which is proven more fully in [166]:

Theorem 7.3.1.

1. If Duu < 0 and D2
uv < DuuDvv at the stationary point (u0; v0), then

(u0; v0) is a local maximum.
2. If Duu > 0 and D2

uv < DuuDvv, then (u0; v0) is a local minimum.
3. If D2

uv > DuuDvv then (u0; v0) is a saddle point (neither a maximum
nor a minimum).

4. If none of the above conditions apply, then it is necessary to examine
higher-order derivatives.

Notice that the third condition above applies even if Duu = 0. In this case,
the second order term reduces to 2bhk+ck2. As long as b 6= 0, speci�c choices

190 7. Distance Functions

of h and k within any arbitrarily small neighborhood of the stationary point
can make this term either positive or negative, and hence (u0; v0) is neither
a maximum nor a minimum.

It is possible to complete the square for functions of more than two vari-
ables; however, in order to develop general conditions for minima and maxima
of such functions, we will employ the powerful theory of quadratic forms [409].

De�nition 7.3.2. A quadratic form is an expression of the form uTAu,
where u = (u1 u2 : : : un)

T is an n-dimensional column vector of unknowns
and A is an n� n matrix. A quadratic form uTAu is said to be

1. positive de�nite if uTAu > 0 for all u 6= 0.
2. positive semide�nite if uTAu � 0 for all u.
3. negative de�nite (semide�nite) if �uTAu is positive de�nite (semide�-

nite).
4. inde�nite otherwise (i.e. the form takes on both positive and negative

values).

To see how these quadratic forms are used, let us take a Taylor expansion
of a function of n variables D(u) around the stationary point u = u0:

D(u0 + h)�D(u0) =
1

2
hTHh+O(jhj3) : (7.21)

Here H is the Hessian matrix of D; the element of the ith row, jth column,
is given by

Hij =
@2D

@ui@uj
(u0) : (7.22)

Now clearly, if the quadratic form hTHh is positive de�nite, then within
some neighborhood of the stationary point u0, the right hand side of (7.21)
is nonnegative, and therefore u0 is a local minimum. Similarly, if the quadratic
form is negative de�nite, then u0 is a local maximum.

At this point, we can use a familiar theorem of linear algebra whose proof
is given in [409]:

Theorem 7.3.2. Let uTAu be a quadratic form, let A be a real symmetric
matrix, and for i = 1; 2; : : : ; n, let di be the determinant of the upper left
i � i submatrix of A (which we will denote Ai). Then the quadratic form is
positive de�nite if and only if di > 0 for all i.

If the > condition in the above theorem is relaxed to �, a corresponding
theorem applies to positive semide�nite forms (that is, a form is positive
semide�nite if and only if di � 0 for all i).

Theorem 7.3.2 immediately gives us a necessary and su�cient condition
for negative de�niteness as well. For, if we let B � �A, the quadratic form
uTAu is negative de�nite if and only if uTBu is positive de�nite if and only
if detBi > 0 for all i. But detBi = (�1)i detAi and so we have the following
corollary:

7.3 More about stationary points 191

Corollary 7.3.1. Let A and di be as before. Then the quadratic form uTAu
is negative de�nite if and only if (�1)idi > 0 for all i.

Simply applying these conditions gives us the following theorem:

Theorem 7.3.3. Let D be as before, and let H be its Hessian matrix, eval-
uated at the stationary point u0. Let di be the determinant of the upper left
i� i submatrix Hi of H.

1. If di > 0 for all i, then u0 is a local minimum.
2. If (�1)idi > 0 for all i, then u0 is a local maximum.

If, on the other hand, the form hTHh is inde�nite, we can conclude that
u0 is neither a minimum nor a maximum (in two dimensions, such points are
usually called saddle points), as the following theorem shows:

Theorem 7.3.4. Let H;D;u0; and di be as before. Suppose that the di do
not satisfy the conditions for de�niteness or semide�niteness. Then u0 is
neither a local minimum nor a local maximum.

Proof: Because hTHh is inde�nite, there exist vectors h1 and h2 such that
hT1Hh1 < 0 and hT2Hh2 > 0. Pick an arbitrary neighborhood U of u0. Then
for any " > 0 smaller than some positive number �, u0+ "h1 2 U;u0+ "h2 2
U; ("h1)

TH("h1) < 0; and ("h2)
TH("h2) > 0.

Using (7.21), we obtain

D(u0 + "h1)�D(u0) =
1

2
"2hT1Hh1 +O("3jh1j3) ; (7.23)

D(u0 + "h2)�D(u0) =
1

2
"2hT2Hh2 +O("3jh2j3) : (7.24)

Clearly, for su�ciently small ", the right hand side of (7.23) will remain
negative, while the right hand side of (7.24) will remain positive. Thus we
have, for su�ciently small ",

D(u0 + "h1) < D(u0) < D(u0 + "h2) : (7.25)

Since U was an arbitrary neighborhood of u0, there is no neighborhood of
u0 where D(u0) � D(u) for all u 2 U or where D(u0) � D(u) for all u 2 U .
Therefore u0 is neither a local minimum nor a local maximum.

Unfortunately, trouble can occur if the Hessian is only semide�nite and
not de�nite. In this case we need to look at higher order derivatives or use
some other method to classify the point precisely. Although this is not too
di�cult for one-parameter functions, it becomes progressively more involved
as the number of variables increases (see for example, [322, 129]).

192 7. Distance Functions

7.3.2 Nonisolated stationary points

Because the equation rD = 0 is equivalent to a system of n equations in n
unknowns, we expect that in most cases the solution set of this system will
consist of a few discrete, isolated points in Rn. However, it is possible for the
solution set to contain curves, surfaces, or hypersurfaces as well as points. For
example, suppose D(x; y) = x2y2; then the solution set of rD = 0 consists
of the two lines x = 0 and y = 0.

In this section, we will examine a marching method helpful in tracing
curves of critical points. This type of degeneracy can occur if, for example,
we are trying to �nd the minimum of the squared distance between two
surfaces which happen to intersect. The method we use to trace out such
curves involves setting up a system of di�erential equations which can be
solved numerically using a standard ordinary di�erential equation system
solver (see Sect. 5.8.1).

We begin our discussion by de�ning the concept of a degenerate critical
point [322]:

De�nition 7.3.3. A critical point u0 of a function D : Rn ! R (that is,
a point at which rD = 0) is called degenerate if the Hessian matrix of D
evaluated at u0 is singular.

The following well-known theorem of di�erential geometry relates the con-
cepts of degeneracy and isolation.

Theorem 7.3.5. Suppose a critical point u0 of D is nondegenerate, i.e. its
Hessian is nonsingular. Then there exists a neighborhood U of u0 such that
for all u 2 U � fu0g, rD(u) 6= 0. (A point u0 having this property is called
an isolated critical point.)

Proofs of this theorem are given in [322, 129]. Unfortunately, the converse
is not true; all nondegenerate critical points are isolated, but some isolated
critical points are degenerate. For example, the function D(x; y) = x3� 3xy2

has an isolated critical point at the origin, but its Hessian matrix there is the
zero matrix and therefore singular. Nevertheless, this theorem is practically
helpful in eliminating most cases.

We will use this theorem to help us detect curve branches of nonisolated
stationary points as follows:

1. Run the IPP algorithm described in Chap. 4 on our initial box of search,
with a fairly coarse level of accuracy. For example, if we start with the
search box [0; 1]n, we may run our root-�nding algorithm with a tolerance
of 10�2 or 10�3.

2. Check the remaining bounding boxes after this step. If we observe a
number of boxes adjacent to one another, there may be a curve in the
solution set.

7.3 More about stationary points 193

3. Use Newton-Raphson iteration to �nd roots within these boxes to a high
accuracy. Check the Hessian at these points; if it is singular, it is very
likely that a curve exists. Accordingly, choose one of these roots as a
starting point for our tracing technique.

This approach is by no means infallible; it is theoretically possible for there
to be a number of degenerate isolated roots that will fool us into thinking that
there is a curve involved. It is also possible that the solution set is a surface
or even a higher dimensional entity. However, in practice these exceptions
rarely occur.

Let us now assume that we have found a point on this curve, which we
will call r : R ! Rn. We will assume that r is a function of the parameter
t, which takes on a value 0 at our starting point and that r has unit speed
everywhere (i.e. jr(t)j = 1 everywhere). This unit speed condition is imposed
to ensure that r has an arc length parameterization.

Rewrite the equation rD = 0 as a system of n equations in n unknowns:

Du1(u1; : : : ; un) = 0 ;

: : : (7.26)

Dun(u1; : : : ; un) = 0 :

Now, in order to stay on the curve r in moving a small distance from r(t) to
r(t + dt), we need to know what increments have to be added to u1; : : : ; un.
Accordingly, we take a Taylor expansion of each equation around the critical
point u0 to �rst order:

Du1u1(u0)du1+ : : : Du1un(u0)dun = 0 ;

: : : (7.27)

Dunu1(u0)du1+ : : : Dunun(u0)dun = 0 :

Or, rewriting this as a matrix equation, we have

Hdu = 0 ; (7.28)

where du = (du1 : : : dun)
T and H is the Hessian of D(u) evaluated at u0.

Because u0 is degenerate, the rank of H should be less than n. In fact, we
anticipate that it will be n�1, since any du satisfying (7.28) must be a vector
tangent to r at u0, and hence the nullspace of H should have dimension 1.
(It is possible on rare occasions that there is a curve passing through u0 but
the rank of the Hessian is less than n � 1. This problem may occur if the
�rst-order Taylor expansion in (7.27) contains insu�cient information due to
zero derivatives. Fortunately, these cases are extremely rare in practice; see
[322] for more information.)

Because we need to �nd a tangent vector to r at u0 with unit length,
we need to �nd some vector in the nullspace of H and then normalize it to

194 7. Distance Functions

length 1. The Singular Value Decomposition method [409] may be applied
to H to generate such a vector in a stable manner. Then, after making the
vector unit length, we pass it to our ordinary di�erential equation solver as
the tangent to r at u0. We can trace backwards by changing the sign of the
tangent vector.

Table 7.1. Curve and surface description (adapted from [460])

Case Property Degree(s) Property Degree(s)

P/C rational 10

P/S rational 8 and 8

C/C integral 2 rational 2

C/S rational 2 rational 4 and 3

S/S rational 1 and 2 rational 1 and 2

7.4 Examples

In this section, we give examples of distance computations for the �ve cases:
a space point and a variable point on a 3D space curve (P/C); a space point
and a variable point on a surface (P/S); two variable points located on two
3D space curves (C/C); two variable points, one of which is located on a
space curve and the other is located on a surface (C/S); two variable points
located on two surfaces (S/S). The curves and surfaces involved are expressed
as rational B�ezier entities whose property and degree are listed in Table 7.1.

The curve in the P/C example is a high degree rational curve which gives
rise to a system with 4 roots as shown in Fig. 7.1. The surface in the P/S
example is a high degree rational surface which also generates a system with
4 roots (see Fig. 7.2). In the C/C example, one curve is a parabola and the
other is a quarter circle represented as a rational B�ezier curve; the resulting
system of equations has three roots (see Fig. 7.3). In the C/S example, the
curve is a parabola and the surface is a saddle-like rational B�ezier surface;
there is only one root, which occurs at the intersection point of the curve and
the surface as illustrated in Fig. 7.4. In the S/S example, the two surfaces
are ruled rational surfaces with one root (see Fig. 7.5).

7.4 Examples 195

Fig. 7.1. Distances of a point and a high degree rational B�ezier curve (adapted
from [460])

Fig. 7.2. Distances of a point and a high order rational B�ezier surface (adapted
from [460])

Fig. 7.3. Distances of a rational B�ezier curve and an integral B�ezier curve (adapted
from [460])

196 7. Distance Functions

Fig. 7.4. Distances of a rational B�ezier curve and a rational B�ezier patch (adapted
from [460])

Fig. 7.5. Distances of two linear-quadratic B�ezier patches (adapted from [460])

8. Curve and Surface Interrogation

8.1 Classi�cation of interrogation methods

Interrogation is the process of extraction of information from a geometric
model. In this chapter we focus on free-form curve and surface interrogation.
Free form surfaces, also called sculptured surfaces, are widely used in scien-
ti�c and engineering applications. For example, the hydrodynamic shape of
propeller blades has an important role in marine applications, and the aerody-
namic shape of turbine blades determines the performance of aircraft engines.
Free-form surfaces arise also in the bodies of the ships, automobiles and air-
craft, which have both functionality and attractive shape requirements. Many
electronic devices as well as consumer products are designed with aesthetic
shapes, which involve free-form surfaces. During the last two decades, many
curve and surface interrogation methods have been proposed (see references
in [274, 61]), and we will introduce some of them in this chapter.

Propeller and turbine blades are manufactured by numerically controlled
(NC) milling machines. When a ball-end mill cutter is used, the cutter radius
must be smaller than the smallest concave radius of curvature of the surface to
be machined to avoid local overcut (gouging) (see Sect. 11.1.2). Gouging is the
one of the most critical problems in NC machining of free-form surfaces [184].
Therefore, we must determine the distribution of the principal curvatures
of the surface, which are upper and lower bounds on the curvature at a
given point, to select the cutter size [116, 94]. Visualization techniques of
various curvature measures have been developed by Dill [74], Beck et al.
[22], Munchmeyer [279, 278], Higashi and Kaneko [162], Pottmann and Optiz
[327], Maekawa and Patrikalakis [254], Elber and Cohen [87] and Tuohy [422].
Higashi et al. [163] introduced the loci of points corresponding to extrema of
curvature values of the design surface called surface edges, which show how
the surface is waving and where the peaks of the wave exist. Kase et al. [188]
presented local and global evaluation methods for shape errors of free-form
surfaces which have been applied to the evaluation of sheet metal surfaces.

Developable surfaces [13, 221, 120, 32, 325, 251, 328] are surfaces which can
be unfolded or developed onto a plane without stretching or tearing. They are
of considerable importance to plate-metal-based industries as shipbuilding.
For a developable surface the Gaussian curvature is zero everywhere [76].
Thus the manufacturer would pro�t from prior knowledge of the distribution

198 8. Curve and Surface Interrogation

of the Gaussian curvature of the metal plate. A line of curvature indicates
a directional ow for the maximum or the minimum curvature across the
surface [22, 278, 173, 256, 250, 98] which can be used for determining feeding
directions to the rolling machine for the metal plate.

Fairing [364, 338, 144, 317, 148, 45, 316] is the process of eliminating
shape irregularities in order to produce a smoother shape. Reection lines
[201, 189, 61] are a standard surface interrogation method to assess the fair-
ness of design surfaces in the automobile industry. Isophotes are used for
detection of surface irregularities [318, 144] and for continuity evaluation at
the boundaries of adjacent patches [146]. Also focal surfaces [146, 145] are
used to detect undesired curvature properties of a design surface. The set
of curvature extrema of a fair surface should coincide with the designer's
intention. Therefore, computation of all extrema of curvatures is desirable.
The Gaussian, mean and principal curvatures are used for the detection of
surface irregularities [279, 278, 254]. On the other hand Andersson [7] devel-
oped a method to specify curvature in a surface design method and Higashi
et al. [164] proposed a method to generate a smooth surface by controlling
the curvature distribution. Theisel and Farin [418] studied the curvature of
characteristic curves on a surface, such as contour lines, lines of curvature,
asymptotic lines, isophotes and reection lines.

As we will see in this chapter, the governing equations for shape inter-
rogation often result in n polynomial equations with n unknowns when the
input curves and surfaces are in integral/rational B�ezier form. If the para-
metric curves and surfaces are in integral/rational B-spline form, some shape
interrogation methods involve a �rst step where the integral/rational B-spline
curve or surface patch is subdivided into a number of integral/rational B�ezier
curves or rational B�ezier patches. In the computer implementation we evalu-
ate the coe�cients of the governing nonlinear polynomial equations in multi-
variate Bernstein form starting from the given input B�ezier curve or surface
using the arithmetic operations in Bernstein form [106, 314] (see Sect. 1.3.2).
The system of nonlinear polynomial equations can be solved robustly and
accurately by the IPP algorithm presented in Chap. 4.

In this section we will classify the interrogation methods by the order
of derivatives of the curve or surface position vector which are involved. An
interrogation method is characterized as nth-order, if derivatives of the curve
or surface position vector of order n are involved.

8.1.1 Zeroth-order interrogation methods

Wireframe. The wireframe of a surface patch is produced by displaying
its boundary curves and a number of other iso-parametric curves in both
parametric directions, as depicted in Fig. 8.1. Small-scale wireframes on raster
screens provide only a rough idea of the underlying shape and are not very
appropriate means to judge the nature of the surface and its smoothness and
fairness. Furthermore, depending on the density of iso-parametric lines and

8.1 Classi�cation of interrogation methods 199

their actual shape, they may mislead the designer about the actual shape of
the surface.

Fig. 8.1. Wireframe model of bicubic B-spline patch

Contouring. A better indication of the surface is normally obtained using
contour maps. There are di�erent types of contour maps. The simplest con-
touring method is to intersect the surface with a family of user-de�ned non-
uniformly spaced parallel planes [22, 95] (see Fig. 5.1). Using z = constant
contour maps, maxima, minima and saddle points of the height z(u; v) of
the surface can be identi�ed. Contouring with planes is, for example, em-
ployed in ship hull and aircraft fuselage design. More complex contouring
methods involve intersections with a series of co-axial cylinders or cones of
non-uniformly spaced radii. Propeller and turbine blades are normally con-
toured using such methods. The intersection methods of Chap. 5 need to be
invoked to perform robust contouring.

8.1.2 First-order interrogation methods

Shading and ray tracing. A shaded image of a surface usually gives a more
realistic visual representation in comparison to a wireframe model [118]. A
simple illumination model, based on Lambert's cosine law and incorporating
specular reection, gives the reected intensity I as a function of the incident
intensity Ii from a point light source, the ambient intensity Ia, the di�use

200 8. Curve and Surface Interrogation

reection constant kd, the specular reection constant ks, the ambient di�use
reection constant ka, the angle � between the unit surface normal N and
a light direction vector, and of the angle � between a viewpoint direction
vector and a vector in the direction of reection:

I = Iaka +
Ii
r
(kd cos � + ks cos�) ; (8.1)

for 0 � ka; kd; ks � 1 and 0 � � � �
2 where r represents the distance from the

perspective viewpoint to the point on the surface. More complicated shading
models, which take into account the properties of the material, the angle of
incidence, and the wavelength of the incidence light also exist [118].

The ray tracing technique [187, 118] gives more realistic images than a
simple shaded image method, but is much slower. The intensity for each
pixel is determined using a ray from the viewpoint through the pixel into
the object. Ray tracing is in fact an intersection problem. The ray to sur-
face intersection is computed for every ray and surface in a scene. Using
the ray tracing technique, the hidden surface problem is solved during such
computation and also other attributes, for example multiple reections and
shadowing, can be included in the model.

Isophotes. Isophotes are curves of constant light intensity on a surface, cre-
ated by a point light source at in�nity with direction l (jlj = 1), speci�ed by
the user. These curves can be used for the detection of surface irregularities
[318, 144]. An isophote is a curve for which the quantity

N(u; v) � l = cos � ; (8.2)

is constant and equal to c, for 0 � c � 1 and 0 � � � 90� where N(u; v)
is the unit surface normal vector. When the surface is locally planar (or
at) all normals are parallel and the isophotes do not generally exist. If the
surface is CM continuous then the isophote line will be CM�1 continuous. For
rendering isophotes, the values of N(u; v) � l are computed on a lattice and a
number of isophotes are generated by connecting points of equal value found
by interpolation between straddling grid points [3]. Color Plate A.1 shows

isophotes of the bicubic B-spline surface in Fig. 8.1 with l =
�
1
2 ;

1
2 ;

p
2
2

�T
.

Reection lines. Reection lines are another �rst-order interrogationmethod
used in the automotive industry to assess the fairness of a surface. Reection
lines simulate the mirror images of a number of parallel straight uorescent
lights on an automobile surface. In this method, deviations of the surface
from a smooth shape can be detected by irregularities of the reection lines.
Originally a reection line was de�ned as a reected image of a linear light
source on a surface by Klass [201]. Kaufmann and Klass [189] modi�ed the
above de�nition to reduce the computation as follows. A family of curves
qi(t), i = 1 : : : n on the surface, which are intersection curves of the surface

8.1 Classi�cation of interrogation methods 201

with a speci�c family of planes parallel to a unit vector v, are evaluated. For
each intersection curve qi(t), parameter ti that satis�es

_qi(t)

j _qi(t)j � v = cos� ; (8.3)

is evaluated. Then points q1(t1), q2(t2); : : :, qn(tn) are connected to form
the reection line. The procedure is repeated for di�erent values of �. If iso-
parametric lines are used instead of intersection curves of the surface with a
family of parallel planes, computational e�ciency is further improved as in
[3]. Choi and Lee [61] applied the Blinn-Newell type of reection mapping
[118], which uses simple and physically acceptable mapping algorithm, to
generate reection lines on a trimmed NURBS surface. Choi and Lee [61]
also provide a thorough recent review of this topic.

Color Plate A.2 depicts reection lines on the bicubic B-spline surface

patch shown in Fig. 8.1, where values of _q(t)
j _q(t)j � v with v =

�
1
2 ;

1
2 ;

p
2
2

�T
are

evaluated along iso-parametirc curves and the equal value points found by
interpolation between mesh points are connected to form the reection lines.

Highlight lines. Beier and Chen [23] introduced the concept of a highlight
line where a set of points on a surface are determined such that the distance
between a linear light source and an extended surface normal at the highlight
lines is zero (see Fig. 8.2). Let us denote the linear light source by

l(t) = a+ bt ; (8.4)

where a is a point on the linear light source, b is a directional vector and t is
a parameter. Also let us de�ne the extended surface normal vector e at the
surface point q by

e(�) = q+ S� ; (8.5)

where S is the surface normal vector at q and � is a parameter. The distance
between the two lines l(t) and e(�) is given by

d =
j(b� S) � (a� q)j

jb� Sj : (8.6)

This distance d will vanish if point q is on the highlight line. If we avoid cases
such that the linear light source and the surface normal become parallel, the
denominator of (8.6) is nonzero and the governing equation for determining
highlight lines reduces to

(b� S(u; v)) � (a� q(u; v)) = 0 : (8.7)

Equation (8.7) can be traced using the same technique that we introduced
in Sect. 5.8.1. Sone and Chiyokura [400] developed a method to control a
hightlight line directly using a NURBS boundary Gregory patch. Zhang and
Cheng [459] studied a method to remove local irregularities of NURBS surface
patches by modifying its highlight lines for real time interactive design.

202 8. Curve and Surface Interrogation

highlight line

light source

a
b

q

S

l(t)= a + bt

surface patch

extended surface normal

e(τ)= q + Sτ

Fig. 8.2. De�nition of highlight line (adapted from [23])

8.1.3 Second-order interrogation methods

Curvature plots. For a planar curve, an inection point occurs at a point
where the curvature changes sign (see Sect. 2.2). Note that a vanishing curva-
ture does not necessarily imply inections, e.g. consider the curve y = x4 at
x = 0. Using curvature plots, which consist of segments normal to the curve
emanating from a number of points on the curve and whose lengths are pro-
portional to the magnitude of the curvature given in (2.25) at the associated
point, inection points and the variation of curvature can be easily identi�ed
as illustrated in Fig. 8.3.

Fig. 8.3. Curvature plot of a planar curve with inections

8.1 Classi�cation of interrogation methods 203

Zero curvature points. The signed curvature formula for a planar para-
metric curve is given in (2.25). Due to the regularity condition, a necessary
condition to determine inection points is

_x(t)�y(t)� _y(t)�x(t) = 0; t 2 [t1; t2] : (8.8)

An inection point on a planar curve is shown in Fig. 8.7, marked by �.
The curvature �(t) of a space curve is given in (2.26). The formula can

be expressed as

�(t) =

p
(_x�y � _y�x)2 + (_y�z � _z�y)2 + (_z�x� _x�z)2

(_x2 + _y2 + _z2)
3
2

: (8.9)

Since we are assuming a regular curve, a condition to determine a point on
a curve, where the curvature �(t) vanishes, is [58]

K0(t) � (_x�y � _y�x)2 + (_y�z � _z�y)2 + (_z�x� _x�z)2 = 0; t 2 [t1; t2] ; (8.10)

or
_x�y � _y�x = _y�z � _z�y = _z�x� _x�z = 0; t 2 [t1; t2] : (8.11)

Curvature vanishing points on a space curve r(t) are shown in Fig. 8.8, marked
by �.
Radial curves. For a parametric space curve r(t), a radial curve is de�ned
as

f(t) = p+ n(t)=�(t) ; (8.12)

where p is a �xed reference point in space, n(t) is the unit principal normal
vector and �(t) is a nonzero curvature of the curve [226]. Here the sign con-
vention (a) (see Fig. 3.7 (a)) is adopted for the curvature. For sign convention
(b) we simply replace the plus sign with a minus sign. Radial curves are a
method for visualizing curvature in a manner decoupled from the shape of
the curve as illustrated in Fig. 8.4. When an inection point is involved, as
in Fig. 8.4, spikes in opposite directions occur. By viewing the radial curve,
a curvature measure is visualized. However, the user is left without a direct
reference as to the relationship between the curve point and the curvature
value. The radial curve also provides a method for viewing the range of vari-
ation of the curve's normal vector. This range of variation can be obtained
from the angular sector described by all rays emanating from p and passing
through all points on the radial curve. Radial curves are useful in accessibility
and interference analyses.

Surface curvatures and curvature maps. Surface interrogation may be
performed using di�erent curvature measures of the surface [22, 279, 18,
92]. The Gaussian, mean, absolute [92], and root mean square (rms) [245]
curvatures are the product (3.61), the average (3.62), the sum of the absolute
values

204 8. Curve and Surface Interrogation

Fig. 8.4. A radial curve of y = x3 with a �xed reference point p = (�2; 2; 0). The
thin curve is the radial curve of the thick curve (y = x3 with a curvature plot)

kabs =j kmax j + j kmin j ; (8.13)

and the square root of the sum of the squares of the principal curvatures

krms =
q
k2max + k2min ; (8.14)

respectively. These surface curvature functions are all scalar valued functions.
The variation of any of these quantities can be displayed using a color-coded
curvature map [74, 22]. Contour lines of constant curvature can also be used to
display and visualize the variation of these curvature functions. Munchmeyer
[279] calculates the curvature on a lattice and linearly interpolates the contour
points. Maekawa and Patrikalakis [254] present a method which allows a
robust and accurate computation of all stationary points and all contour lines
for functions describing Gaussian, mean and principal curvatures of B-spline
surfaces. This method allows us to divide the surface into regions of speci�c
range of curvature. A summary with further applications can be found in
[254].

8.1 Classi�cation of interrogation methods 205

A surface inection exists on a surface at a point P if the surface crosses
the tangent plane at P [172]. The point P is then called an inection point.
If the Gaussian curvature is positive at every point of a region of a surface
then there are no inections in that region. If the Gaussian curvature changes
sign in a region of a surface then there is an inection in that region. In areas
where the surface has Gaussian curvature very close to or equal to zero the
Gaussian curvature alone cannot provide adequate information about the
shape of the surface. In such a case the surface has an inection point in
the region only if the mean curvature changes sign. The Gaussian and mean
curvatures together provide su�cient information in order to identify surface
inections on a surface [278, 279].

The curvature maps of the principal curvatures can also help to select a
spherical cutter of suitable radius in order to avoid gouging during machining
of the surface [22, 254]. We will discuss further on how to construct contour
lines of constant curvature in Sect. 8.5.

Focal curves and surfaces. For a parametric space curve r(t), a focal curve
or an evolute, shown in Fig. 8.5, is de�ned as

f(t) = r(t) + n(t)=�(t) ; (8.15)

where n(t) is a unit principal normal vector and �(t) is a nonzero curvature
of the curve. Thus the focal curve or evolute of a curve is the locus of its
centers of curvature. Focal surfaces [146, 145] can be constructed in a similar
way by using the principal curvature functions of the given surface. For a
given parametric surface patch r(u; v) the two associated focal surfaces are
de�ned as

f(u; v) = r(u; v) +N(u; v)=�(u; v) ; (8.16)

where N(u; v) is a unit surface normal and �(u; v) is a nonzero principal
curvature (�min(u; v) or �max(u; v)). Here sign convention (a) (see Fig. 3.7
(a)) is employed for both (8.15) and (8.16). When sign convention (b) is
assumed, we simply replace the plus sign by the minus sign.

Focal curves and surfaces provide another method for visualizing cur-
vature. An important application of focal curves is in testing the curva-
ture continuity of surfaces across a common boundary. Curves on the fo-
cal surfaces of each surface, which are at the common boundary, f(t) =
r(u(t); v(t)) +N(u(t); v(t))=�(u(t); v(t)), where r = r(u(t); v(t)) is the com-
mon boundary curve (or linkage curve) on the progenitor surface r = r(u; v),
can be compared to determine the curvature continuity of the surfaces. Ac-
cording to the linkage curve theorem by Pegna and Wolter [304] two surfaces
joined with �rst-order or tangent plane continuity along a �rst-order contin-
uous linkage curve can be shown to be second-order smooth on the linkage
curve if the normal curvatures along the linkage curve on each surface agree
in one direction other than the tangent direction to the linkage curve. Com-
parison of focal surfaces allows for a visual assessment of the accuracy for

206 8. Curve and Surface Interrogation

Fig. 8.5. Focal curve. The thin curve is the focal curve of the thick curve

the second-order contact of two patches along their linkage curve. Namely
if the two focal curve point sets (de�ned via �min and �max) of one surface
patch agree along the linkage curve with the two corresponding focal curve
point sets of the adjacent patch then these surface patches have curvature
continuous surface contact along the linkage curve. The deviation of the cor-
responding focal curves indicates the amount of discontinuity of curvature of
both adjacent patches along the linkage curve.

Orthotomics. Orthotomic curves and surfaces are used to display the angle
between the position vector of a curve (or surface) and the normal of the
curve or surface respectively. Orthotomic curves and surfaces are useful for
indicating the presence of inection points [146]. A �-orthotomic curve y�(t)
of a planar curve r(t) with respect to a point p, not on r(t) or any of its
tangents, is de�ned as

y�(t) = p+ �[(r(t) � p) � n(t)]n(t) ; (8.17)

where n(t) is the unit normal vector of r(t) and � is a scaling factor chosen
for appropriate visualization. The tangent vector of an orthotomic curve is
zero (and the orthotomic curve usually has a cusp-like singularity) at any
parameter value of t at which the curve r(t) has an inection point. An
illustrative example is shown in Fig. 8.6.

A �-orthotomic surface y�(u; v) of a surface r(u; v) with respect to a point
p, not on r(u; v) or any of its tangent planes, is de�ned as

y�(u; v) = p+ �[(r(u; v) � p) �N(u; v)]N(u; v) ; (8.18)

whereN(u; v) is the unit normal vector of the surface r(u; v) and � is a scaling
factor. An orthotomic surface has a singularity, i.e. a degenerate tangent
plane, at all values of u; v at which the Gaussian curvature of the surface
r(u; v) vanishes or changes sign.

8.1 Classi�cation of interrogation methods 207

Fig. 8.6. Orthotomics of two curves (adapted from [3]). Note that the orthotomic
on the right shows the inection point of the curve. The thin curves are the ortho-
tomics of the thick curves

Curvature lines. A line of curvature is a curve on a surface whose tangent
at every point is aligned along a principal curvature direction. We have stud-
ied the basics of lines of curvature in Sect. 3.4 and will study them further
in Chap. 9. The principal directions at a given point are those directions for
which the normal curvature takes on minimum and maximum values. A line
of curvature indicates a directional ow for the maximum or the minimum
curvature across the surface [22]. Curvature lines provide some useful infor-
mation about the surface. For example, when a plate is going to be shaped by
rolling it is fed into the rolls using a principal direction and the forming rolls
are adjusted according to the principal curvature [278]. The network of curva-
ture lines may also be useful in idealization, meshing and structural analysis
of shells with free-form surfaces as boundaries, because of their orthogonality
property.

Geodesics. Geodesics are curves of zero geodesic curvature on a surface
and provide candidates for arcs of minimum length between two points on
a surface [411, 234, 136]. We will study the formulation of the governing
equations of geodesics on a parametric surface as well as on an implicit surface
and their solution methodology in Chap. 10.

8.1.4 Third-order interrogation methods

Torsion of space curves. As we discussed in Sect. 2.3 torsion describes
the deviation of a space curve away from its osculating plane spanned by
the curve's tangent and normal vectors. For planar curves, the torsion is
always zero. For an arbitrary speed parametric space curve r(t), t 2 [t1; t2]
the torsion at points with nonzero curvature is given by (2.48).

208 8. Curve and Surface Interrogation

From (2.48), a condition for zero torsion at a nonzero curvature point is

T0(t) � ���
x (_y�z � �y _z)+

���
y (_z�x� �z _x)+

���
z (_x�y � �x _y) = 0; t 2 [t1; t2] : (8.19)

Figure 8.8 shows a point of zero torsion, marked by � at the midpoint of the
curve. The sign of torsion has geometric signi�cance [205]. If �(t) changes its
sign from +(�) to �(+) when passing a point its features change from a right-
handed (left-handed) curve to a left-handed (right-handed) one, respectively.

Stationary points of curvature of planar and space curves. Modern
CAD/CAM systems allow users to access speci�c application programs for
performing several tasks, such as displaying objects on a graphic display,
mass property calculation, �nite element or boundary element meshing for
analysis. These application programs often operate on piecewise linear ap-
proximation of the exact geometric de�nition. When a coarse approximation
of good quality is required for 2-D and 3-D curves, stationary points of cur-
vature play an important role in successful discretization [192, 97, 150, 58].

Using (2.25), the �rst derivative of the curvature function of a planar
curve is given by

_�(t) =
(_x2 + _y2)(_x

���
y � ���

x _y)� 3(_x�x+ _y�y)(_x�y � �x _y)

(_x2 + _y2)
5
2

: (8.20)

Since we are assuming a regular curve, the necessary condition to have a local
maximum or minimum of curvature is given by

(_x2 + _y2)(_x
���
y � ���

x _y)� 3(_x�x+ _y�y)(_x�y � �x _y) = 0 : (8.21)

Figure 8.7 shows the corresponding stationary points of curvature on r(t),
labeled by �. Furthermore, comparing (8.8) and (8.21) we see both �(t) and
_�(t) of a regular planar curve r(t) vanish for some t if and only if _x�y = �x _y

and _x
���
y=

���
x _y, simultaneously [58].

Similarly for a regular space curve, the necessary condition to have sta-
tionary points of curvature �(t) at nonzero curvature points is given by

K1(t) � G1(t)G2(t)� 3G3(t)K0(t) = 0 ; (8.22)

where

G1(t) = _x2 + _y2 + _z2 ; (8.23)

G2(t) = (_x�y � �x _y)(_x
���
y � ���

x _y) + (_y�z � �y _z)(_y
���
z � ���

y _z) (8.24)

+(_z�x� �z _x)(_z
���
x � ���

z _x) ;

G3(t) = _x�x+ _y�y + _z�z ; (8.25)

and K0(t) is de�ned in (8.10). Note that at points �(t) = 0, the necessary
condition (8.22) is automatically satis�ed (see (8.11)), thus at those points
_�(t) = 0 is equivalent to

8.1 Classi�cation of interrogation methods 209

Fig. 8.7. Signi�cant points on a planar B�ezier curve of degree 5 (adapted from
[58])

_x
���
y � ���

x _y = _y
���
z � ���

y _z = _z
���
x � ���

z _x = 0 : (8.26)

Three points in Fig. 8.8 satisfy (8.22). Two of them are marked by �'s and
one is marked by � at the midpoint of the curve.

Once all the stationary points are identi�ed, we may use the extrema the-
ory of functions for a single variable given in Sect. 7.3.1 to classify stationary
points of curvature.

Stationary points of curvature of parametric surfaces. Stationary
points of surface curvature are important in methods for the correct topo-
logical decomposition of the surface on the basis of curvature [254]. Let
the curvature in question of a parametric surface r = r(u; v) de�ned over
(u; v) 2 [0; 1]2 be denoted by a scalar function C(u; v), then the following
(see also Sect. 7.2.1), need to be evaluated to locate all the stationary points
of curvature and to �nd the global maximum and minimum values of C(u; v)
to provide a correct topological decomposition of the surface [254].

1. The four values of curvature at the parameter domain corners

C(0; 0); C(0; 1); C(1; 0); C(1; 1) : (8.27)

2. Stationary points along parameter domain boundaries (roots of the four
equations)

Cu(u; 0) = 0; Cu(u; 1) = 0; 0 � u � 1 ;

Cv(0; v) = 0; Cv(1; v) = 0; 0 � v � 1 : (8.28)

210 8. Curve and Surface Interrogation

XY

Z

X

Y

Y

Z

X

Z

Fig. 8.8. Signi�cant points on a space curve and its projections (adapted from
[58])

3. Stationary points within the parameter domain (roots of the two simul-
taneous equations)

Cu(u; v) = 0; Cv(u; v) = 0; 0 � u; v � 1 : (8.29)

The curvature values at the parameter domain corners are readily computed.
The classi�cation of stationary points of functions of two variables is given in
Theorem 7.3.1. The formulations for the stationary points of the Gaussian,
mean and principal curvatures for parametric surfaces are derived in Sect.
8.2.

8.1.5 Fourth-order interrogation methods

Stationary points of torsion of space curve. At nonzero curvature point
on a regular space curve where the twist out of its osculating plane attains a
local maximum or minimum, namely _�(t) = 0, leads to the necessary condi-
tion [58]

8.1 Classi�cation of interrogation methods 211

T1(t) � G4(t)K0(t)� 2G2(t)T0(t) = 0; t 2 [t1; t2] ; (8.30)

where

G4(t) = x(4)(_y�z � �y _z) + y(4)(_z�x� �z _x) + z(4)(_x�y � �x _y) ; (8.31)

and K0(t), G2(t) and T0(t) are de�ned in (8.10), (8.24) and (8.19), respec-
tively.

Figure 8.8 shows the corresponding signi�cant points, marked by �'s.
Moreover, comparing (8.19) and (8.30), both �(t) and _�(t) of a regular curve
vanish at nonzero curvature points if and only if T0(t) = G4(t) = 0.

Stationary points of total curvature. We now consider the notion of the
Darboux vector
(t) de�ned by [205],

(t) = �(t)t(t) + �(t)b(t) ; (8.32)

where t(t) and b(t) are the unit tangent and binormal vectors, respectively.
The Darboux vector turns out to be a rotation vector of the Frenet frame while
moving along the curve and therefore, its Euclidean norm j
(t)j indicates
the angular speed !(t) of the moving local frame. The angular speed !(t) is
sometimes called total curvature of a curve and de�ned by

!(t) =
p
�2(t) + �2(t) : (8.33)

In a planar curve, !(t) reduces to �(t) and the binormal vector becomes the
axis of rotation. We notice that the total curvature !(t) captures the coupled
e�ect of both intrinsic features of a space curve, and hence, we may consider
it as a criterion function for detecting a signi�cant point on a space curve
[58].

At a nonzero curvature point on a regular space curve, where the moving
frame has its locally highest or lowest angular speed, satis�es the equation
_!(t) = 0, i.e.

K3
0 (t)K1(t) +G4

1(t)T0(t)T1(t) = 0; t 2 [t1; t2] ; (8.34)

whereK0(t),K1(t), G1(t), T0(t) and T1(t) are de�ned in (8.10), (8.22), (8.23),
(8.19) and (8.30), respectively. Comparing each function we can roughly see
each contribution of �(t), _�(t), �(t) and _�(t) to (8.34). For a special example,
if _�(t) and one of �(t) or _� (t) vanish at some t, (8.34) is also satis�ed there.
We note K0(t) and G1(t) are always positive at a nonzero curvature point.
Three points in Fig. 8.8 satisfy (8.34). Two points, marked by +'s, are located
close to the points of curvature extrema, and the other point, marked by �,
is located at the midpoint of the curve where _�(t) and �(t) also vanish.

Finally, for the special case where �(t), �(t) and consequently !(t) are
constant, the curve is a circular helix.

212 8. Curve and Surface Interrogation

8.2 Stationary points of curvature of free-form
parametric surfaces

For simplicity, the underlying surface is assumed to be an integral B�ezier
patch (polynomial patch) r = r(u; v) de�ned over (u; v) 2 [0; 1]2 of degreesm
and n in u and v, respectively. Extension to rational B�ezier patch and rational
B-spline patch, although tedious does not present conceptual di�culties. We
also assume that the surface is regular. In the rest of this chapter we employ
convention (b) (see Fig. 3.7 (b) and Table 3.2) such that the normal curvature
� of a surface at point P is positive when the center of curvature is on the
opposite direction of the unit normal vector N of the surface. More details
for obtaining stationary points of curvature of free-form parametric surfaces
are given in [254].

8.2.1 Gaussian curvature

To formulate the governing equations for computing the stationary points
of Gaussian curvature K(u; v) within the domain, we substitute (3.46) into
(8.29) which yields [254]

Ku(u; v) =
�A(u; v)

S6(u; v)
= 0; Kv(u; v) =

�A(u; v)

S6(u; v)
= 0; 0 � u; v � 1 ;

(8.35)

where

S = ru � rv ; (8.36)

S(u; v) = jSj = jru � rv j ; (8.37)
�A(u; v) = AuS

2 � 4(S � Su)A ; (8.38)

�A(u; v) = AvS
2 � 4(S � Sv)A : (8.39)

Polynomial A and its partial derivatives are given by

A = ~L ~N � ~M2; Au = ~Lu ~N + ~L ~Nu � 2 ~M ~Mu; Av = ~Lv ~N + ~L ~Nv � 2 ~M ~Mv;

(8.40)

where

~L = SL = S � ruu; ~Lu = Su � ruu + S � ruuu; ~Lv = Sv � ruu + S � ruuv ;
(8.41)

~M = SM = S � ruv ; ~Mu = Su � ruv + S � ruuv ; ~Mv = Sv � ruv + S � ruvv ;
(8.42)

~N = SN = S � rvv ; ~Nu = Su � rvv + S � ruvv ; ~Nv = Sv � rvv + S � rvvv ;
(8.43)

8.2 Stationary points of curvature of free-form parametric surfaces 213

and

Su = ruu � rv + ru � ruv ; Sv = ruv � rv + ru � rvv : (8.44)

As S 6= 0, (8.35) are satis�ed if

�A(u; v) = 0; �A(u; v) = 0; 0 � u; v � 1 ; (8.45)

which are two simultaneous bivariate polynomial equations of degree (10m�
7; 10n� 6), (10m� 6; 10n� 7) in u and v, respectively. For example, if the
input surface is a bicubic B�ezier patch, the degrees of the two simultaneous
bivariate polynomial equations become (23, 24) and (24, 23) in u and v.
System (8.45) can be solved robustly with the IPP algorithm described in
Chap. 4 (see [254] for details).

The stationary points along the four boundary edges are easily obtained
by solving the four univariate polynomial equations,

�A(u; 0) = 0; �A(u; 1) = 0; 0 � u � 1 ; (8.46)
�A(0; v) = 0; �A(1; v) = 0; 0 � v � 1 ; (8.47)

using the IPP algorithm described in Chap. 4 (see [254] for details).

Example 8.2.1. A hyperbolic paraboloid r(u; v) = (u; v; uv)T , (u; v) 2 [0; 1]2

(bilinear surface), illustrated in Fig. 3.4, can be expressed in a B�ezier form
as

r =

1X
i=0

1X
j=0

bijBi;1(u)Bj;1(v) ;

where b00 = (0; 0; 0)T , b01 = (0; 1; 0)T , b10 = (1; 0; 0)T and b11 = (1; 1; 1)T .
The �rst and second fundamental form coe�cients are readily computed using
(3.63) (3.64) (3.65)

E = ru � ru = 1 + v2; F = ru � rv = uv; G = rv � rv = 1 + u2 ;

N =
(�v;�u; 1)Tp
u2 + v2 + 1

;

L = ruu �N = 0; M = ruv �N =
1p

u2 + v2 + 1
; N = rvv �N = 0 :

Thus the Gaussian curvature is given by

K =
LN �M2

EG� F 2
= � 1

u2 + v2 + 1
:

The Gaussian curvature is always negative and hence all the points are hy-
perbolic.

214 8. Curve and Surface Interrogation

The stationary points within the parameter domain are given by �nding
the roots of Ku = Kv = 0. Since

S = ru � rv = (�v;�u; 1)T ; S = jSj =
p
u2 + v2 + 1 ;

Su = (0;�1; 0)T ; Sv = (�1; 0; 0)T ;

and from (8.40) through (8.43)

~L = SL = 0; ~M = SM = 1; ~N = SN = 0 ;

A = ~L ~N � ~M2 = �1 ;
Au = ~Lu ~N + ~L ~Nu � 2 ~M ~Mu = 0; Av = ~Lv ~N + ~L ~Nv � 2 ~M ~Mv = 0 ;

and from (8.38) and (8.39)

�A = AuS
2 � 4(S � Su)A = 4u; �A = AvS

2 � 4(S � Sv)A = 4v ;

hence we have

Ku =
4u

(u2 + v2 + 1)3
; Kv =

4v

(u2 + v2 + 1)3
:

Thus the stationary point within the domain is given by (u; v) = (0; 0), which
coincides with one of the corner points of the bilinear surface patch. Using
Theorem 7.3.1, we �nd that K(0; 0) = �1 is a minimum.

At the remaining of corner points of the patch, we can readily compute

K(0; 1) = �1
4
; K(1; 0) = �1

4
; K(1; 1) = �1

9
:

Stationary points along parameter domain boundaries are obtained by solving
the following four univariate equations

Ku(u; 0) =
4u

(u2 + 1)3
= 0 ;

Ku(u; 1) =
4u

(u2 + 2)3
= 0 ;

Kv(0; v) =
4v

(v2 + 1)3
= 0 ;

Kv(1; v) =
4v

(v2 + 2)3
= 0 :

The roots are u = 0, u = 0, v = 0 and v = 0, thus they coincide with
the corner points (0; 0), (0; 1), (0; 0) and (1; 0). Therefore, the range of the
Gaussian curvature is �1 � K � � 1

9 .

8.2 Stationary points of curvature of free-form parametric surfaces 215

8.2.2 Mean curvature

Similarly to the Gaussian curvature, we have the following equations to eval-
uate the stationary points of mean curvature H given by (3:47) (convention
(b) (see Fig. 3.7 (b) and Table 3.2) is employed) within the domain [254]:

Hu(u; v) =
�B(u; v)

2S5(u; v)
= 0; Hv(u; v) =

�B(u; v)

2S5(u; v)
= 0; 0 � u; v � 1 ;

(8.48)

where

�B(u; v) = BuS
2 � 3(S � Su)B ; (8.49)

�B(u; v) = BvS
2 � 3(S � Sv)B : (8.50)

Polynomial B and its partial derivatives are given by

B = 2F ~M �E ~N �G~L ; (8.51)

Bu = 2(F ~Mu + Fu ~M) � (Eu ~N +E ~Nu) � (Gu
~L+G~Lu) ; (8.52)

Bv = 2(F ~Mv + Fv ~M) � (Ev ~N +E ~Nv) � (Gv
~L+G~Lv) ; (8.53)

where

Eu = 2ru � ruu; Ev = 2ru � ruv ; (8.54)

Fu = ruu � rv + ru � ruv ; Fv = ruv � rv + ru � rvv ; (8.55)

Gu = 2rv � ruv ; Gv = 2rv � rvv : (8.56)

Since S 6= 0, (8.48) reduce to two simultaneous bivariate polynomial equa-
tions

�B(u; v) = 0; �B(u; v) = 0; 0 � u; v � 1 ; (8.57)

of degree (9m � 6; 9n � 5) and (9m � 5; 9n � 6) in u and v. For a bicubic
B�ezier patch input, the degrees of the governing equations are (21, 22) and
(22, 21) in u and v, respectively. The system (8.57) can be solved robustly
with the IPP algorithm described in Chap. 4 (see [254] for details).

The stationary points of mean curvature along the domain boundary can
be obtained by solving the following four univariate polynomial equations:

�B(u; 0) = 0; �B(u; 1) = 0 ; 0 � u � 1 ; (8.58)
�B(0; v) = 0; �B(1; v) = 0 : 0 � v � 1 : (8.59)

These equations can be solved robustly with the IPP algorithm described in
Chap. 4 (see [254] for details).

216 8. Curve and Surface Interrogation

8.2.3 Principal curvatures

For obtaining the stationary points of principal curvature � within the do-
main, the simultaneous bivariate equations (8.29) become [254]

�u(u; v) =
f1(u; v)� f2(u; v)

p
f3(u; v)

2S5(u; v)
p
f3(u; v)

= 0; 0 � u; v � 1 ; (8.60)

�v(u; v) =
g1(u; v)� g2(u; v)

p
f3(u; v)

2S5(u; v)
p
f3(u; v)

= 0; 0 � u; v � 1 :

The plus and minus signs correspond to the maximum and minimum principal
curvatures, and f1(u; v), f2(u; v), f3(u; v), g1(u; v) and g2(u; v) are polyno-
mials of degree (14m � 9; 14n � 8), (9m � 6; 9n � 5), (10m � 6; 10n � 6),
(14m� 8; 14n� 9), (9m� 5; 9n� 6) in u and v parameters and are given by

f1(u; v) = (BBu � 2AuS
2)S2 + (8AS2 � 3B2)(S � Su) ; (8.61)

f2(u; v) = BuS
2 � 3(S � Su)B ; (8.62)

f3(u; v) = B2 � 4AS2 ; (8.63)

g1(u; v) = (BBv � 2AvS
2)S2 + (8AS2 � 3B2)(S � Sv) ; (8.64)

g2(u; v) = BvS
2 � 3(S � Sv)B : (8.65)

Assuming f3 6= 0 and S 6= 0, we obtain

f1(u; v) � f2(u; v)
p
f3(u; v) = 0; 0 � u; v � 1 ; (8.66)

g1(u; v) � g2(u; v)
p
f3(u; v) = 0; 0 � u; v � 1 :

These are two simultaneous bivariate irrational equations involving polyno-
mials and square roots of polynomials which arise from the analytical expres-
sions of principal curvatures. We can introduce an auxiliary variable � such
that �2 = f3 to remove the radical and transform the problem into a sys-
tem of three trivariate polynomial equations of degree (14m� 9; 14n� 8; 1),
(14m � 8; 14n � 9; 1), (10m � 6; 10n � 6; 2) in u, v and � . For a bicubic
B�ezier patch the degrees of the trivariate polynomial equations are (33,34,1),
(34,33,1) and (24,24,2). The resulting system can be solved with the IPP
algorithm of Chap. 4 (see [254] for details).

For the stationary points of principal curvatures along the boundary, we
need to solve the following four univariate irrational equations involving poly-
nomials and square roots of polynomials

f1(u; 0) � f2(u; 0)
p
f3(u; 0) = 0; f1(u; 1)� f2(u; 1)

p
f3(u; 1) = 0; 0 � u � 1 ;

(8.67)

g1(0; v) � g2(0; v)
p
f3(0; v) = 0; g1(1; v)� g2(1; v)

p
f3(1; v) = 0; 0 � v � 1 ;

(8.68)

which can be solved by the same auxiliary variable method as before.

8.3 Stationary points of curvature of explicit surfaces 217

When f3 = 0 (or equivalently H2 � K = 0 if S 6= 0), (8.60) become
singular. This condition is equivalent to the point where the two principal
curvatures are identical, i.e. an umbilical point. If the umbilical point coin-
cides with a local maximum or minimum of the curvature, we cannot use
(8.66) to locate such a point. In such case we need to locate the umbilical
point �rst by �nding the roots of the equation

H2(u; v)�K(u; v) =
f3(u; v)

4S6(u; v)
= 0 ; (8.69)

which reduces to solving f3(u; v) = 0, since S 6= 0. BecauseW (u; v) � f3(u;v)
4S6(u;v)

is a non-negative function,W (u; v) has a global minimum at the umbilic [256].
The condition for global minimum at the umbilic implies that rW = 0 or
equivalently (given that f3(u; v) = 0)

Wu =
@f3
@u

4S6
= 0; Wv =

@f3
@v

4S6
= 0 : (8.70)

Therefore, assuming S 6= 0, the umbilics are the solutions of the following
three simultaneous equations (see also Sect. 9.3):

@f3(u; v)

@u
= 0;

@f3(u; v)

@v
= 0; f3(u; v) = 0; 0 � u; v � 1 : (8.71)

These equations can be reduced to [256]:

BBu � 2AuS
2 � 4A(S � Su) = 0; BBv � 2AvS

2 � 4A(S � Sv) = 0 ;

B2 � 4AS2 = 0; 0 � u; v � 1 : (8.72)

Since f3(u; v) = 0 at the umbilics, (8.66) reduce to f1(u; v) = 0 , g1(u; v) = 0.
If we substitute the �rst equation of (8.72) into (8.61) and use the fact
f3 = B2 � 4AS2 = 0, we obtain f1(u; v) = 0. Similarly by substituting the
second equation of (8.72) into (8.64), we obtain g1(u; v) = 0. Consequently
the solutions of (8.66) include not only the locations of extrema of principal
curvatures but also the locations of the umbilical points. Then we use The-
orem 9.5.1 at the umbilical points to check if the umbilical point is a local
extremum of principal curvatures.

A cusp is an isolated singular point on the surface where the surface tan-
gent plane is unde�ned, i.e. ru�rv = 0. Cusps of an o�set surface correspond
to points on the progenitor where both of the principal curvatures are equal
to � 1

d where d is the o�set distance [94] (see also Sect. 11.3.2). In this man-
ner, cusps on an o�set surface are associated with umbilics of the progenitor.
Hence we can locate the cusps on an o�set surface using (8.71).

8.3 Stationary points of curvature of explicit surfaces

We can apply the procedures discussed in Sect. 8.2 to obtain the stationary
points of curvature of explicit surfaces [247]. Locally any surface can be ex-

218 8. Curve and Surface Interrogation

pressed as a graph of a di�erentiable function [76]. Given a point P on the
parametric surface S, we can set an orthogonal Cartesian coordinate system
xyz such that xy-plane coincides with the tangent plane of S at P and z-
axis is along the normal at P . It follows that in the neighborhood of P any
parametric surface S can be represented in the form r(x; y) = [x; y; h(x; y)]T ,
where h is a di�erentiable function with h(0; 0) = hx(0; 0) = hy(0; 0) = 0.

We can Taylor expand h(x; y) about (0; 0) as follows

h(x; y) = h(0; 0) + [xhx(0; 0) + yhy(0; 0)] (8.73)

+
1

2!
[x2hxx(0; 0) + 2xyhxy(0; 0) + y2hyy(0; 0)]

+
1

3!
[x3hxxx(0; 0) + 3x2yhxxy(0; 0) + 3xy2hxyy(0; 0) + y3hyyy(0; 0)]

+R(x; y)(jx; yj3) ;
where R(x; y) is a remainder term with limx!0;y!0R(x; y) = 0 and jx; yj =p
x2 + y2. If we take into account that h(0; 0) = hx(0; 0) = hy(0; 0) = 0, we

can consider

h(x; y) =
1

2
[hxx(0; 0)x

2 + 2hxy(0; 0)xy + hyy(0; 0)y
2] ; (8.74)

as the second order approximation of h(x; y).
If we denote E, F , G and L, M , N as coe�cients of the �rst and second

fundamental forms of the surface, and assume further that x and y axes are di-
rected along the principal directions at P , assuming P is not an umbilic, then

F =M = 0 [76]. It follows that hxy(0; 0) = 0, since M = hxy=
q
1 + h2x + h2y

(see Equation (3.65)). Although we have assumed P is not an umbilic, we can
show that hxy(0; 0) will also vanish when the point is an umbilic (see Sect.
9.2). Also the principal curvatures at P when F = M = 0 can be expressed
as follows:

� If hxx(0; 0) > hyy(0; 0); (8.75)

�min = �L
E

= �hxx(0; 0); �max = �N
G

= �hyy(0; 0) ;
� If hxx(0; 0) < hyy(0; 0); (8.76)

�max = �L
E

= �hxx(0; 0); �min = �N
G

= �hyy(0; 0) ;

where the minus signs are due to convention (b) of the normal curvature (see
Fig. 3.7 (b)).

If we set � = hxx(0; 0) and � = hyy(0; 0) and assuming that P is a nonpla-
nar point, the surface can be written locally as a second order approximation
in the nonparametric form given by

z =
1

2
(�x2 + �y2) : (8.77)

8.3 Stationary points of curvature of explicit surfaces 219

Its corresponding parametric form is

r(x; y) = [x; y;
1

2
(�x2 + �y2)]T : (8.78)

Equation (8.77) or (8.78) represents an explicit quadratic surfaces which can
be categorized into four types according to combinations of � and � as listed
in Table 8.1. The four types of explicit quadratic surfaces are depicted in Fig.
8.9.

Table 8.1. Four types of explicit quadratic surfaces according to � and � (adapted
from [247])

Signs of � and � Types of surfaces Types of points at P

�� < 0 Hyperbolic paraboloid Hyperbolic point

�� > 0 and � 6= � Elliptic paraboloid Elliptic point

� = � Paraboloid of revolution Umbilical point
� = 0 or � = 0 Parabolic cylinder Parabolic point

Since any regular surface can be locally approximated in the neighbor-
hood of a point P by an explicit quadratic surface to the second order, we
examine the stationary points of curvatures of explicit quadratic surfaces as
representatives of explicit surfaces. We can apply the procedures in Sect. 8.2
to evaluate the stationary points of curvatures of explicit quadratic surfaces.
We will only examine the stationary points of principal curvatures, since
those of Gaussian and mean curvatures can be found in a similar way. In the
sequel we assume that � > 0 and � � � without loss of generality. It follows
that at (0,0,0) (8.76) holds and the x-axis will be the direction of maximum
principal curvature and y-axis will be the direction for the minimum princi-
pal curvature. The surface is a hyperbolic paraboloid when � < 0, an elliptic
paraboloid when 0 < � < �, a paraboloid of revolution when 0 < � = �, and
a parabolic cylinder when � = 0. The paraboloid and the parabolic cylinder
can be considered as degenerate cases of the elliptic paraboloid.

Gaussian curvature (see (3.66)) and mean curvature (see (3.67) in Table
3.2) are readily evaluated

K(x; y) =
��

(1 + �2x2 + �2y2)2
; H(x; y) = ��+ � + ��(�x2 + �y2)

2(1 + �2x2 + �2y2)
3
2

;

(8.79)

and hence the principal curvatures become

�max(x; y) =
�(1 + �2x2)� � (1 + �2y2)�

2(1 + �2x2 + �2y2)
3
2

(8.80)

220 8. Curve and Surface Interrogation

(a) (b)

(c) (d)

Fig. 8.9. Explicit quadratic surfaces z = 1
2
(�x2 + �y2) (adapted from [247]): (a)

hyperbolic paraboloid (� = �3, � = 1), (b) elliptic paraboloid (� = 1, � = 3), (c)
paraboloid of revolution(� = � = 3), (d) parabolic cylinder (� = 0, � = 3)

+

p
(�� �)2 � 2��(�� �)(�x2 � �y2) + �2�2(�x2 + �y2)2

2(1 + �2x2 + �2y2)
3
2

;

�min(x; y) =
�(1 + �2x2)� � (1 + �2y2)�

2(1 + �2x2 + �2y2)
3
2

(8.81)

�
p
(�� �)2 � 2��(�� �)(�x2 � �y2) + �2�2(�x2 + �y2)2

2(1 + �2x2 + �2y2)
3
2

:

The stationary points of principal curvature in the domain must satisfy
the simultaneous equations (8.66). The equations not only �nd the stationary
points of principal curvatures but also �nd the locations of the umbilics (see
Sect. 8.2.3 and [254]). For explicit quadratic surface f1, f2, f3, g1, g2 (see

8.3 Stationary points of curvature of explicit surfaces 221

(8.61) - (8.65)) are given by

f1(x; y) = �[�2�x(1 + �2x2)� 2�2�3xy2 + 3�3x(1 + �2y2)][(1 + �2x2)�

+(1 + �2y2)�)] + 8�3�x(1 + �2x2 + �2y2) ; (8.82)

f2(x; y) = �2�x(1 + �2x2)� 2�2�3xy2 + 3�3x(1 + �2y2) ; (8.83)

f3(x; y) = (�� �)2 � 2��(�� �)(�x2 � �y2) + �2�2(�x2 + �y2)2 ; (8.84)

g1(x; y) = �[�2�y(1 + �2y2)� 2�3�2x2y + 3�3y(1 + �2x2)][(1 + �2x2)�

+(1 + �2y2)�] + 8��3y(1 + �2x2 + �2y2) ; (8.85)

g2(x; y) = ��2y(1 + �2y2)� 2�3�2x2y + 3�3y(1 + �2x2) : (8.86)

We can reduce the two simultaneous bivariate irrational equations (8.66)
involving polynomials and square roots of polynomials into a system of three
nonlinear polynomial equations in three variables through the introduction
of auxiliary variables [254, 253] (see Sect. 4.5). As this is a system of low
degree polynomial equations, we can solve these equations analytically using
a symbolic manipulation program such asMathematica [445], Maple [51].

Since the maximum principal curvature can be obtained in a similar man-
ner, we will only focus on the minimum principal curvature. Provided we �nd
all the real roots, we check �rst if the roots (x; y) are umbilics or not by sub-
stituting the roots (x; y) into �min(x; y) � H(x; y) = 0. If the roots do not
satisfy this equation, the points are not umbilics and we can use Theorem
7.3.1 to classify the stationary points of minimum principal curvature. To
apply the extrema theory of functions to the minimum principal curvature
function, the second order partial derivatives of the minimum principal cur-
vatures are required; however, we avoid to present these here, since they are
extremely lengthy. If the points are umbilics, we need to use a specialized cri-
terion [256] (see Theorem 9.5.1), to check if the point is a local extremum of
the principal curvature, since the curvature function �min is not di�erentiable
at an umbilic.

All the real roots of (8.66) and their classi�cations are listed in Table 8.2.
The hyperbolic paraboloid has only one real root (x; y) = (0; 0), which corre-
sponds to point (0,0,0) on the surface, and gives a minimum of the minimum
principal curvature function with �min(0; 0) = �� according to the extrema
theory. Since there is no other extremum, this minimum is also a global
minimum. The elliptic paraboloid has three real roots (x; y) = (0; 0) and�
0;� 1

�

q
���
�

�
. The �rst root corresponds to a non-umbilical point (0,0,0)

on the surface, while the other two real roots correspond to generic lemon type

umbilical points

�
0;� 1

�

q
���
� ; ���2��

�
on the surface as shown in Fig. 9.1.

Using the extrema theory of functions, it follows that the root (0; 0) gives a
minimum of the minimum principal curvature function with �min(0; 0) = ��.
Using the criterion in Theorem 9.5.1, we can �nd that the roots correspond-
ing to the two lemon type umbilics do not provide extrema of the minimum

222 8. Curve and Surface Interrogation

Table 8.2. Classi�cation of roots according to types of explicit quadratic surfaces

Types of surfaces Hyperbolic Elliptic paraboloid
paraboloid

Signs of � and � � < 0 < � 0 < � < �
of real roots 1 3

Roots (0,0) (0,0)

�
0;� 1

�

q
���
�

�
Classi�cation Minimum Minimum Lemon type umbilics
�min(x; y) at roots �� �� ��p�

�

Types of surfaces Paraboloid Parabolic cylinder
of revolution

Signs of � and � 0 < � = � 0 = � < �
of real roots 1 1
Roots (0,0) Along x-axis
Classi�cation Minimum Minima
�min(x; y) at roots �� ��

principal curvature function. Consequently the minimum �� is a global min-
imum.

As � approaches �, two generic umbilics merge to one non-generic um-
bilic at (0; 0; 0), and the surface reduces to a paraboloid of revolution as
illustrated in Fig. 9.1. The paraboloid of revolution has only one real root
(x; y) = (0; 0), which corresponds to point (0,0,0) on the surface, and is a
non-generic umbilical point as mentioned above. Since the root corresponds
to an umbilical point, we cannot use the extrema theory of functions, nor can
we use the criterion in Theorem 9.5.1, since all the second derivatives of W
(see (9.25)) vanish. But it is apparent that the paraboloid of revolution has a
global minimum of the minimum principal curvature function at the umbilic
with �min(0; 0) = ��, since the paraboloid of revolution can be constructed
by rotating a parabola, which has a global minimum of its curvature at the
origin, around the z-axis. Here we are employing the sign convention (b) (see
Fig. 3.7 (b) and Table 3.2) of the curvature.

In the case of a parabolic cylinder, the minimum principal curvature re-
duces to a simple univariate function

�min(y) = ��(1 + �2y2)�
3
2 : (8.87)

It is easy to show that (8.87) has a global minimum at y = 0. Therefore the
parabolic cylinder has global minima with value �min = �� along the x-axis.
These discussions lead to the following lemma [247]:

Lemma 8.3.1. The minimum principal curvature function of explicit quadratic
surfaces, except for the parabolic cylinder, has only one extremum at (0; 0)
with value ��, which corresponds to the point (0; 0; 0) on the surface, and it
is a global minimum. The parabolic cylinder has global minima �� at y = 0,
which corresponds to the x-axis on the surface, and has no other extrema.

8.4 Stationary points of curvature of implicit surfaces 223

Similarly we can deduce the following lemma [247].

Lemma 8.3.2. The maximum principal curvature function of explicit quadratic
surfaces, except for the parabolic cylinder has only one extremum at (0; 0)
with value ��, which corresponds to the point (0; 0; 0) on the surface, and
it is a global minimum for elliptic paraboloid and paraboloid of revolution,
while it is a global maximum for hyperbolic paraboloid (note that for hyper-
bolic paraboloid � is negative). The maximum principal curvature function of
parabolic cylinders is zero everywhere.

Note that Lemmata 8.3.1 and 8.3.2 are based on convention (b) of the normal
curvature (see Fig. 3.7 (b)), and will be used in Sect. 11.3.4.

8.4 Stationary points of curvature of implicit surfaces

Now we provide a method to evaluate the stationary points of a curvature
function C(x; y; z) of implicit surfaces

f(x; y; z) = 0 : (8.88)

We want to maximize or minimize the function C(x; y; z) subject to a con-
straint (8.88). Introducing the Lagrange multiplier � and the auxiliary func-
tion [166]

�(x; y; z) = C(x; y; z) + �f(x; y; z) ; (8.89)

the necessary conditions for the auxiliary function �(x; y; z) to attain a local
maximum or minimum, when no constraints are imposed, are

�x = 0; �y = 0; �z = 0 : (8.90)

Equations (8.90) together with (8.88) form four equations with four unknowns
x, y, z and �. The curvature functions C(x; y; z) including Gaussian, mean
and principal curvatures are evaluated using the procedure described in Sect.
3.5.2. In a manner similar to parametric surfaces, the denominator and the
numerator of the curvature functions consist of polynomials and square root
of polynomials if f(x; y; z) is a polynomial.

As an illustrative example, we will examine the stationary points of the
minimum principal curvature �min(x; y; z) of an ellipsoid (3.83) [248] where
we assume a � b � c. The auxiliary function becomes

� = �min(x; y; z) + �

�
x2

a2
+
y2

b2
+
z2

c2
� 1

�
; (8.91)

and hence the system of equations to obtain the stationary points of minimum
principal curvature of an ellipsoid reduce to

224 8. Curve and Surface Interrogation

�x(x; y; z) = �x(x; y; z) +
2x�

a2
= 0 ; (8.92)

�y(x; y; z) = �y(x; y; z) +
2y�

b2
= 0 ; (8.93)

�z(x; y; z) = �z(x; y; z) +
2z�

c2
= 0 ; (8.94)

x2

a2
+
y2

b2
+
z2

c2
� 1 = 0 ; (8.95)

where for simplicity we have set � = �min.
After some algebraic manipulation, we obtain

x(g1 + g2t+ 4�a4b2c2f22�t) = 0 ; (8.96)

y(h1 + h2t+ 4�a2b4c2f22�t) = 0 ; (8.97)

z(p1 + p2t+ 4�a2b2c4f22�t) = 0 ; (8.98)

x2

a2
+
y2

b2
+
z2

c2
� 1 = 0 ; (8.99)

t2 � g3 = 0 ; (8.100)

�2 � f2 = 0 ; (8.101)

where the last two equations are added through the introduction of auxiliary
variables t and � to remove the square roots of polynomials that appear in
the denominator and numerator of the expression in (3.83), and

f1 = x2 + y2 + z2 � a2 � b2 � c2 ; (8.102)

f2 =
x2

a4
+
y2

b4
+
z2

c4
; (8.103)

g1 = �2f1f2a4 � 8a2b2c2f2 + 3f21 ; (8.104)

g2 = 2a4f2 � 3f1 ; (8.105)

g3 = f21 � 4a2b2c2f2 ; (8.106)

h1 = �2f1f2b4 � 8a2b2c2f2 + 3f21 ; (8.107)

h2 = 2b4f2 � 3f1 ; (8.108)

p1 = �2f1f2c4 � 8a2b2c2f2 + 3f21 ; (8.109)

p2 = 2c4f2 � 3f1 : (8.110)

Now the system consists of six equations with six unknowns x, y, z, �, t
and �. Since the degree of the polynomials is low we can solve the system
by a symbolic manipulation program such as Mathematica [445], Maple

[51], which gives a global minimum of �min equal to a
c2 at (�a; 0; 0), a local

minimum b
c2 at (0;�b; 0) and a global maximum c

b2 at (0; 0;�c).

8.5 Contouring constant curvature 225

8.5 Contouring constant curvature

8.5.1 Contouring levels

The variation of curvature can be displayed using a color coded map. Color
coded maps provide a rough idea of the di�erential properties of surfaces
but are not su�cient to provide detailed machining information nor permit
automation of the machining process or of fairing algorithms. Iso-curvature
curves can also be used to display and visualize the variation of curvature by
computing the curvature on a lattice and linearly interpolating the contour
points. The iso-curvature curves divide the surface into regions of speci�c
range of curvature. However discrete color coded maps of curvature and lat-
tice methods for curvature contouring do not guarantee to locate all the
stationary points (local extrema and saddle points) of curvature, and hence
may fail to provide the correct topological decomposition of the surface on the
basis of curvature to the manufacturer or to a fairing process. A robust pro-
cedure for contouring curvature of a free-form parametric polynomial surface
can be found in [254]. The contouring levels should be determined to faith-
fully represent the curvature distribution. To do this, we need to evaluate
(8.27), (8.28) and (8.29).

Example 8.5.1. In Example 8.2.1 we have examined the range of Gaussian
curvature of a bilinear surface. The contour lines of Gaussian curvature can be
evaluated by setting K = CL with CL a constant satisfying �1 � CL � � 1

9

K = � 1

(u2 + v2 + 1)2
= CL ;

which can be rewritten as

u2 + v2 =

r
� 1

CL
� 1 :

Since there is no local maxima, minima, nor saddle points of Gaussian cur-
vature in the domain, the constant curvature lines are concentric circles in

the parameter space with center at (0,0) and radius

rq
� 1
CL
� 1.

8.5.2 Finding starting points

Contour lines in the parameter space of a bivariate function can be separated
into three categories:

� Local maxima and minima of the function are encircled by closed contour
curves [209].

226 8. Curve and Surface Interrogation

� At the precise level of a saddle point, the contour curves cross (self-
intersect) or exhibit more complex behavior (eg. z = constant contour
lines of monkey saddle z = x3 � 3xy2, dog saddle z = 4x3y � 4xy3 etc,
[204]).

� Contour curves start from a domain boundary point and end at a domain
boundary point.

If the surface is subdivided along the iso-parametric lines which contain the
local maxima and minima of curvature inside the domain and the contour-
ing levels of curvature are chosen such that the contour curves avoid saddle
points, as shown in Figs. A.3, A.4, A.5, A.6, each sub-patch will contain sim-
ple contour branches without loops or singularities. Therefore we can �nd all
the starting points of the various levels of contour curves along the parame-
ter domain boundary of each sub-patch by �nding the roots of the following
equations.

Starting with the Gaussian curvature

K(u; 0) =
A(u; 0)

S4(u; 0)
= CK ; K(u; 1) =

A(u; 1)

S4(u; 1)
= CK ; 0 � u � 1 ; (8.111)

K(0; v) =
A(0; v)

S4(0; v)
= CK ; K(1; v) =

A(1; v)

S4(1; v)
= CK ; 0 � v � 1 ; (8.112)

where CK is the constant Gaussian curvature value. These equations can be
rewritten as follows:

CKS
4(u; 0)�A(u; 0) = 0; CKS

4(u; 1)�A(u; 1) = 0; 0 � u � 1 ; (8.113)

CKS
4(0; v)�A(0; v) = 0; CKS

4(1; v)�A(1; v) = 0; 0 � v � 1 : (8.114)

Equations (8.113), (8.114) are univariate polynomials of degree 8m-4 and
8n-4, respectively.

Similarly for the mean curvature

H(u; 0) =
B(u; 0)

2S3(u; 0)
= CH ; H(u; 1) =

B(u; 1)

2S3(u; 1)
= CH ; 0 � u � 1 ; (8.115)

H(0; v) =
B(0; v)

2S3(0; v)
= CH ; H(1; v) =

B(1; v)

2S3(1; v)
= CH ; 0 � v � 1 ; (8.116)

where CH is the constant mean curvature value. These equations can be
rewritten as follows

B(u; 0)� 2CH
p
S2(u; 0)S2(u; 0) = 0; B(u; 1)� 2CH

p
S2(u; 1)S2(u; 1) = 0 ;

(8.117)

B(0; v)� 2CH
p
S2(0; v)S2(0; v) = 0; B(1; v)� 2CH

p
S2(1; v)S2(1; v) = 0 ;

(8.118)

where 0 � u; v � 1. Equations (8.117), (8.118) are the univariate irrational
functions involving polynomials and square roots of polynomials which come

8.5 Contouring constant curvature 227

from the normalization of the normal vector of the surface (see (3.3)). B(u; v)
is a polynomial of degree (5m � 3; 5n � 3) and S2(u; v) is a polynomial of
degree (4m� 2; 4n� 2).

Finally for the principal curvatures

�(u; 0) =
B(u; 0)�

p
f3(u; 0)

2S3(u; 0)
= C� ; (8.119)

�(u; 1) =
B(u; 1)�

p
f3(u; 1)

2S3(u; 1)
= C� ; (8.120)

�(0; v) =
B(0; v)�

p
f3(0; v)

2S3(0; v)
= C� ; (8.121)

�(1; v) =
B(1; v)�

p
f3(1; v)

2S3(1; v)
= C� ; (8.122)

where 0 � u; v � 1, the � signs correspond to the maximum and minimum
principal curvatures, and C� is the constant value of principal curvature and
f3(u; v) is a polynomial function de�ned in (8.63). Equations (8.119) through
(8.122) can be rewritten as follows:

B(u; 0) �
p
f3(u; 0)� 2C�S

2(u; 0)
p
S2(u; 0) = 0; 0 � u � 1 ; (8.123)

B(u; 1) �
p
f3(u; 1)� 2C�S

2(u; 1)
p
S2(u; 1) = 0; 0 � u � 1 ; (8.124)

B(0; v) �
p
f3(0; v)� 2C�S

2(0; v)
p
S2(0; v) = 0; 0 � v � 1 ; (8.125)

B(1; v) �
p
f3(1; v)� 2C�S

2(1; v)
p
S2(1; v) = 0; 0 � v � 1 : (8.126)

Equations (8.123) through (8.126) are the univariate irrational functions in-
volving polynomials and two square roots of polynomials which come from
the analytical expression of the principal curvature and normalization of the
normal vector of the surface. The starting points for contour curves of cur-
vature occur in pairs, since non-loop contour lines must start from a domain
boundary and must end at a domain boundary point.

Ridges are surface curves where the surface tangent plane is unde�ned, i.e.
ru�rv = 0. Ridges of an o�set surface correspond to points on the progenitor
where one of the principal curvatures is equal to � 1

d (d is the o�set distance)
[94]. Therefore we can use (8.123) through (8.126) to compute the starting
points for tracing ridges on the o�set, if the surface is subdivided along the
iso-parametric lines which contain the local maxima and minima of principal
curvatures, such that each sub-patch will not contain loops nor singularities
of ridges in its interior.

8.5.3 Mathematical formulation of contouring

Contour curves for constant curvature satisfy the following equation

C(u; v) = constant ; (8.127)

228 8. Curve and Surface Interrogation

where C(u; v) is a curvature at the given point (u; v). The procedure for
tracing contour curves is same as that of tracing method in the intersection
problem that we discussed in Sect. 5.8.1. We now consider a space curve which
lies on the surface represented by the parametric form r(t) = r[u(t); v(t)].
Di�erentiating (8.127) with respect to t yields

Cu _u+ Cv _v = 0 ; (8.128)

where _u, _v are the �rst derivatives with respect to t, and (_u, _v) gives the
direction of the contour line in parameter space. The solutions to (8.128) can
be written as

_u = �Cv ; _v = ��Cu ; (8.129)

where � is an arbitrary nonzero factor. When the curvature map is con-
structed in the uv parameter space, � can be chosen to provide arc-length
parametrization in the parameter domain as follows

� = � 1p
C2
u + C2

v

; (8.130)

or when it is constructed on the surface itself, � can be chosen to provide arc
length parametrization using �rst fundamental form (3.13) of the surface as
a normalization condition as in (5.91)

� = � 1p
EC2

v � 2FCuCv +GC2
u

; (8.131)

where Cu and Cv are given in (8.35), (8.48) and (8.60) for Gaussian, mean
and principal curvatures respectively.

The points of the contour curves are computed successively by integrat-
ing the initial value problem for a system of coupled nonlinear di�erential
equations (8.129) using, for example the Runge-Kutta method or a more so-
phisticated variable stepsize and variable order Adams method [69]. Starting
points are computed by the method described in Sect. 8.5.2. Accuracy of the
contour curve depends on the number of points used to represent the contour
curve by straight line segments. Note that for principal curvatures, Cu and
Cv become singular at an umbilical point, therefore we avoid the contour
level which is equivalent to the curvature value at the umbilics.

To generate a color curvature map, graphics packages require closed polyg-
onal geometry. Therefore, for display purposes and also for theoretical inter-
est, it is necessary to decompose a parameter sub-domain further into closed
polygonal regions. We may use the trip algorithm introduced by Preusser
[336] to polygonize the area between contour curves.

A closed polygon is de�ned by contour curves and the border lines of the
domain as illustrated in Fig. 8.10. Let Ssi and Sei be the starting and ending
point of a contour curve respectively, and Vi be the vertices of the rectangular
sub-domain. The algorithm is given as follows:

Trip algorithm [336]

8.5 Contouring constant curvature 229

1. Start the �rst round trip from Ss1 .
2. At Se1 continue in a counter-clockwise direction on the rectangular bound-

ary to the next starting point Ss2 or vertex.
3. Search a way back to the starting point Ss1 by following a contour curve

from Ss2 , or a rectangular boundary from a vertex. As a result, the �rst
polygon is given by Ss1-S

e
1-S

s
2-S

e
2-V1-S

s
1.

4. A second polygon is started at the next unused starting point in counter-
clockwise direction and is completed in the same way which results in
Ss3-S

e
3-S

s
4-S

e
4-V2-S

s
3 .

5. When there are no unused points S, we start the remaining polygons at
points S that have served only as the end of a contour curve, i.e. Se3 and
Se5 .

1 2

3

5

4

S1,

s
S4

e

S3,
s
S7

e

S3,
e
S7

s

S1,

e
S4

s

S2,
s
S6

e

S5,
s
S8

e

S5,
e
S8

s

S2,
e
S6

s

V2V1

V4
V3

Fig. 8.10. Trip algorithm

8.5.4 Examples

To illustrate constant curvature contouring, we used a wave-like bicubic inte-
gral B�ezier surface patch (see Fig. 8.11). The boundary twelve control points
are coplanar so that the boundary curves form a square. The remaining four
interior control points are not on the same plane. The control points are given
as follows:0
@P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

1
A =

0
B@

(0; 0; 0) (0; 1
3
; 0) (0; 2

3
; 0) (0; 1; 0)

(1
3
; 0; 0) (1

3
; 1

3
; 1) (1

3
; 2

3
; 3
5
) (1

3
; 1; 0)

(2
3
; 0; 0) (2

3
; 1

3
; �1) (2

3
; 2

3
;� 3

5
) (2

3
; 1; 0)

(1; 0; 0) (1; 1
3
; 0) (1; 2

3
; 0) (1; 1; 0)

1
CA :

230 8. Curve and Surface Interrogation

Therefore the surface is anti-symmetric with respect to u = 0:5. The wave-
like surface can also be expressed in a graph form as [x; y; h(x; y)]T with

h(x; y) = 7:2x3y3 � 25:2x3y2 + 18x3y � 10:8x2y3 + 37:8x2y2 � 27x2y

+3:6xy3 � 12:6xy2 + 9xy ; (8.132)

where 0 � x; y � 1 and x = u, y = v. Although the wireframe of the
surface looks simple (see Fig. 8.11), the surface is rich in its variety of dif-
ferential geometry properties. The wave-like surface has four spherical um-
bilics at (0:211; 0:052), (0:211; 0:984), (0:789; 0:052), (0:789; 0:984) with prin-
cipal curvature values 1:197, 0:267, �1:197, �0:267, and one at umbilic at
(0:5; 0:440). None of them are local extrema according to the criterion 9.5.1.

To display the curvature of the subdivided surface clearly, we assigned
discrete color to each closed region based on curvature level. The level was
determined by taking the average value of the curvature values of the con-
tour curves excluding the boundary lines which form the closed region. We
assigned R (red), G (green) and B (blue) to the minimum, zero and maxi-
mum curvature values of the whole domain. The color of the curvature values
in between is linearly interpolated.

Gaussian curvature. Color Plate A.3 shows a color map of the Gaussian
curvature K. Since the surface is anti-symmetric with respect to u = 0:5,
the Gaussian curvature which is the product of maximum and minimum
principal curvatures is symmetric with respect to u = 0:5. The range of the
curvature is �81 � K � 10:297. The global maximum Gaussian curvature
K = 10:297 occurs at two stationary points within the domain (0:195; 0:374),
(0:805; 0:374). The global minimum curvature K = �81 is located at two
corners (0; 0) and (1; 0). There is also a saddle point inside the domain at
(0:5; 0:440), with value K = 0, which is a at point of the surface. There are
six local maxima and two local minima along the domain boundaries. Lo-
cal maxima at (0:211; 0), (0:789; 0), (0:211; 1), (0:789; 1), (0; 0:440), (1; 0:440)
with all values K = 0, and local minima at (0:5; 0) with K = �20:25 and at
(0:5; 1) with K = �7:29. Since the two local maxima inside the domain have
the same v coordinate, we subdivide the surface into two sub-domains along
the iso-parametric line v = 0:374. In this picture, we avoid the curvature level
K = 0 so as not to deal with the self-intersecting contour at the saddle point.

Mean curvature. Color Plate A.4 shows a color map of the mean curvature
H . Because of anti-symmetry with respect to u = 0:5, mean curvature has
H = 0 contour line at u = 0:5. Mean curvature varies from �4:056 to 4:056.
Both global maximum and minimum curvature are located inside the domain
at (0:190; 0:414) and (0:810; 0:414) respectively. There are seven local maxima
and seven local minima along the boundary. The local maxima are located at
(0:116; 0), (0:319; 0), (0:789; 0), (0:211; 1), (0; 0:089), (0; 0:861), (1; 0:440) with
H = 0:539, 0:539, �0:524, 0:121, 1:155, 1:155, �0:607. The local minima
are located at (0:211; 0), (0:681; 0), (0:884; 0), (0:789; 1), (0; 0:440), (1; 0:089),

8.5 Contouring constant curvature 231

(1; 0:861) with H = 0:524, �0:539, �0:539, �0:121, 0:607, �1:155, �1:155.
Since the local maximum and minimum inside the domain are on the same
iso-parametric line v = 0:414, we subdivide into two sub-domains at this line.

Maximum principal curvature. Color Plate A.5 shows a color map of
the maximum principal curvature �max, which has a range of �1:665 �
�max � 9. The global maximum is located at two corners (0; 0) and (1; 0),
and global minimum is located at (0:789; 0:303) which is a stationary point
inside the domain. There is also a local maximum inside the domain at
(0:187; 0:440) with �max = 6:607 and four saddle points inside the domain
at (0:082; 0:802), (0:114; 0:184), (0:321; 0:157) and (0:378; 0:851) with values
�max = 4:504; 5:127; 3:276 and 2:470. There are two local maxima and
six local minima along the boundary. The locations are (0:478; 0), (0:491; 1)
with �max = 4:569 and �max = 2:704 for the local maxima and (0:211; 0),
(0:789; 0), (0:211; 1), (0:789; 1), (0; 0:440), (1; 0:440) with �max = 1:047, 0,
0:242, 0, 1:213, 0 for the local minima. We subdivide the domain along the
iso-parametric line u = 0:187 and u = 0:789 which contain the local maxi-
mum and minimum. The reason we choose the u iso-parametric line is that
the minimum size of each domain in the u direction is larger than in the v
direction.

Minimum principal curvature. Color Plate A.6 shows a color map of the
minimum principal curvature �min, which has a range of �9 � �min � 1:665.
The global maximum is located inside the domain at (0:211; 0:303) with
�min = 1:665. The global minimum is located at two corners (0; 0), (1; 0)
with �min = �9. There are other stationary points within the domain, a
minimum at (0:813; 0:440) with the value �min = �6:607 and four saddle
points inside the domain at (0:622; 0:851), (0:679; 0:157), (0:886; 0:184) and
(0:918; 0:802) with values �min = �2:470; �3:276; �5:127 and � 4:504.
There are six local maxima and two local minima along the domain bound-
aries. The maxima are located at (0:211; 0), (0:789; 0), (0:211; 1), (0:789; 1),
(0; 0:440), (1; 0:440) with �min = 0, �1:047, 0, �0:242, 0, �1:213. The local
minima are located at (0:478; 0), (0:491; 1) with the value �min = �4:299,
�2:688. For the same reason as in maximum principal curvature, the domain
is subdivided at u = 0:211 and u = 0:813.

232 8. Curve and Surface Interrogation

x

y

z

Fig. 8.11. Wave-like integral B�ezier surface patch (adapted from [254])

9. Umbilics and Lines of Curvature

9.1 Introduction

An umbilic is a point on a surface where all normal curvatures are equal
in all directions, and hence principal directions are indeterminate. Thus the
orthogonal net of lines of curvature, which is described in Sect. 3.4, becomes
singular at an umbilic. An obvious example of a surface consisting entirely
of umbilical points is the sphere. Actually, spheres and planes are the only
surfaces all of whose points are umbilics. The number of umbilics on a sur-
face is often �nite and they are isolated 1 [165, 411]. Umbilics have generic
features and may act as �ngerprints for shape recognition. At an umbilic,
the directions of principal curvature can no longer be evaluated by second
order derivatives and higher order derivatives are necessary to compute the
lines of curvature near the umbilic. Monge (1746-1818), who with Gauss can
be considered as the founder of di�erential geometry of curves and surfaces,
�rst computed the lines of curvature of the ellipsoid (1796) which has four
umbilics [319].

There exists an analogy between normal curvature and stress in elasticity
theory [185]. For 2-D problems for example, it is well known that whatever
the state of stress at a point, there will always be two orthogonal directions
through the point in each of which the shear stress is zero. These two direc-
tions are called the axes of principal stress. The curve which lies along one of
the axes of principal stress at all its points is called line of principal stress.
Such lines form an orthogonal net. The point where two principal stresses
are equal is called isotropic point. The state of stress at such point is that of
a radial compression or tension, uniform in all directions. The lines of prin-
cipal stress and isotropic points are analogous to the lines of curvature and
umbilics, respectively.

There are a number of papers which deal with lines of curvature. Mar-
tin [264] introduced so called the principal patches whose sides are lines of
curvature for use in geometric modeling. Principal patches can be created by
imposing two conditions to the boundary curves known as position and frame
matching [264, 289]. Among the principal patches, Dupin's cyclide patches

1 Non-isolated umbilics can be found along an inection line of a developable
surface (see Sect. 9.7).

234 9. Umbilics and Lines of Curvature

whose lines of curvature are all circular arcs are used for blending surface
applications (see Pratt [331], Dutta et al. [83]).

Beck et al. [22], Farouki [96, 98], Hosaka [173], Maekawa et al. [256] provide
a method to construct a net of lines of curvature on a B-spline surface. Lines of
curvature are of considerable importance to plate-metal-based manufacturing
[278]. When a sheet is to be shaped by rolling, then it is fed into the rolls
according to a principal direction and the rolls are adjusted according to the
principal curvature.

The generic features of the lines of curvature near an umbilic are fully
discussed in classic work by Darboux (1896) [71], and more recently by Por-
teous [319, 320, 321], Maekawa et al. [256], and Gutierrez and Sotomayor
[143]. Berry and Hannay [24] calculate the average density of umbilics for a
surface whose deviation from a plane is speci�ed by a Gaussian random sur-
face, and showed the rarity of the monstar pattern. Maekawa and Patrikalakis
[254] and Maekawa [245] describe a robust computational method to locate
all isolated umbilics on a polynomial parametric surface and investigate the
generic features of umbilics and the behavior of lines of curvature which pass
through an umbilic. In computer vision, Brady et al. [37] compute the lines of
curvature and regions of umbilics from range images. Sander and Zucker [363]
extracted umbilics from an image by computing the index of the principal
direction �elds. Sinha and Besl [396] compute the lines of curvature from a
range image and construct a quadrilateral mesh except at the umbilics.

A non-at umbilic occurs at an elliptic point, while it never occurs at a
hyperbolic point. From (3.31), where we assume convention (b) (see Fig. 3.7
(b) and Table 3.2), it is apparent that at an umbilic I and II are proportional
because � = constant, and hence we have the following relation at the umbilic

L = ��E; M = ��F; N = ��G : (9.1)

This result coincides with (3.45) where k = ��. At umbilical points only, the
principal directions are indeterminate and the net of lines of curvature may
have singular properties. The lines of curvature depend only on the shape of
the surface, and not the parametrization. Lines of curvature provide a method
to describe the variation of principal curvatures across a surface. Lines of cur-
vature can be obtained by integrating (3.41), which will be discussed further
in Sect. 9.4.

In this chapter we employ sign convention (b) (see Fig. 3.7 (b) and Table
3.2) for the normal curvature.

9.2 Lines of curvature near umbilics

It is easily veri�ed from (9.1) that L + �E, M + �F and N + �G simulta-
neously vanish at the umbilics. Therefore for all du, dv, (3.41) is satis�ed,
and hence we cannot determine the direction of the lines of curvature which

9.2 Lines of curvature near umbilics 235

pass through the umbilic. In this section we investigate the pattern of the
lines of curvature near generic umbilics. Generic umbilics are stable with re-
spect to small perturbations of the function representing the surface, while
non-generic umbilics are unstable [24, 363, 396]. Darboux [71] has described
three generic features of lines of curvature in the vicinity of an umbilic. The
three generic features are called star, (le) monstar and lemon based on the
pattern of the net of lines of curvature. Color Plate A.7 illustrates these three
patterns of the net of lines of curvature at the umbilic. The red solid line cor-
responds to the maximum principal curvature lines and the dotted blue line
corresponds to minimum principal curvature lines, where convention (b) of
sign of normal curvature is used (see Fig. 3.7 (b) and Table 3.2). Three lines
of curvature pass through the umbilic for monstar and star, while only one
passes for the lemon. The criterion distinguishing monstar from star is that
all three directions of lines of curvature through an umbilic are contained
in a right angle, whereas in the star case they are not contained in a right
angle. There are no other patterns except for non-generic cases. An example
of a non-generic umbilic can be o�ered by the two poles of a convex closed
surface of revolution [165]. Figure 9.1 (a) shows the non-generic umbilic of
a paraboloid of revolution z = x2 + y2 which has an umbilic that in�nite
number of lines of curvature pass through. If we perturb a coe�cient in the

function representing the surface slightly to z = x2

8=7 +y
2 corresponding to an

elliptic paraboloid then the non-generic umbilic splits into two lemon-type
generic umbilics as shown in Fig. 9.1 (b).

Consider a surface in Monge form

r = [x; y; h(x; y)]T ; (9.2)

where h(x; y) is a C3 smooth function, i.e. it has continuous derivatives up
to order three. We can Taylor expand the z component of the surface as
in (8.73). Suppose the surface r has an umbilic at the origin and its tangent
plane coincides with the xy plane, then it is apparent that h(0; 0) = hx(0; 0) =
hy(0; 0) = 0. Evaluating the coe�cients of the �rst and second fundamental
forms of the explicit surface at the origin, which are given in (3.63) through
(3.65), we obtain

E(0; 0) = 1; F (0; 0) = 0; G(0; 0) = 1 ; (9.3)

L(0; 0) = hxx(0; 0); M = hxy(0; 0); N = hyy(0; 0) : (9.4)

Then it is apparent from (9.1) that hxx(0; 0) = hyy(0; 0) = ��(0; 0) and
hxy(0; 0) = 0. Consequently we can rewrite (8.73) into a simpler form:

h(x; y) = ��(0; 0)
2

(x2 + y2) (9.5)

+
1

6
[x3hxxx(0; 0) + 3x2yhxxy(0; 0) + 3xy2hxyy(0; 0) + y3hyyy(0; 0)]

+R(x; y)(jx; yj3) :

236 9. Umbilics and Lines of Curvature

From (9.5), we can observe that the equation of the surface near the umbilic
is governed by the cubic form hc(x; y)

hc(x; y) =
1

6
(�x3 + 3�x2y + 3xy2 + �y3) ; (9.6)

where

� = hxxx(0; 0); � = hxxy(0; 0); = hxyy(0; 0); � = hyyy(0; 0) : (9.7)

Note that �, �, and � vanish for a paraboloid of revolution r(u; v) =
[x; y; a(x2 + y2)]T at (x; y) = (0; 0).

x
y

z

x
y

z

(a) (b)

Fig. 9.1. Lines of curvature of paraboloid of revolution and elliptic paraboloid. Solid
lines and dotted lines represent maximum and minimum principal curvature lines
respectively: (a) paraboloid of revolution (z = x2 + y2) has a non-generic umbilic

at (0,0,0), (b) elliptic paraboloid (z = x2

8=7
+ y2) has two lemon-type umbilics at

(0,�0:1890,0.0357) (adapted from [256])

To study the behavior of the umbilics we can express (9.6) in polar coor-

dinates x = r cos � and y = r sin � for a �xed radius r =
p
x2 + y2 [24]:

hc(�) =
r3

6
(� cos3 � + 3� cos2 � sin � + 3 cos � sin2 � + � sin3 �) : (9.8)

It can be easily veri�ed that hc(�+�) = �hc(�). Therefore the cubic function
is an antisymmetric function of �. The roots of dhc=d� = 0 will give the angles
where local maxima and minima of hc(�) may occur around the umbilic,
depending on the multiplicity of the roots. When there are three distinct
roots, each of the roots gives the local extremum. When there are two equal
roots, the double roots will provide neither maxima nor minima, however

9.2 Lines of curvature near umbilics 237

the single root gives an extremum. When there are three equal roots, the
triple roots give an extremum. Since it is an antisymmetric function, maxima
and minima of hc occur on the same straight line which passes through the
umbilic. Di�erentiating (9.8) with respect to � and setting the equation equal
to zero yields

dhc(�)

d�
=
r3

2
(� cos3 � � (�� 2) sin � cos2 � + (� � 2�) sin2 � cos � � sin3 �)

= 0 : (9.9)

When one of the roots of (9.9) is � = 0 or � then � must be zero, and when
� = �

2 or 3
2� then must be zero. Conversely we can say that when � = 0

one of the roots is � = 0 or �, and when = 0 one of the roots is � = �
2 or

3
2�. Consequently when � 6= 0, we can divide (9.9) by � sin3 � resulting in

t3 � �� 2

�
t2 +

� � 2�

�
t�

�
= 0 ; (9.10)

where t = cot �. Similarly when 6= 0, we can divide (9.9) by cos3 � resulting
in

�t3 � � � 2�

�t2 +

�� 2

�t� �

= 0 ; (9.11)

where �t = tan �. These cubic equations may be reduced by the substitution

t = s+
�� 2

3�
�t = s+

� � 2�

3
; (9.12)

to the normal form [402]

s3 + 3ps+ 2q = 0 ; (9.13)

where

when � 6= 0 p =
3�(� � 2�)� (�� 2)2

9�2
; (9.14)

q =
(2 � �)[2(� � 2)2 � 9(� � 2�)�]� 27�2

54�3
;

(9.15)

when 6= 0 p =
3(�� 2)� (� � 2�)2

92
; (9.16)

q =
(2� � �)[2(� � 2�)2 � 9(�� 2)]� 27�2

543
:

(9.17)

The solutions to the cubic equation are given by:

238 9. Umbilics and Lines of Curvature

� When q2 + p3 > 0; there are three distinct roots, one is real root and
the other two are conjugate complex roots. The real root gives a function
extremum and is given by

s =
3

q
�q +

p
q2 + p3 +

3

q
�q �

p
q2 + p3 ; (9.18)

� When q2+p3 = 0; there are three real roots at least two of which are equal
and are given by

s = �2p�p; �p�p; �p�p ; (9.19)

where the upper sign is to be used if q is positive and the lower sign if q is
negative. Therefore there is at most one root which will provide a function
extremum. This is a non-generic case, since small perturbation will yield
the case either above or below.

� When q2 + p3 < 0; there are three unequal real roots, which provide three
function extrema, and are given by

s = 2
p�p cos

��
3

�
; 2
p�p cos

�
�

3
+

2�

3

�
; 2
p�p cos

�
�

3
+

4�

3

�
;

(9.20)

where cos � = �
q
� q2

p3 and the upper sign is to be used if q is positive and

the lower if q is negative.

Consequently there is either one single angle (lemon) or three di�erent
angles (star, monster) corresponding to one maximum opposite one minimum
or three maxima opposite three minima for generic case. Corresponding to
these angles there are lines of curvature either one or three passing through
the umbilics.

Another way of classifying an umbilic is to compute the index around it
[24, 363]. The lemon and monstar have the same index + 1

2 , while the star
has the index � 1

2 . The index is de�ned as an amount of rotation that a
straight line tangent to lines of curvature experiences when rotating in the
counterclockwise direction around a small closed path around the umbilic.
To compute the index of the umbilic, we can evaluate the angle i, which is
the angle of principal direction, at n points along a boundary curve which
surrounds the umbilic. The angle i is obtained by using the �rst of (3.41)
(see Table 3.2 for sign convention) as

tan i =
dv

du
= � L+ �E

M + �F
or i = arctan

�
� L+ �E

M + �F

�
; (9.21)

where ��
2 � i � �

2 . Since i can also be obtained from the second equation
of (3.41) we also get

9.3 Conversion to Monge form 239

tan i =
dv

du
= �M + �F

N + �G
or i = arctan

�
�M + �F

N + �G

�
: (9.22)

If both L+ �E and M + �F are zero or small in absolute value, we use
(9.22) otherwise we use (9.21), or if jL+�Ej > jM+�F j we can invert (9.21)
and solve for tan(� i) = du=dv. Consequently the index can be computed by

Index =
1

2�

nX
i=0

� i ; (9.23)

where

� i = (i+1) mod n � i and � �

2
� � i � �

2
; (9.24)

andmod is the modulo operator. It is used to account for the �rst point which
is also the last point at which the direction �eld is evaluated. For the examples
in this book, 20 points per boundary curve were adequate for estimation of
the index. Fig. 9.2 illustrates the direction �eld of the maximum principal
curvature around the star, monstar and lemon type umbilics.

(a) (b) (c)

Fig. 9.2. Direction �eld near umbilics: (a) star-type, (b) monstar-type, (c) lemon-
type (adapted from [256])

9.3 Conversion to Monge form

To compute the angles that the tangents to the lines of curvature at the
umbilics make with the axes, the surface has to be set in Monge form for each
umbilic separately. Therefore for each umbilic on the surface, a coordinate
transformation is needed. But before we conduct the transformation, we need
to locate all umbilical points. The principal curvature functions � are de�ned
in (3.49), (3.50) as �(u; v) = H(u; v)�pH2(u; v)�K(u; v). If we set

240 9. Umbilics and Lines of Curvature

W (u; v) = H2(u; v)�K(u; v) ; (9.25)

then umbilic occurs precisely at a point where the function W (u; v) is zero.
Since � is a real valued function, it follows that W (u; v) � 0. Consequently,
an umbilic occurs where the function W (u; v) has a global minimum.

If the surface representation is non-degenerate and Ck smooth, then
H(u; v), K(u; v) and hence W (u; v) are Ck�2 smooth. Although we are par-
ticularly interested in B�ezier surfaces which are C1, we relax the continuity
assumption forW (u; v) by assuming thatW (u; v) is at least C2 smooth which
is guaranteed if the surface is C4. Already the assumption of di�erentiability
for W (u; v), which is weaker than C2, and the condition that W (u; v) has a
global minimum at the umbilic implies that rW = 0 at an umbilic. Therefore
the governing equation for locating the umbilics are given by

W (u; v) = 0; Wu(u; v) = 0; Wv(u; v) = 0 : (9.26)

If the surface r(u; v) is a polynomial parametric surface patch (e.g. a

B�ezier patch), then we denoteW (u; v) = PN (u;v)
PD(u;v) where PN (u; v) and PD(u; v)

are polynomials in u, v. Hence (9.26) reduce to an overconstrained system of
nonlinear polynomial equations (see also Sect. 8.2.3)

PN (u; v) = 0;
@PN (u; v)

@u
= 0;

@PN (u; v)

@v
= 0 : (9.27)

A robust and e�cient solution technique based on the interval projected
polyhedron algorithm to solve a system of nonlinear polynomial equations is
discussed in Chap. 4.

Consider a global frame o-xyz and a surface r = [x(u; v); y(u; v); z(u; v)]T

with an umbilical point O as illustrated in Fig. 9.3. The umbilical point is
represented by a position vector ro given by:

ro = (xo; yo; zo)
T = [x(uo; vo); y(uo; vo); z(uo; vo)]

T
: (9.28)

To represent the surface in the Monge form at the umbilic O, we need to
attach an orthogonal Cartesian reference frame to it, say O-XY Z, and we
represent a surface point r(u; v) in the frame O-XY Z as R(u; v). We choose
unit vectors ru

jruj ,N� ru
jruj ,N as directions ofX , Y and Z axes as shown in Fig.

9.3, where ru is the tangential vector in u direction and N = (Nx; Ny; Nz)
T

is the unit normal vector of the surface at the umbilic.
If we concatenate these three unit vectors ru

jruj , N � ru
jruj , N in a single

matrix, we obtain a description of the orientation of the Monge form with
respect to the frame o-xyz which is called a rotation matrix

 =

0
B@

xu
jruj

Nyzu�Nzyu
jruj Nx

yu
jruj

Nzxu�Nxzu
jruj Ny

zu
jruj

Nxyu�Nyxu
jruj Nz

1
CA

(uo;vo)

: (9.29)

9.3 Conversion to Monge form 241

x

O
y

z

o

r

ro

R

ru
|ru|

Nx ru
|ru|

N

X

Y

Z

Fig. 9.3. De�nition of coordinate system

Then the relation between r(u; v) and R(u; v) is:

r(u; v) = ro +
R(u; v) : (9.30)

Using (9.30), we can solve for R(u; v) as a function of r(u; v) that is the
coordinate of P expressed in frame O-XY Z as a function of the coordinate
of point P expressed in o-xyz frame as

R(u; v) =
�1(r(u; v) � ro) ; (9.31)

where
�1 is the inverse matrix of
. Since
 is an orthonormal matrix,

�1 can be replaced by the transpose matrix
T , therefore

R(u; v) =

0
@X(u; v)
Y (u; v)
h(u; v)

1
A =
T [r(u; v)� ro] ; (9.32)

or equivalently

242 9. Umbilics and Lines of Curvature

X = X(u; v) =

�
ru
jruj

�
o

� [r(u; v)� ro] ; (9.33)

Y = Y (u; v) =

�
(ru � rv)� ru
jru � rv jjruj

�
o

� [r(u; v)� ro] ; (9.34)

Z = h(u; v) =

�
ru � rv
jru � rv j

�
o

� [r(u; v)� ro] ; (9.35)

where subscript o denotes that the expressions are evaluated at (uo, vo). In
(9.33) through (9.35), r(u; v) is the only term that is the function of u and v,
whereas all terms involving ru and rv are evaluated at (uo, vo). Now we want
to express u and v as functions of X and Y , i.e. u = u(X;Y) and v = v(X;Y),
using (9.33) and (9.34), so that R can be written as the same form as (9.2):

R = (X;Y; Z)T = [X;Y; h(u(X;Y); v(X;Y))]T : (9.36)

According to the inverse function theorem [76, 304], this is possible if and
only if ���� Xu Xv

Yu Yv

���� 6= 0 : (9.37)

If we set I and J as

I =

�
ru
jruj

�
(uo;vo)

; (9.38)

J =

�
(ru � rv)� ru
jru � rv jjruj

�
(uo;vo)

; (9.39)

then the determinant can be evaluated using the vector identity (3.15) as
follows:

XuYv � YuXv = (I � ru)(J � rv)� (J � ru)(I � rv) ;
= (I� J) � (ru � rv) ;
= N(uo; vo) � (ru � rv) : (9.40)

Since we are assuming a regular surface, (9.40) will never vanish, and hence
we can apply the inverse function theorem. To evaluate �; �; ; � in (9.6)
we need to compute hXXX ; hXXY ; hXY Y ; hY Y Y which can be computed
using the chain rule as follows:

hX = huuX + hvvX ;

hY = huuY + hvvY ;

hXX = huuu
2
X + 2huvuXvX + hvvv

2
X + huuXX + hvvXX ;

hXY = huuuXuY + huv(uXvY + uY vX) + hvvvXvY + huuXY + hvvXY ;

hY Y = huuu
2
Y + 2huvuY vY + hvvv

2
Y + huuY Y + hvvY Y ;

9.3 Conversion to Monge form 243

hXXX = huuuu
3
X + 3huuvu

2
XvX + 3huvvuXv

2
X + hvvvv

3
X

+3(huuuXuXX + huvuXvXX + huvuXXvX + hvvvXvXX)

+huuXXX + hvvXXX ;

hXXY = huuuu
2
XuY + huuvuX(2uY vX + uXvY) + huvvvX (2uXvY + uY vX)

+hvvvv
2
XvY + huu(2uXuXY + uXXuY)

+huv(2uXvXY + uXXvY + uY vXX + 2uXY vX)

+hvv(2vXvXY + vXXvY) + huuXXY + hvvXXY ;

hXY Y = huuuuXu
2
Y + huuvuY (2uXvY + uY vX) + huvvvY (2uY vX + uXvY)

+hvvvvXv
2
Y + huu(2uXY uY + uXuY Y)

+huv(2uXY vY + uXvY Y + uY Y vX + 2uY vXY)

+hvv(2vXY vY + vXvY Y) + huuXY Y + hvvXY Y ;

hY Y Y = huuuu
3
Y + 3huuvu

2
Y vY + 3huvvuY v

2
Y + hvvvv

3
Y

+3(huuuY uY Y + huvuY vY Y + huvuY Y vY + hvvvY vY Y)

+huuY Y Y + hvvY Y Y : (9.41)

The partial derivatives of h with respect to u and v can be obtained easily
from (9.35). We can determine uX , uY , vX and vY by using the inverse
function theorem [76, 304] as follows:�

uX uY
vX vY

�
=

�
Xu Xv

Yu Yv

��1

: (9.42)

Hence

uX =
Yv

XuYv � YuXv
; uY =

�Xv

XuYv � YuXv
; (9.43)

vX =
�Yu

XuYv � YuXv
; vY =

Xu

XuYv � YuXv
: (9.44)

We can also evaluate the higher-order derivatives such as uXX , vXX , uXY ,
vXX , uY Y , vY Y , uXXX , vXXX , uXXY , vXXY , uXY Y , vXY Y , uY Y Y , vY Y Y
using the chain rule. Once hXXX ; hXXY ; hXY Y ; hY Y Y are obtained, we
can compute the angles of tangent lines to the lines of curvature passing
through the umbilic using (9.10) to (9.20). Since the angles are evaluated in
the XY -plane we need to map back to the parametric uv-space for integra-
tion. Consider a point on the tangent line which passes through the origin and
lies on the XY -plane, say (r cos �; r sin �). Then the point can be expressed
in terms of u; v using the vectors along the X and Y axes:

r cos �
ru
jruj + r sin �

ru � rv
jru � rv j �

ru
jruj

= r

�
cos �

jruj �
sin �(ru � rv)
jru � rv jjruj

�
ru + r

�
sin �jruj
jru � rvj

�
rv

= �ru + �rv : (9.45)

244 9. Umbilics and Lines of Curvature

Therefore the angle between u-axis and the tangent of the line of curvature
in the uv parametric space is given by

� = arctan
� �
�

�
: (9.46)

9.4 Integration of lines of curvature

A line of curvature is a curve on a surface that has tangents which are prin-
cipal directions at all of its points as we discussed in Sect. 3.4. The principal
directions at a given point are those directions for which the normal curvature
takes on minimum and maximum values. If the point is not an umbilic the
principal directions are orthogonal. A line of curvature indicates a directional
ow for the maximum or the minimum curvature across the surface. It is ad-
vantageous to express the curvature line with an arc length parametrization
as u = u(s) v = v(s). Every principal curvature direction vector must ful�ll
(3.41). Hence from the �rst equation of (3.41) (see Table 3.2) we get

u0 =
du

ds
= �(M + �F) ;

v0 =
dv

ds
= ��(L+ �E) ; (9.47)

where � is an arbitrary nonzero factor. At �rst sight, one may expect to
obtain the lines of curvature by integrating (9.47). However the subsequent
considerations show that a simple integration of (9.47) is generally not suf-
�cient to compute the principal curvature lines even in situations where one
does not encounter an umbilic. Namely there may occur several problems,
including cases A and B below, and the criterion in (9.52) may be used to
control the orientation while integrating along the curvature line. Since a
principal curvature direction vector must also ful�ll the second equation of
(3.41) we also get

u0 =
du

ds
= �(N + �G) ;

v0 =
dv

ds
= ��(M + �F) : (9.48)

The solutions u0, v0 of the �rst and the second equations of (3.41) are linearly
dependent, because the system of linear equations given by (3.41) has a rank
smaller than 2. It is possible:

A. That the coe�cients in one of the equations can both be zero while they
are not both zero in the other equation.

B. That both coe�cients in one equation are small in absolute value while the
other equation contains one coe�cient which is large in absolute value.

9.4 Integration of lines of curvature 245

Case B is encountered more often than case A. In case A, using the
equation with zero coe�cients yields an incorrect result, because this equation
does not contain enough information to �nd the principal curvature direction.
In case B, using the equation with the small coe�cients may yield numerical
inaccuracies which could be avoided by using the other equation. Alourdas [5]
has developed an algorithm which makes the choice of the equation dependent
on the size of the coe�cients. Since M + �F is a common coe�cient, if
jL+ �Ej � jN + �Gj we solve (9.47) otherwise we solve (9.48).

We want to point out that also case A may easily occur. Therefore
one needs provisions in the algorithm which takes this into account. We
give now a simple example illustrating case A using a parabolic cylin-
der r(u; v) = (u; v; v2)T . Clearly the maximum principal curvature on the
parabolic cylinder is zero everywhere. Also it is apparent that ruu = 0 and
ruv = 0, hence L = M = 0. Therefore L+ �maxE and M + �maxF become
zero, while N + �maxG 6= 0, which can be seen by an easy computation or
using the fact that a parabolic cylinder has no umbilics. Farouki [98] proved
that one of the solutions (u0, v0) de�ning a principal direction (i.e. (9.47) or
(9.48)) becomes indeterminate at a nonumbilic point if and only if the prin-
cipal direction is tangent to a surface parameter line at that point as in this
example.

It remains to determine factors � and �. If the curvature line is arc length
parametrized, the �rst fundamental form provides the normalization condi-
tion

E

�
du

ds

�2

+ 2F
du

ds

dv

ds
+G

�
dv

ds

�2

= 1 : (9.49)

Substituting (9.47) into (9.49), � is determined to be

� =
�1p

E(M + �F)2 � 2F (M + �F)(L+ �E) +G(L+ �E)2
: (9.50)

Likewise � is determined to be

� =
�1p

E(N + �G)2 � 2F (N + �G)(M + �F) +G(M + �F)2
: (9.51)

The sign of � or � determines the direction in which the solution proceeds.
Choosing a �xed sign for � or � does not guarantee that the vector (u0; v0)
would not change direction. The need to adjust the sign of � or � becomes
even more obvious if one determines the principal curvature vector always
by the numerically preferable equation in the system (3.41). The vectors
obtained from (9.47) and (9.48) are linearly dependent but they do not need
to have the same orientation.

The criterion which is employed in order to determine the sign of � or �
is given by the following inequality

246 9. Umbilics and Lines of Curvature

j � (u0prpu + v0prpv)� (u0ru + v0rv)j < j(u0prpu + v0prpv)� (u0ru + v0rv)j ;
(9.52)

where r is a curvature line represented by the parametric form r(s) = r(u(s),
v(s)) and the superscript p means evaluation at the previous time step during
the integration of the curvature line. It is obvious that inequality (9.52) is true
if and only if the tangent vector (u0ru+v0rv) reverses direction because (9.52)
says that the negative tangent vector of the preceding time step is closer to
the new tangent vector than the positive tangent vector of the preceding time
step. When inequality (9.52) is true, the sign of � or � should be changed to
assure that the solution path does not reverse direction. Farouki [98] derives
another criterion for preventing the reversal of integration direction.

We can trace the lines of curvature by integrating the initial value problem
for a system of coupled nonlinear ordinary di�erential equations using stan-
dard numerical techniques [69, 126] such as Runge-Kutta method or a more
sophisticated variable stepsize and variable order Adams method. Starting
points for lines of curvature passing through the umbilics are obtained by
slightly shifting outwards in the directions given by (9.46) from the umbilic.
Accuracy of the lines of curvature depends on the number of integrated points
used to represent the contour line by straight line segments.

9.5 Local extrema of principal curvatures at umbilics

In this section we discuss a criterion which assures the existence of local ex-
trema of the principal curvature functions �max and �min at umbilical points
of the surface [256]. The problem of detecting local extrema of principal cur-
vature functions is motivated by engineering applications. When a ball-end
mill cutter is used for NC machining, the cutter radius must be smaller than
the smallest concave radius of curvature of the surface to be machined to
avoid local overcut (gouging) (see Sect. 11.1.2). Gouging is the one of the
most critical problems in NC machining of free-form surfaces. Therefore, we
must determine the distribution of the principal curvatures of the surface,
which are upper and lower bounds of the normal curvature at a given point,
to select the cutter size. A natural approach to locate local extrema of the
functions �max and �min would in principle be to search for zeros of the
gradient vector �eld r�max and r�min and then use tools from di�erential
calculus to decide if at those zeros the principal curvature functions attain
extrema. The problem with this approach however is that the curvature func-
tions �max and �min are generally not di�erentiable at the umbilics although
those points may also be candidates for local principal curvature extrema.
We will present a necessary and su�cient criterion, which always detects the
existence of a local extremum of the principal curvature functions �max and
�min at an umbilic, except in presence of rare well de�ned and easily com-
putable conditions. Under such rare condition, the criterion will become only

9.5 Local extrema of principal curvatures at umbilics 247

su�cient. This criterion is practical because it is almost always applicable
and easily evaluated.

We discuss the local behavior of the functions �max and �min in the
neighborhood of an umbilic. First let us consider a Taylor expansion around
an umbilic (uo; vo) for the function de�ned in (9.25). We obtain

W (u; v) = W (uo; vo) + [(u� uo)Wu(uo; vo) + (v � vo)Wv(uo; vo)] (9.53)

+
1

2!
[(u� uo)2Wuu(uo; vo) + 2(u� uo)(v � vo)Wuv(uo; vo)

+(v � vo)2Wvv(uo; vo)] +R(u� uo; v � vo)j(u� uo; v � vo)j2 ;
with

lim
u!uo;v!vo

R(u� uo; v � vo) = 0 : (9.54)

Note that (9.53) describes the remainder term in case of a second order Taylor
approximation of a C2 smooth function which is guaranteed if the surface is
C4. In the special case where all the second partial derivatives of W vanish,
the condition W (u; v) � 0 implies that the third order partial derivatives
must also vanish. If we consider the total number of possibilities where we
have non-vanishing partial derivatives up to third order, the case where all
partial derivatives vanish is statistically very rare. Therefore, we focus our
attention now on the generic case where at least one of the second order
partial derivatives ofW does not vanish. Using (9.26), we obtainW (uo; vo) =
0 and rW (uo; vo) = 0 at the umbilic, therefore (9.53) reduces to

W (u; v) = WQ(u; v) +R(u� uo; v � vo)j(u� uo; v � vo)j2 ; (9.55)

where

WQ(u; v) =
1

2
(u� uo; v � vo)

�
Wuu Wuv

Wuv Wvv

�
(u� uo; v � vo)T

=
1

2

(u� uo; v � vo)
j(u� uo; v � vo)j

�
Wuu Wuv

Wuv Wvv

�
(u� uo; v � vo)T
j(u� uo; v � vo)j j(u� uo; v � vo)j

2 :

(9.56)

Now we can Taylor expand
p
W (u; v) up to �rst order 2

p
W (u; v) =

p
WQ +

R(u� uo; v � vo)
2
p
WQ

j(u� uo; v � vo)j2

= [C(u; v) +
R(u� uo; v � vo)

2C(u; v)
]j(u� uo; v � vo)j ; (9.57)

2 Note that here the Taylor expansion of the square root �rst yields an approx-
imation instead of the equal sign in (9.57). However absorbing here the error
term of this square root Taylor expansion in the remainder of (9.57) justi�es the
equality sign.

248 9. Umbilics and Lines of Curvature

where

C(u; v) =

s
1

2

(u� uo; v � vo)
j(u� uo; v � vo)j

�
Wuu Wuv

Wuv Wvv

�
(u� uo; v � vo)T
j(u� uo; v � vo)j :

(9.58)

Next we Taylor expand the mean curvature H(u; v) as follows:

H(u; v) = H(uo; vo) + (HL(u; v) +R(u� uo; v � vo))j(u� uo; v � vo)j ;
(9.59)

where

HL(u; v) = [Hu(uo; vo); Hv(uo; vo)]
(u� uo; v � vo)T
j(u� uo; v � vo)j : (9.60)

Although the function R(u� uo; v� vo) in the remainder terms are di�erent
in (9.55), (9.57), (9.59), we nonetheless use the same notation for simplicity,
since we are essentially interested in the common property described in (9.54).

Consequently �(u; v) in equation �(u; v) = H(u; v)�pH2(u; v)�K(u; v)
can be expanded in the vicinity of an umbilic (uo; vo) as follows:

�(u; v) = H(uo; vo) + (HL(u; v)� C(u; v)
+R(u� uo; v � vo))j(u� uo; v � vo)j

= H(uo; vo) + �HL(u; v)� �C(u; v) + �R(u� uo; v � vo) ; (9.61)

where

�HL(u; v) = HL(u; v)j(u� uo; v � vo)j ; (9.62)

�C(u; v) = C(u; v)j(u� uo; v � vo)j ; (9.63)
�R(u� uo; v � vo) = R(u� uo; v � vo)j(u� uo; v � vo)j : (9.64)

Therefore �(u; v) can be considered as sum of the constant term H(uo; vo),
the plane �HL(u; v), which is the tangent plane of H(u; v) at (uo; vo), and the
elliptic cone �C(u; v) whose axis of symmetry is perpendicular to uv-plane,
since W (uo; vo) = 0, rW (uo; vo) = 0. First we assume that �HL(u; v) = 0,
in other words the tangent plane of H(u; v) coincides with the uv-plane. In
this case �(u; v)�H(uo; vo) reduces to � �C(u; v). Figure 9.4 shows a positive
elliptic cone + �C(u; v) (maximum principal curvature) having a minimum at
(uo; vo). When the elliptic cone is negative, minimum principal curvature has
a maximum at (uo; vo). The condition �HL(u; v) = 0 occurs when all the third
order partial derivatives of the height function in the Monge form are zero.
This can be proved as follows [256]:

Proof : The coe�cients of �rst and second fundamental forms of the
surface in Monge form are given in (3.63) and (3.65). Their �rst order partial
derivatives with respect to x are readily evaluated:

9.5 Local extrema of principal curvatures at umbilics 249

Ex = 2hxhxx; Fx = hxxhy + hxhxy; Gx = 2hyhxy ;

Lx =
hxxx

q
(1 + h2x + h2y) + hxx(1 + h2x + h2y)

� 3
2 (hxhxx + hyhxy)

1 + h2x + h2y
;

Mx =
hxxy

q
(1 + h2x + h2y) + hxx(1 + h2x + h2y)

� 3
2 (hxhxx + hyhxy)

1 + h2x + h2y
;

Nx =
hxyy

q
(1 + h2x + h2y) + hxx(1 + h2x + h2y)

� 3
2 (hxhxx + hyhxy)

1 + h2x + h2y
:

(9.65)

Now we will di�erentiate (3.67) 3 with respect to x

Hx =
(2FxM + 2FMx �ExN �ENx �GxL�GLx)(EG� F 2)

2(EG� F 2)2

� (2FM �EN �GL)(ExG+EGx � 2FFx)

2(EG� F 2)2
: (9.66)

If the surface is in Monge form with an umbilic at the origin, we have hx =
hy = 0, which leads to Ex = Fx = Gx = 0. Consequently if hxxx = hxxy =
hxyy = 0, then Lx = Mx = Nx = 0 and hence Hx = 0. Similarly we can
say that if hxxy = hxyy = hyyy = 0, then Hy = 0. Since Hu and Hv can be
written as

Hu = Hxxu +Hyyu ;

Hv = Hxxv +Hyyv : (9.67)

We can conclude that if hxxx = hxxy = hxyy = hyyy = 0 then Hu = Hv = 0.

Note that in case �HL = 0 the term �R(u � uo; v � vo) is negligible for
local extremum properties of the function �(u; v)�H(uo; vo). Consequently
when �HL(u; v) = 0, or alternatively when rH(uo; vo) = 0, the function
�(u; v) �H(uo; vo), hence �(u; v) has a local extremum at (uo; vo), or more
precisely, �max has a local minimum and �min has a local maximum at an
umbilical point (uo; vo).

It is also possible that �(u; v) may have a local extremum at the umbilic
when �HL(u; v) 6= 0. This is the situation when the plane �HL(u; v) is tilted
against the uv-plane.4 There are three possible cases, the plane �HL(u; v)
intersects the cone �C(u; v) transversally (see Fig. 9.5 (a)), the plane �HL(u; v)

3 Equation (3.67) is based on convention (a) of the normal curvature, while we are
currently using convention (b) (see Fig. 3.7 (b) and Table 3.2).

4 Note that we use the following observation illustrated by Fig. 9.5 (b). The term
�R(u � uo; v � vo) is negligible for investigating the local extrema properties of

250 9. Umbilics and Lines of Curvature

u

v

(uo, vo)

HL
_

_C

Fig. 9.4. Cone �C(u; v) is perpendicular to the plane �HL(u; v) (adapted from [256])

(a) (b)
HL

C
_

_

(c)

_

C
_

HL
_

HL

Fig. 9.5. (a) The plane intersects the cone, (b) the plane does not intersect the
cone, (c) the plane and the cone are tangent to each other (adapted from [256])

9.5 Local extrema of principal curvatures at umbilics 251

does not intersect the cone �C(u; v), apart from its apex, (see Fig. 9.5 (b)) and
the plane �HL(u; v) and the cone �C(u; v) are tangent to each other (see Fig.
9.5 (c)). Figure 9.5 (a) is the case when the plane intersects the cone in two
straight lines. In this case for some directions the plane has a steeper slope
than the cone, thus the sum �HL(u; v)� �C(u; v) does not have an extremum at
(uo; vo), while in case (b) the plane intersects the cone only at (uo; vo), and the
cone always has a steeper slope than the plane, thus �HL(u; v)� �C(u; v) has
a local extremum at (uo; vo). Consequently we need to examine the equation
� �C(u; v) = � �HL(u; v) which upon squaring and using (9.60) and (9.58) can
be reduced to

(Wuu � 2H2
u)(u� uo)2 + 2(Wuv � 2HuHv)(u� uo)(v � vo)

+ (Wvv � 2H2
v)(v � vo)2 = 0 : (9.68)

We can rewrite (9.68) as

A(u� uo)2 + 2B(u� uo)(v � vo) + C(v � vo)2 = 0 ; (9.69)

so that we can view (9.68) as a quadratic equation with unknown u� uo or
v� vo. If B2�AC > 0 there exist two distinct real roots, and thus there will
be a real intersection between the plane and the cone made up of two straight
lines. If B2 �AC = 0 there exist two identical real roots, and thus the cone
and the plane are tangent to each other, and additional evaluation of higher
order terms in the Taylor expansion is necessary to decide if we have an
extremum at the umbilic. If B2�AC < 0 there will be no real root, and thus
there is no intersection between the cone and the plane. Consequently the
criterion to have a local extremum of principal curvatures, when �HL(u; v) 6= 0
or rH(uo; vo) 6= 0, is equivalent to the condition B2 � AC < 0. Hence the
condition is

(Wuv � 2HuHv)
2 � (Wuu � 2H2

u)(Wvv � 2H2
v) < 0 ; (9.70)

or equivalently upon using W (u; v) = H2(u; v)�K(u; v)

(2HHuv �Kuv)
2 � (2HHuu �Kuu)(2HHvv �Kvv) < 0 : (9.71)

Finally we can state the criterion as follows [256]:

Theorem 9.5.1. (Criterion for extrema of principal curvature func-
tions at umbilics):
If we assume that W (u; v) is at least C2 smooth and at least one of the second
order partial derivatives of W (u; v) does not vanish then:

the function �(u; v) at the umbilic (uo; vo), provided the cone �C(u; v) and the
plane �HL = 0 meet only at the point (uo; vo). Namely in that case we have
a positive number � such that j �C(u; v) � �HL(u; v)j � �j(u � uo; v � vo)j. � is
related to the smallest possible slope between plane and cone. Hence clearly
R(u� uo; v � vo)j(u� uo; v � vo)j is negligible to �j(u� uo; v � vo)j.

252 9. Umbilics and Lines of Curvature

1. If rH = 0 at the umbilic, then �max has a local minimum and �min has
a local maximum.

2. If rH 6= 0 at the umbilic, then �max has a local minimum and �min

has a local maximum if and only if D = (2HHuv �Kuv)
2 � (2HHuu �

Kuu)(2HHvv � Kvv) < 0 provided D 6= 0. In case D = 0, additional
evaluation of higher order terms in the Taylor expansion is necessary.

D = 0 occurs when the cone and plane are tangent to each other, which
is very rare. The condition D = 0 forces the criterion to be only su�cient
and not necessary. It is quite plausible that the plane-cone tangential case
(Fig. 9.5 (c)) is the rare one, while cases plane and cone are intersecting (Fig.
9.5 (a)) or plane and cone are non-intersecting (Fig. 9.5 (b)) are the generic
ones.

When all the second order partial derivatives of W (u; v) vanish, we need
to Taylor expand up to fourth order in (9.53), since the conditionW (u; v) � 0
implies that the third order partial derivatives must vanish. Also we need to
Taylor expand up to second order in (9.59). Consequently �(u; v) can be
expanded in the neighborhood of an umbilic (uo; vo) as sum of constant,
linear and quadratic terms of mean curvature and the square root of fourth
order terms of W (u; v) as

�(u; v) = H(uo; vo) +HL(u; v)j(u� uo; v � vo)j
+(HQ(u; v) +QT (u; v) +R(u� uo; v � vo))j(u� uo; v � vo)j2

= H(uo; vo) + �HL(u; v) + �HQ(u; v) + �QT (u; v) + �R(u� uo; v � vo) ;
(9.72)

where �HQ(u; v) and �QT (u; v) are the second order partial derivatives terms
of the Taylor expansion of the mean curvature and the square root of fourth
order partial derivatives terms of the Taylor expansion of W (u; v). It is ap-
parent that �HQ(u; v) and �QT (u; v) have stationary point at (uo; vo). It fol-
lows that the plane �HL (linear term) will determine the local behavior of
the function �(u; v). This implies now that in case �HL 6= 0, �(u; v) cannot
have a local extremum at the umbilic due to strong monotonicity behavior
of the linear function. Therefore, if the second order partial derivatives of
W (u; v) vanish at the umbilic, then �(u; v) can only have an extremum in
case �HL(u; v) = 0. However �HL(u; v) = 0 is not su�cient to guarantee a local
extremum for �(u; v), since the point (uo; vo) can be a saddle point for the
function �HQ(u; v) + �QT (u; v).

9.6 Perturbation of generic umbilics

In this section, we give a few numerical examples to demonstrate that generic
umbilics are stable with respect to perturbations [256]. The example surface is

9.6 Perturbation of generic umbilics 253

a wave-like bicubic integral B�ezier patch which is illustrated in Fig. 8.11. The
surface is anti-symmetric with respect to x = 0:5. There are four spherical
umbilics and one at umbilic point on the surface. We gradually perturb
the control points of the surface and observe the behavior of the lines of
curvature which pass through umbilics. The control points are perturbed in
the following manner. Since the example is a bicubic patch, it has 16 control
points. Each control point consists of three Cartesian coordinates x; y; z,
hence there are 48 components to be perturbed. A random number which
varies from �1 to 1 is used to determine the 48 components. Let us denote
the randomly chosen numbers for each control point as (exij ; e

y
ij ; e

z
ij); 0 �

i � 3; 0 � j � 3. We normalize the vector and add to each control point as

~Pij = Pij + �
(exij ; e

y
ij ; e

z
ij)

Tq
exij

2 + eyij
2
+ ezij

2
; (9.73)

where � is a constant. We increase the amount of perturbations gradually
by increasing � from 0:02 by 0:02 up to 0:08. The curvature value �, the
four coe�cients of the cubic terms �; �; ; �, angles of the tangent lines to
the lines of curvature which pass through the umbilic in the tangent plane
of the Monge form �1, �2, �3 in the 3-D space, �1, �2, �3 in the uv-space
all in radians, index and the type are listed for original surface and two
perturbed surfaces (� = 0:04 and � = 0:08) in Tables 9.1 to 9.3. The angles
�i; �i (1 � i � 3) are restricted in the range ��

2 � �i; �i � �
2 . Figures 9.6 to

9.8 illustrate how the lines of curvature which only pass through the umbilic
behave when the control points are perturbed. The thick solid line represents
the lines of curvature for maximum principal curvature, thick dotted line
represents the lines of curvature for minimum principal curvature and the
thin solid lines are the iso-parametric lines of the wave-like surface.

From the �gures and tables we can observe that the umbilic on the upper
right jumps o� from the domain but the other four umbilics remain inside
the domain. All the umbilics which stay in the domain do not change their
index nor their type. In Fig. 9.6, when the perturbation is zero, lines of cur-
vature passing through the umbilics at lower left (0.211,0.052) and upper left
(0.211,0.984) have a common line of curvature. Similarly lower right umbilic
(0.789,0.052) and upper right umbilic (0.789,0.984) have a common line of
curvature. As the perturbation gradually increases, they split into two lines
of curvature as shown in Figs. 9.7 and 9.8. Note that in Figs. 9.7 and 9.8
the lines of curvature corresponding to the jumped o� umbilic (upper right)
are not shown, since we cannot compute the initial values for the integration.
From these observations we can conclude that the umbilics are quite stable
to the perturbation. Also the locations and the angles �i; �i (1 � i � 3) of
the umbilics do not move nor rotate too much.

In computer vision, the geometric information of an object is obtained by
range imaging sensors. Generally the data include noise and are processed
using image processing techniques to exclude the noise, then the derivatives

254 9. Umbilics and Lines of Curvature

x

y

z

Fig. 9.6. Lines of curvature passing through the umbilics, � = 0 (adapted from
[256])

Table 9.1. Umbilics of original surface (adapted from [256])

u 0.211 0.211 0.789 0.789 0.5
v 0.052 0.984 0.052 0.984 0.440
� 1.197 0.267 -1.197 -0.267 0.
� 4.147 0.926 4.147 0.926 6.514
� -18.306 14.670 18.306 -14.670 0.
 0. 0. 0. 0. 4.2763
� -2.337 1.411 2.337 -1.411 0.
�1 0.671 0.562 0.592 0.638 0.
�2 -0.592 -0.638 -0.671 -0.616 -0.604
�3 1.571 -1.571 -1.571 1.571 0.604
�1 0.567 0.562 0.495 0.583 0.
�2 -0.495 -0.583 -0.567 -0.562 -0.752
�3 1.571 1.571 -1.571 -1.571 0.752

index - 1
2

- 1
2

- 1
2

- 1
2

1
2

type star star star star monstar

are directly computed from the digital data to evaluate the curvatures. What
we do in the sequel is to �t a surface directly from arti�cial noisy data and
observe the behavior of the umbilics on the �tted surface. The noisy data
are produced in the following way. Evenly spaced 10 � 10 grid points (x; y)
on 0 � x � 1, 0 � y � 1 domain are chosen to evaluate the z-value of

9.6 Perturbation of generic umbilics 255

x

y

z

Fig. 9.7. Lines of curvature passing through the umbilics, � = 0:04 (adapted from
[256])

Table 9.2. Umbilics on perturbed surface, � = 0.04 (adapted from [256])

u 0.190 0.214 0.794 n/a 0.492
v 0.055 0.978 0.081 n/a 0.424
� 1.293 0.136 -1.458 n/a 0.083
� 2.390 0.551 5.014 n/a 6.351
� -16.119 13.046 18.926 n/a 0.163
 0.563 -1.524 -0.360 n/a 4.666
� -3.182 1.711 3.234 n/a 0.510
�1 0.658 0.593 0.586 n/a 0.701
�2 -0.623 -0.667 -0.689 n/a -0.055
�3 1.551 1.509 1.560 n/a -0.644
�1 0.559 0.549 0.528 n/a 0.857
�2 -0.537 -0.589 -0.596 n/a -0.076
�3 1.529 1.552 -1.532 n/a -0.811

index - 1
2

- 1
2

- 1
2

n/a 1
2

type star star star n/a monstar

the wave-like bicubic B�ezier patch. We add randomly perturbed vectors with
� = 0:05, as introduced in (9.73), to the (x; y; z) points on the surface as
noise. Then the data points (x; y; z) are �t by a bicubic B�ezier patch. Figure
9.9 and Table 9.4 illustrate the results. We observe that all the umbilics stay
in the domain with index and types unchanged. Also the locations and the

256 9. Umbilics and Lines of Curvature

x

y

z

Fig. 9.8. Lines of curvature passing through the umbilics, � = 0:08 (adapted from
[256])

Table 9.3. Umbilics on perturbed surface, � = 0.08 (adapted from [256])

u 0.167 0.217 0.795 n/a 0.474
v 0.065 0.970 0.113 n/a 0.411
� 1.426 0.042 -1.779 n/a 0.261
� 0.701 0.374 6.355 n/a 6.356
� -14.070 11.604 19.405 n/a 0.307
 1.621 -2.520 0.727 n/a 5.155
� -4.184 2.057 4.072 n/a 1.273
�1 0.632 0.573 0.594 n/a 0.773
�2 -0.674 -0.694 -0.692 n/a -0.079
�3 1.504 1.455 -1.550 n/a -0.655
�1 0.557 0.534 0.577 n/a 0.928
�2 -0.614 -0.594 -0.631 n/a -0.112
�3 1.466 1.532 -1.485 n/a -0.841

index - 1
2

- 1
2

- 1
2

n/a 1
2

type star star star n/a monstar

angles �i; �i (1 � i � 3) do not move nor rotate too much. These results
provide us con�dence for using the umbilics for shape recognition problems.

9.6 Perturbation of generic umbilics 257

x

y

z

Fig. 9.9. Lines of curvature passing through the umbilics on �tted surface, � = 0:05
(adapted from [256])

Table 9.4. Umbilics on reconstructed surface, � = 0:05 (adapted from [256])

u 0.198 0.227 0.813 0.796 0.493
v 0.043 0.954 0.025 0.991 0.399
� 1.278 0.147 -1.005 -0.124 0.090
� 1.748 0.999 0.678 0.357 6.572
� -16.370 16.161 19.451 -11.981 -0.293
 -0.054 0.061 4.716 0.536 4.849
� -2.705 2.176 3.082 -1.233 -0.410
�1 0.656 0.622 0.686 0.622 0.094
�2 -0.616 -0.642 -0.575 -0.634 -0.692
�3 -1.569 -1.569 -1.443 1.547 0.657
�1 0.532 0.615 0.528 0.543 0.132
�2 -0.535 -0.630 -0.482 -0.554 -0.856
�3 1.497 -1.562 -1.513 1.544 0.827

index - 1
2

- 1
2

- 1
2

- 1
2

1
2

type star star star star monstar

258 9. Umbilics and Lines of Curvature

9.7 Inection lines of developable surfaces

9.7.1 Di�erential geometry of developable surfaces

A ruled surface is a curved surface which can be generated by the continu-
ous motion of a straight line in space along a space curve called a directrix.
This straight line is called a generator, or ruling, of the surface. A book by
Pottmann and Wallner [329] studies line geometry from the viewpoint of sci-
enti�c computation and shows the interplay between theory and applications.
Any point on a parametric ruled surface can be expressed as

r(u; v) = �(u) + v�(u) ; (9.74)

where �(u) is a directrix or base curve of the ruled surface and �(u) is a unit
vector which gives the direction of the ruling at each point on the directrix.
Alternatively, the surface can be represented as a ruling joining corresponding
points on two space curves. This is represented by

r(u; v) = (1� v)rA(u) + vrB(u); 0 � u; v � 1 ; (9.75)

where rA(u) and rB(u) are directrices, as shown in Fig. 9.10. The two repre-
sentations are identical if

�(u) = rA(u) and �(u) = rB(u)� rA(u) : (9.76)

directrix, rA(u)

directrix, rB (u)

generator, ruling

a0

b0

a1

b1

a2

b2

a3

b 3

Fig. 9.10. A ruled surface

A developable surface is a special ruled surface which has the same tangent
plane at all points along a generator [13, 221, 120, 32, 325, 251, 328]. Since

9.7 Inection lines of developable surfaces 259

surface normals are orthogonal to the tangent plane and the tangent plane
along a generator is constant, all normal vectors along a generator are parallel.
This is shown in Fig. 9.11.

A developable surface has following di�erential geometry properties [411]:

1. A developable surface can be mapped isometrically onto a plane.
2. Isometric surfaces have the same Gaussian curvature at corresponding

points.
3. Corresponding curves on isometric surfaces have the same geodesic cur-

vature at corresponding points.
4. Every isometric mapping is conformal; i.e. the angle of intersection of

every arbitrary pair of intersecting arcs on a developable surface is the
same as that of the corresponding inverse image in the plane at the
corresponding points.

5. A geodesic on a developable surface maps to a straight line in the plane.

tangent plane

generator

surface normals

Fig. 9.11. A developable surface with its tangent plane along a ruling

A developable surface can be formed by bending or rolling a planar surface
without stretching or tearing; in other words, it can be developed or unrolled
isometrically onto a plane. Developable surfaces are also known as singly
curved surfaces, since one of their principal curvatures is zero. Developable
surfaces are widely used with materials that are not amenable to stretching.
Applications include the formation of ship hulls, ducts, shoes, clothing and
automobile parts such as upholstery, body panels and windshields [120].

As indicated by Munchmeyer and Haw [280], a developable surface can be
shaped purely by rolling and should be fed to the roller so that the direction
of the zero principal curvature is parallel to the rolls. However, when the sheet

260 9. Umbilics and Lines of Curvature

reaches a line of inection, it can no longer be fed into the roller in the same
direction because the direction of bending changes. Therefore, it is bene�cial
for planning the fabrication process to determine the lines of inection prior
to such a process.

Surface inection of a developable surface was studied by Hoitsma [172]
who showed that a surface has an inection at a point p if and only if its mean
curvature changes sign in the neighborhood of p. Maekawa and Chalfant [250]
further extended this result and derived two theorems (Theorem 9.7.1 and
9.7.2).

Since the Gaussian curvature of a developable surface is zero everywhere
[411, 76], the maximum and minimum principal curvatures (3.49) and (3.50)
of a developable surface can be written as

�max = H + jH j; �min = H � jH j : (9.77)

The principal curvatures reduce to

�max = 2H; �min = 0 when H > 0 ; (9.78)

�max = 0; �min = 0 when H = 0 ; (9.79)

�max = 0; �min = 2H when H < 0 : (9.80)

It is clear from (9.78) through (9.80) that at least one of the principal cur-
vatures is zero at each point on a developable surface, which agrees with
the fact that the Gaussian curvature is zero everywhere (see (3.61)). �max

in (9.78) and �min in (9.80) are termed the nonzero principal curvature, ��,
where �� = 2H .

In the following we establish some elementary di�erential geometry prop-
erties of developable surfaces. We assume that the developable surface is
regular and the u = const iso-parametric line corresponds to the generator of
the developable surface or, in other words, the straight line ruling is in the v
direction. With this assumption, rvv = 0, and hence the second fundamental
form coe�cient (see (3.28)) N = rvv �N vanishes. From (3.46), since Gaussian
curvature of a developable surface is zero,

K =
�M2

EG� F 2
= 0 ; (9.81)

and hence we have M = 0. Therefore, the mean curvature (3.47) reduces to

H =
�GL

2(EG� F 2)
: (9.82)

Recall that the nonzero principal curvature is given by �� = 2H and since
G > 0, H and hence �� become zero if and only if L = 0, otherwise �� =
2H 6= 0.

Next, we will show that the u = const parametric straight lines become
the lines of zero curvature. This can be seen from the fact that i) the u = const

9.7 Inection lines of developable surfaces 261

iso-parametric straight lines have zero normal curvature, and ii) no other di-
rection has zero normal curvature. The second fact comes from Euler's theo-
rem introduced in Sect. 3.6. When �2 = 0, (3.87) reduces to � = �1 cos

2(�),
which becomes zero only when � = �

2 or 3�
2 , corresponding to the direction

of �2. Similarly, when �1 = 0, � = 0 only when � = 0 or �, corresponding to
the direction of �1.

Theorem 9.7.1. A developable surface does not possess generic isolated at
points 5 but rather may contain a line of non-generic at points along a
generator [250].

Proof: From (9.79) and (9.82), L vanishes at a at point r(uf ; vf) where both
principal curvatures are zero. Therefore from the �rst equation of (3.27) we
have

L(uf ; vf) = �ru(uf ; vf) �Nu(uf ; vf) = 0 : (9.83)

From (9.81),M = 0 on a developable surface. Hence from the second equation
of (3.27) we have

M(uf ; vf) = �rv(uf ; vf) �Nu(uf ; vf) = 0 : (9.84)

Since N is a unit vector, we also have

N(uf ; vf) �Nu(uf ; vf) = 0 : (9.85)

If Nu is not zero, then from (9.83), (9.84) and (9.85) Nu must be perpendic-
ular to ru, rv and N. This is impossible because N is perpendicular to both
ru and rv , and ru is not parallel to rv . Thus, Nu(uf ; vf) must equal zero. For
developable surfaces, the unit normal vectorN is constant along a generator.
Therefore, the rate of change of the unit normal vector in the u direction
must also be constant along a generator. This leads us to the fact that Nu is
not only zero at r(uf ; vf) but also zero along the u = uf iso-parametric line.
Therefore, for a given u = uf , (9.83) becomes

L(uf ; v) = �ruu(uf ; v) �N(uf ; v) = 0 ; (9.86)

for 0 � v � 1. Consequently, the entire generator consists of a line of at
points.

For a developable surface, the inection line is a generator which consists
of a line of at points and the nonzero principal curvature changes sign. The
inection line can be detected by �nding u = uf such that L(uf ; vn) = 0
where vn is an arbitrary constant between 0 and 1. L(u; vn) = 0 can be
written as

5 A developable surface cannot possess spherical umbilics since one of the principal
curvatures is always zero.

262 9. Umbilics and Lines of Curvature

ruu(u; vn) � ru(u; vn)� rv(u; vn)jru(u; vn)� rv(u; vn)j = 0 : (9.87)

Since we are assuming a regular surface such that jru� rvj 6= 0, we only need
to set the numerator of (9.87) equal to zero. Thus, jruu(u; vn) ru(u; vn)
rv(u; vn)j = 0. For a polynomial surface with degree n in the u direction this
results in a univariate polynomial equation of degree (3n� 4) in u

(yuzv � zuyv)xuu � (xvzu � xuzv)yuu + (xuyv � xvyu)zuu = 0: (9.88)

If the surface is expressed in a piecewise polynomial form such as a B-spline
representation, (9.88) must be applied to each polynomial segment separately.
The univariate polynomial equation can be robustly and e�ciently solved by
the Interval Projected Polyhedron algorithm described in Chap. 4.

The local approximation (8.73) will now be applied to developable sur-
faces.

Lemma 9.7.1. A developable surface is, in general, locally a parabolic cylin-
der except at an inection line, where it becomes a cubic cylinder, provided
that hxxx 6= 0 [250].

Proof: Let us consider an orthogonal Cartesian reference frame O-XY Z
attached to the surface r = r(u; v) at an arbitrary point P with r(u0; v0)
being P . We choose unit vectors rv

jrvj�N, rv
jrvj and N at P as the directions of

X , Y and Z axes such that the Y axis coincides with the generator u = u0, the
Z axis coincides with the surface normal vector and the X axis is orthogonal
to both axes. Therefore the local coordinates X , Y and Z are given by

X =

�
rv
jrv j �N

�
o

� [r(u; v)� r(uo; vo)] ; (9.89)

Y =

�
rv
jrv j

�
o

� [r(u; v)� r(uo; vo)] ; (9.90)

Z = h(u; v) = N(uo; vo) � [r(u; v)� r(uo; vo)] ; (9.91)

where subscript o denotes that the expressions are evaluated at (uo, vo). In
(9.89) through (9.91) all terms involving ru, rv and N are evaluated at (uo,
vo), so r(u; v) is the only term that is a function of u and v. If we consider
u and v as functions of X and Y , i.e. u = u(X;Y) and v = v(X;Y), then
the height function h can be represented as a function of X and Y through
intermediate variables u and v, i.e. h(u(X;Y); v(X;Y)).

The second fundamental form coe�cient M in terms of the height func-
tion h(X;Y) is given in (3.65) as M = hXY

(1+h2
X
+h2

Y
)1=2

. Since M = 0 on a

developable surface (see (9.81)), we have hXY = 0. Furthermore, all the sec-
ond and higher order partial derivatives with respect to Y vanish, since the
Y axis corresponds to the generator, which is linear in v. Thus (8.73) reduces
to

9.7 Inection lines of developable surfaces 263

h(X;Y) =
1

2
X2hXX(0; 0) +

1

6
[X3hXXX(0; 0) + 3X2Y hXXY (0; 0)]

+R(X;Y)(jX;Y j3) : (9.92)

The second fundamental form coe�cient L in terms of the height function is
given in (3.65) as L = hXX

(1+h2
X
+h2

Y
)1=2

. Since L is zero along the entire generator

line, hXX and its variation in the Y direction hXXY become zero at a line of
inection. Thus (9.92) further reduces to

h(X;Y) =
1

6
(ruuu �N)

 r
G

EG� F 2

!3

X3 +R(X;Y)(jX;Y j3) ; (9.93)

provided that hXXX(0; 0) 6= 0. Here hXXX(0; 0) is obtained by using the
inverse function theorem [76] (see Sect. 9.3) and it can be shown that in
general

@kh

@Xk
=
@kr

@uk
�N
 r

G

EG� F 2

!k

: (9.94)

From (9.92) and (9.93) it is apparent that for small x, the quadratic term
dominates except at an inection line where the surface will become locally
a cubic cylinder.
When hxxx(0; 0) becomes zero, the higher order partial derivatives must be
considered, and this is studied in the following.

A developable surface is said to have contact of order k with the tangent
plane along the generator if the Taylor expansion for h(X;Y) starts with
terms of degree k + 1. The ordinary inection line (see (9.93)) thus has a
contact of order k = 2. If the tangent plane has contact of order k � 3 with
the surface along a generator, a developable surface may not look like a cubic
cylinder at an inection line.

If the developable surface has a contact of order k with the tangent plane,
@ih
@Xi is zero or equivalently @ir

@ui � N is zero for 1 � i � k along the entire

generator. Accordingly its variation in Y also vanishes; hence @i

@Xi
@
@Y h = 0

for 1 � i � k along the entire generator. Since all the second and higher
order partial derivatives with respect to Y vanish, the Taylor expansion of
the height function along the higher order contact line reduces to

h(X;Y) =
1

(k + 1)!

�
@k+1r

@uk+1
�N
� r

G

EG� F 2

!k+1

Xk+1

+R(X;Y)(jX;Y jk+1) : (9.95)

We can observe that for an even k the height function h(X;Y) changes sign
when X moves across the inection line, while for an odd k it maintains the
same sign. In other words, for an even k the height function passes through

264 9. Umbilics and Lines of Curvature

the tangent plane along the inection line, whereas for an odd k, it lies
entirely on one side of the tangent plane. Therefore inection lines exist only
for even k. The order of contact can be detected by �rst solving (9.88), and
substituting the solution into

(yuzv � zuyv)@
kx

@uk
� (xvzu � xuzv)@

ky

@uk
+ (xuyv � xvyu)@

kz

@uk
= 0 ; (9.96)

to �nd k � 3 such that (9.96) is zero for k but nonzero for k+1. The integer k
found by this process gives the order of contact (see (9.88), (9.94)). A simple
example for the higher order odd case is given by r(u; v) = (u; v; u4)T . Since
ruu = (0; 0; 12u2)T and ru � rv = (�4u3; 0; 1)T , we can easily see that the
line of at points is located at u = 0 from (9.88). And the order of contact is
found to be k = 3, since ruuu = (0; 0; 24u)T and ruuuu = (0; 0; 24)T . In this
case the line of at points is not an inection line, since k is odd.

9.7.2 Lines of curvature near inection lines

At at points the principal directions are indeterminate and the orthogonal
net of lines of curvature may have singular properties. In the following we
investigate the pattern of the lines of curvature near a line of non-generic at
points.

Theorem 9.7.2. There is only one line of curvature that passes through each
at point on a line of at points, and that line of curvature is orthogonal to
the direction of the generator [250].

Proof: By Lemma 9.7.1 the developable surface is expressed locally as a
cubic cylinder at an ordinary inection line and more generally in the form
of (9.95) at a higher order contact line. If we rewrite (9.95) in terms of polar
coordinates by substituting X = r cos � for a �xed radius r =

p
X2 + Y 2 we

obtain

h(�) = c cosk+1 � ; (9.97)

where c is a constant evaluated at a point on the line of at points given by

c =
rk+1

(k + 1)!

�
@k+1r

@uk+1
�N
� r

G

EG� F 2

!k+1

: (9.98)

If k is even, h(� + �) = �h(�), and h(�) is an antisymmetric function of �,
whereas if k is odd h(�) is a symmetric function of �. The roots of dhd� = 0 will
give the angles where local maxima and minima of h(�) may occur around the
at point. The equation can be restricted to the range 0 � � < 2� without
loss of generality. The roots are easily computed as � = 0, �2 , � and 3�

2 . Only
� = 0 and � = � (which coincide with the local x axis) give extrema, since

9.7 Inection lines of developable surfaces 265

d2h(�2)
d�2 =

d2h(3�2)
d�2 = 0. Thus � = �

2 and � = 3�
2 (which coincide with the

local y axis) provide neither a maximum nor a minimum. In other words,
a line of at points is not a line of curvature. Consequently, there is only
one line of curvature passing through each at point and it is orthogonal to
the direction of the generator. For an even k the lines of maximum/minimum
principal curvature switch to lines of minimum/maximum principal curvature
at the inection line since h(�) is antisymmetric, while for odd k they remain
the same, since h(�) is symmetric.

If we denote � as the angle between the u axis and the direction of the
nonzero principal curvature in uv parametric space, � can be evaluated as
follows. Since the direction of the nonzero principal curvature is orthogonal
to the generator (parallel to the local x axis), its direction is given by rv �
(ru � rv) = (rv � rv)ru � (rv � ru)rv = Gru � F rv and hence � = � tan�1 F

G .
We can trace the lines of curvature which pass through the at points of an

inection line by integrating the initial value problem following the procedure
described in Sect. 9.4. The starting points are obtained by slightly shifting
outwards in the directions 0 and � from the at points or, equivalently, along
the positive and negative local x axis.

In generic cases, umbilics are isolated [256]; thus an inection line, which
consists of a line of at points, is non-generic and therefore unstable. In
the following we give a couple of numerical examples that demonstrate the
instability of the line of at points along the inection line with respect to
perturbations.

The example surface is a degree (3-1) integral B�ezier patch which is con-
structed by the method developed in Chalfant [50]. The control points are
given by

b00=(0; 0; 0)
T , b01=(0:5; 0; 2)

T ,
b10=(1:8; 3; 0)

T , b11=(1:895; 2:325; 2)
T ,

b20=(3:3;�2; 1:5)T , b21=(3:0575;�1:55; 3:1625)T ,
b30=(4; 0; 0)

T , b31=(3:6; 0; 2)
T .

The surface has an ordinary inection line at u = 0:5754, which has been
computed by solving the degree 5 univariate polynomial equation (9.88).
This surface has a net of lines of curvature which is shown in Fig. 9.12(a).
Solid lines represent the lines of maximum principal curvature, while dotted
lines represent the lines of minimum principal curvature. The inection line is
depicted with a dash dotted line. Figure 9.12(b) shows a magni�cation near
the inection line. We can observe that there is only one line of curvature
that passes through a at point orthogonal to the inection line.

We gradually perturb the control points of the surface and observe the
behavior of the lines of curvature which pass through the inection line as
we did in Sect. 9.6. Since the example is a degree (3-1) patch, it has 8 control
points. Each control point consists of three Cartesian coordinates x; y; z, so
there are 24 components to be perturbed. We gradually increase the pertur-
bation by increasing � in (9.73) from 0:02 to 0:08 in steps of 0:02.

266 9. Umbilics and Lines of Curvature

x

y

z

inflection line

(a) (b)

Fig. 9.12. (a) Lines of curvature of developable surface with inection, (b) mag-
ni�cation near inection line (adapted from [256])

x

y

z

(a) (b)

Fig. 9.13. (a) Lines of curvature on perturbed surface � = 0:08, (b) magni�cation
near u=0.57 (adapted from [256])

Figure 9.13 illustrates the behavior of the lines of curvature when the
control points are perturbed (� = 0:08). We can see from the �gure that the
entire inection line, which consists of a line of at points, disappears. Hence
there is no singularity in the net of lines of curvature when a perturbation
is induced. The nonzero principal curvatures on both sides of the former
inection line 6 meet at right angles near the former inection line and make
a very sharp change in direction (almost a right angle).

6 Once the control points are perturbed both principal curvatures may not be
nonzero, but here we are referring to the nonzero principal curvature before
perturbation.

10. Geodesics

10.1 Introduction

Computation of shortest paths on free-form surfaces is an important prob-
lem in geometric design of ship hulls, robot motion planning, computation of
medial axis transforms of trimmed surface patches, terrain navigation, NC
machining, and cable installation on the sea oor. The history of geodesic
lines begins with a study by Johann Bernoulli, who solved the problem of
the shortest distance between two points on a convex surface in 1697, ac-
cording to Struik [411]. He showed that the osculating plane of the geodesic
line must always be perpendicular to the tangent plane. The equation of
geodesics for implicit surfaces was �rst obtained by Euler (1732). His atten-
tion to the problem was due to Johann Bernoulli, probably through the aid
of his nephew Daniel, who was at St. Petersburg with Euler [410]. Bliss [28]
obtained the geodesic lines on the anchor ring, which has a torus shape, an-
alytically. Munchmeyer and Haw [280] applied geodesic curves to geometric
design of ship hulls, namely to �nd out the precise layout of the seams and
butts on a ship hull. Beck et al. [22] performed both initial-value integra-
tion and boundary-value integration (based on shooting method) of geodesic
paths, using the fourth order Runge-Kutta method on a bicubic spline sur-
face. Patrikalakis and Bardis [295] computed geodesic o�sets of curves on
rational B-spline surfaces using the initial-value integration of geodesics nor-
mal to an initial progenitor curve on the surface. One application of such
o�sets is automated construction of linkage curves for free-form procedural
blending surfaces. Sneyd and Peskin [397] investigated the computation of
geodesic paths on a generalized cylinder based on an initial value problem
using a second order Runge-Kutta method. Their work was motivated by con-
structing the great vessels of the heart out of geodesic �bers. Kimmel et al.
[199] presented a numerical method for �nding the shortest path on surfaces
by calculating the propagation of an equal geodesic-distance contour from a
point or a source region on the surface. The algorithm works on a rectangu-
lar grid using �nite di�erence approximations. Maekawa [246] and Robinson
and Armstrong [346] computed the geodesics by discretizing the governing
di�erential equations using a �nite di�erence approximation on a mesh of
points, which reduces the problem to a set of nonlinear equations. The set of
nonlinear equations can be solved by quadratically convergent Newton iter-

268 10. Geodesics

ation method, which starts with an initial guess and improves the solution
iteratively. This technique is referred as, direct method, relaxation method or
�nite di�erence method. The shortest path problem is also very active among
the robot motion planning and terrain navigation communities, however they
usually represent the surface as a polyhedral surface and solve the problem
using techniques from the �eld of computational geometry [268].

A geodesic path is sometimes de�ned as the shortest path between two
points on a surface; however this is not always a satisfactory de�nition. In
this book we follow Struik [411] and de�ne geodesics as below:

De�nition 10.1.1. Geodesics are curves of zero geodesic curvature.

In other words, the osculating planes of a geodesic curve on a surface contain
the surface normal. From this de�nition we can easily see that the geodesic
between two points on a sphere is a great circle. But there are two arcs
of a great circle between two such points, and only one of them provides
the shortest distance, except when the two points are the end points of a
diameter of the sphere. This example indicates that there may exist more
than one geodesics between two points on a surface.

Let Q(t) describe a moving point on a surface where t may be viewed as
a time parameter belonging to an interval beginning with t0, and Q[t0; t1]
describe the path between points Q(t0) and Q(t1). If the point Q(t) moves
away from the starting point Q(t0) along a geodesic path C, i.e. curve with
zero geodesic curvature, then it may occur that Q(t) will reach a point Q(tR)
such that for every " > 0 the path Q[t0; tR + "] is no longer the shortest
surface path joining the points Q(t0) and Q(tR + "). In other words, Q(tR)
was the last time point such that the geodesic path Q[t0; tR] is the shortest
surface path joining the points Q(t0) and Q(tR). This point Q(tR) is called
conjugate toQ(t0) on the geodesic C (see also [448]). The location, where each
extension of a shortest geodesic fails to de�ne a shortest path from Q(t0),
belongs to the cut locus of the point Q(t0) on the surface. This geometric
locus and its generalizations (being important for considerations on shortest
paths and geodesic distance) have been studied in [446, 448].

10.2 Geodesic equation

10.2.1 Parametric surfaces

We assume that the given parametric surface r=r(u; v) is a regular and non-
periodic NURBS surface patch. Wolter [447] shows that on a regular NURBS
surface patch there always exists a shortest path joining any two patch points.
If the surface patch is de�ned on a rectangular or even more generally on a
locally convex planar domain, then any shortest path in the patch joining
any two patch points must have a continuous tangent with the path being
arc length parametrized. If the shortest path (without its end points) does not

10.2 Geodesic equation 269

meet the patch boundary then this shortest path is a geodesic in the sense of
De�nition 10.1.1 where this is proven in [447] under very weak assumptions.
We shall henceforth assume throughout this chapter that the shortest path
to be computed will not meet the patch boundary except possibly at its end
points.

Let C be an arc length parametrized regular curve on this surface which
passes through point P as shown in Fig. 3.6 and denoted by

r(s) = r(u(s); v(s)) : (10.1)

Let t be a unit tangent vector of C at P , n be a unit normal vector of C
at P , N be a unit surface normal vector of S at P and u be a unit vector
perpendicular to t in the tangent plane of the surface, de�ned by u =N� t.
The u component of the curvature vector k of r(s) is the geodesic curvature
vector kg and is given by

kg = (k � u)u : (10.2)

The scalar function

�g = k � u ; (10.3)

is called the geodesic curvature of C at P , or equivalently

�g =
dt

ds
� (N� t) : (10.4)

The unit tangent vector of the curve C can be obtained by di�erentiating
(10.1) with respect to the arc length using the chain rule

t =
dr(u(s); v(s))

ds
= ru

du

ds
+ rv

dv

ds
: (10.5)

Thus we have

dt

ds
= ruu

�
du

ds

�2

+ 2ruv
du

ds

dv

ds
+ rvv

�
dv

ds

�2

+ ru
d2u

ds2
+ rv

d2v

ds2
; (10.6)

and hence substituting (10.5) and (10.6) into (10.4) yields

�g =

"
(ru � ruu)

�
du

ds

�3

+ (2ru � ruv + rv � ruu)
�
du

ds

�2
dv

ds

+(ru � rvv + 2rv � ruv)du
ds

�
dv

ds

�2

+ (rv � rvv)
�
dv

ds

�3
#
�N

+(ru � rv) �N
�
du

ds

d2v

ds2
� d2u

ds2
dv

ds

�
: (10.7)

270 10. Geodesics

We can easily observe that the coe�cients of
�
du
ds

�3
,
�
du
ds

�2 dv
ds ,

du
ds

�
dv
ds

�2
,
�
dv
ds

�3
,�

du
ds

d2v
ds2 � d2u

ds2
dv
ds

�
are all functions of the coe�cients of the �rst fundamen-

tal form E, F and G and their derivatives, Eu, Fu, Gu, Ev , Fv , Gv . It is
interesting to note that the normal curvature �n depends on both the �rst
and second fundamental forms, while the geodesic curvature depends only on
the �rst fundamental form. Using the Christo�el symbols � i

jk (i; j; k = 1; 2)
de�ned as follows [411]

� 1
11 =

GEu � 2FFu + FEv
2(EG� F 2)

; � 2
11 =

2EFu �EEv + FEu
2(EG� F 2)

;

� 1
12 =

GEv � FGu

2(EG� F 2)
; � 2

12 =
EGu � FEv
2(EG� F 2)

; (10.8)

� 1
22 =

2GFv �GGu + FGv

2(EG� F 2)
; � 2

22 =
EGv � 2FFv + FGu

2(EG� F 2)
;

geodesic curvature reduces to

�g =

"
� 2
11

�
du

ds

�3

+ (2� 2
12 � � 1

11)

�
du

ds

�2
dv

ds
+ (� 2

22 � 2� 1
12)

du

ds

�
dv

ds

�2

�� 1
22

�
dv

ds

�3

+
du

ds

d2v

ds2
� d2u

ds2
dv

ds

#p
EG� F 2 : (10.9)

According to the de�nition, we can determine the di�erential equation that
any geodesic on a surface must satisfy by simply setting �g = 0 in (10.9) and
obtain

du

ds

d2v

ds2
� d2u

ds2
dv

ds
= �� 2

11

�
du

ds

�3

� (2� 2
12 � � 1

11)

�
du

ds

�2
dv

ds

+(2� 1
12 � � 2

22)
du

ds

�
dv

ds

�2

+ � 1
22

�
dv

ds

�3

: (10.10)

Alternatively, we can derive the di�erential equation for geodesics by con-
sidering that the surface normal N has the direction of a normal to the
geodesic curve �n

n � ru = 0; n � rv = 0 : (10.11)

Since kn = dt
ds , (10.11) can be rewritten as

dt

ds
� ru = 0;

dt

ds
� rv = 0 : (10.12)

By substituting (10.6) into equations (10:12) we have

10.2 Geodesic equation 271

(ruu � ru)
�
du

ds

�2

+ 2(ruv � ru)du
ds

dv

ds
+ (rvv � ru)

�
dv

ds

�2

+ E
d2u

ds2
+ F

d2v

ds2
= 0 ; (10.13)

(ruu � rv)
�
du

ds

�2

+ 2(ruv � rv)du
ds

dv

ds
+ (rvv � rv)

�
dv

ds

�2

+ F
d2u

ds2
+G

d2v

ds2
= 0 : (10.14)

By eliminating d2v
ds2 from (10.13) using (10.14), and eliminating d2u

ds2 from
(10.14) using (10.13) and employing the Christo�el symbols, we obtain [411]

d2u

ds2
+ � 1

11

�
du

ds

�2

+ 2� 1
12

du

ds

dv

ds
+ � 1

22

�
dv

ds

�2

= 0 ; (10.15)

d2v

ds2
+ � 2

11

�
du

ds

�2

+ 2� 2
12

du

ds

dv

ds
+ � 2

22

�
dv

ds

�2

= 0 : (10.16)

Equations (10.15) and (10.16) are related by the �rst fundamental form ds2 =
Edu2 + 2Fdudv + Gdv2 and if we eliminate ds from both equations, the
equations reduce to (10.10) with u taken as parameter. These two second
order di�erential equations can be rewritten as a system of four �rst order
di�erential equations [234]

du

ds
= p ; (10.17)

dv

ds
= q ; (10.18)

dp

ds
= �� 1

11p
2 � 2� 1

12pq � � 1
22q

2 ; (10.19)

dq

ds
= �� 2

11p
2 � 2� 2

12pq � � 2
22q

2 : (10.20)

We can also �nd this result by means of the general rules of the calculus
of variations [166]. We want to minimize

I =

Z B

A

ds =

Z B

A

s
E + 2F

dv

du
+G

�
dv

du

�2

du =

Z B

A

f(u; v; _v)du ;

(10.21)

subject to the conditions

v(A) = vA; v(B) = vB ; (10.22)

where

272 10. Geodesics

f(u; v; _v) =
p
E + 2F _v +G _v2; _v =

dv

du
; (10.23)

and vA and vB are given constants. It is well known from calculus of variations
that the solution of Euler's equation [166]

@f

@v
� d

du

@f

@ _v
= 0 ; (10.24)

gives an extreme value to the integral (10.21). When (10.23) is substituted in
Euler's equation (10.24) we can derive the di�erential equation for geodesics.

Example 10.2.1. Let us obtain the geodesic equations for a parametric bi-
linear surface (hyperbolic paraboloid) r(u; v) = (u; v; uv) (see Fig. 3.4). We
have

E = 1 + v2; F = uv; G = 1 + u2 ;
Eu = 0; Fu = v; Gu = 2u ;
Ev = 2v; Fv = u; Gv = 0 ;

thus, the Christo�el symbols become

� 1
11 = � 2

11 = � 1
22 = � 2

22 = 0 ;

� 1
12 =

v

u2 + v2 + 1
;

� 2
12 =

u

u2 + v2 + 1
:

Finally the geodesic equations for the bilinear surface are given by

du

ds
= p ;

dv

ds
= q ;

dp

ds
=

�2v
u2 + v2 + 1

pq ;

dq

ds
=

�2u
u2 + v2 + 1

pq :

10.2.2 Implicit surfaces

We can also derive the geodesic equation for an implicit surface by �nding an
expression of the geodesic curvature for an implicit surface. Let us consider
an arc length parametrized curve r = r(s) or x = x(s), y = y(s), z = z(s)
on an implicit surface f(x; y; z) = 0. By substituting t = (x0; y0; z0)T , dt

ds =

(x00; y00; z00)T ,N = rf
jrf j , into (10.4), we obtain the expression for the geodesic

curvature of a curve on the implicit surface

10.2 Geodesic equation 273

�g =
(y0z00 � z0y00)fx + (z0x00 � x0z00)fy + (x0y00 � y0x00)fzq

f2x + f2y + f2z

: (10.25)

For the sake of completeness, the geodesic curvature for a non-arc-length
parametrized curve is given by

�g =
(_y�z � _z�y)fx + (_z�x� _x�z)fy + (_x�y � _y�x)fz

(_x2 + _y2 + _z2)
3
2

q
f2x + f2y + f2z

: (10.26)

Now if we set �g = 0, we deduce

(y0z00 � z0y00)fx + (z0x00 � x0z00)fy + (x0y00 � y0x00)fz = 0 : (10.27)

Since the unit tangent vector (x0; y0; z0) and the curvature vector (x00; y00; z00)
of the geodesic curve are orthogonal to each other, we have

x0x00 + y0y00 + z0z00 = 0 : (10.28)

The third equation can be derived from (6.21)

fxx(x
0)2 +fyy(y

0)2 + fzz(z
0)2 + 2(fxyx

0y0 + fyzy
0z0 + fxzx

0z0)

+fxx
00 + fyy

00 + fzz
00 = 0 : (10.29)

Now we solve the linear system of three equations (10.27) to (10.29) in
(x00; y00; z00), assuming that (z0fy � y0fz)2 + (x0fz � z0fx)2 + (y0fx � x0fy)2
does not vanish, yielding

x00 =
(x0fz � z0fx)z0 + (x0fy � y0fx)y0

(z0fy � y0fz)2 + (x0fz � z0fx)2 + (y0fx � x0fy)2� ; (10.30)

y00 =
(y0fz � z0fy)z0 + (y0fx � x0fy)x0

(z0fy � y0fz)2 + (x0fz � z0fx)2 + (y0fx � x0fy)2� ; (10.31)

z00 =
(z0fy � y0fz)y0 + (z0fx � x0fz)x0

(z0fy � y0fz)2 + (x0fz � z0fx)2 + (y0fx � x0fy)2� ; (10.32)

where � = fxx(x
0)2+fyy(y0)2+fzz(z0)2+2(fxyx

0y0+fyzy0z0+fxzx0z0). These
three second order di�erential equations can be rewritten as a system of six
�rst order di�erential equations:

x0 = p ; (10.33)

y0 = q ; (10.34)

z0 = r ; (10.35)

p0 =
(pfz � rfx)r + (pfy � qfx)q

(rfy � qfz)2 + (pfz � rfx)2 + (qfx � pfy)2� ; (10.36)

q0 =
(qfz � rfy)r + (qfx � pfy)p

(rfy � qfz)2 + (pfz � rfx)2 + (qfx � pfy)2� ; (10.37)

r0 =
(rfy � qfz)q + (rfx � pfz)p

(rfy � qfz)2 + (pfz � rfx)2 + (qfx � pfy)2� : (10.38)

274 10. Geodesics

Figure 10.1 shows a geodesic on an ellipsoid (x
2

9 + y2

4 + z2 = 1) computed
by integrating the above system of six �rst order di�erential equations as
an initial value problem. The initial values are given by (x; y; z) = (0, 2, 0),

(p; q; r)=
�p

2
2 ; 0;

p
2
2

�
and the integration is terminated at (x; y; z)=(2.439,

-0.726, 0.456).

−4

−2

0

2

4

−2
−1

0
1

2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 10.1. Geodesics on an ellipsoid

10.3 Two point boundary value problem

10.3.1 Introduction

We can solve the system of four �rst order ordinary di�erential equations
(10.17) to (10.20) as an initial value problem (IVP), where all four boundary
conditions are given at one point, or as a boundary value problem (BVP),
where four boundary conditions are speci�ed at two distinct points. Most of
the problems that arise in applications of geodesics are not IVP but BVP,
which are much more di�cult to solve. It is well known that the solution
of an IVP is unique, however for a BVP it is possible that the di�erential
equations have many solutions or even no solution [193]. General methods
for the solutions of two-point BVPs can be found in [193, 117].

It is convenient to write the system of di�erential equations in vector
form, since we can describe the equations for systems in terms of a single

10.3 Two point boundary value problem 275

vector equation. Let us set

y = (y1; y2; : : : ; yn)
T ; g = (g1; g2; : : : ; gn)

T ;
� = (�1; �2; : : : ; �n)

T ; � = (�1; �2; : : : ; �n)
T ;

s 2 [A;B] ;
(10.39)

where yi, gi are functions and �i, �i are constants. Then the general �rst order
vector di�erential equation for a boundary value problem can be written as:

dy

ds
= g(s;y); y(A) = �; y(B) = � : (10.40)

There are two commonly used approaches to the numerical solution of
BVPs. The idea of the �rst technique is that if all values of y(s) are known
at s = A, then the problem can be reduced to an IVP. However, y(A) can be
found only by solving the problem. Therefore an iterative procedure must be
used. We assume values at s = A, which are not given as boundary conditions
at s = A and compute the solution of the resulting IVP to s = B. The
computed values of y(B) will not, in general, agree with the corresponding
boundary condition at s = B. Consequently, we need to adjust the initial
values and try again. The process is repeated until the computed values at the
�nal point agree with the boundary conditions and is referred to as shooting
method. The second method is based on a �nite di�erence approximation to
dy
ds on a mesh of points in the interval [A;B]. This method starts with an
initial guess and improves the solution iteratively and is referred to as, direct
method, relaxation method or �nite di�erence method. We have implemented
both methods and found that the �nite di�erence method is much more
reliable than the shooting method. By contrast to the �nite di�erence method,
the shooting method is often very sensitive to the unknown initial values at
point A. First, we briey discuss the shooting method.

10.3.2 Shooting method

We assume a value for pA and solve the di�erential equation as an IVP
using the fourth order Runge-Kutta method. Using the �rst fundamental
form (3.13), given pA we can obtain qA from

qA =
�FpA �

p
F 2p2A �G(Ep2A � 1)

G
: (10.41)

Here we also have to assume the entire arc length of the geodesic path s
to stop the integration. Thus the unknowns can be considered as pA and s.
If we denote the computed value of (uB ; vB) as (u

�
B ; v

�
B), the di�erence can

be given as (u�B � uB; v�B � vB). We need to adjust pA and s to make the
di�erence zero. This can be done by employing Newton's method�

pA
s

�
i+1

=

�
pA
s

�
i

�
"
@u�B
@pA

@u�B
@s

@v�B
@pA

@v�B
@s

#�1

i

�
u�B � uB
v�B � vB

�
; (10.42)

276 10. Geodesics

where the Jacobian matrix is evaluated numerically. We �rst change pA
slightly to pA + �pA and integrate the ordinary di�erential equations as
an IVP to evaluate the end point (u�B(pA +�pA; s); v

�
B(pA +�pA; s)), from

which we can compute the partial derivatives
@u�B
@pA

and
@v�B
@pA

as

@u�B
@pA

=
u�B(pA +�pA; s)� u�B(pA; s)

�pA
; (10.43)

@v�B
@pA

=
v�B(pA +�pA; s)� v�B(pA; s)

�pA
: (10.44)

Similarly we change s slightly to s+�s and integrate the ordinary di�erential
equations as IVP to evaluate the end point (u�B(pA; s+�s); v

�
B(pA; s+�s)),

from which we can compute the partial derivatives
@u�B
@s and

@v�B
@s

@u�B
@s

=
u�B(pA; s+�s)� u�B(pA; s)

�s
; (10.45)

@v�B
@s

=
v�B(pA; s+�s)� v�B(pA; s)

�s
: (10.46)

10.3.3 Relaxation method

The relaxation method [335, 246] starts by �rst discretizing the governing
equations by �nite di�erences on a mesh with m points. The computation
begins with an initial guess and improves the solution iteratively or in other
words relaxes to the true solution. Let us consider an arc length parametrized
curve connecting A and B on the surface with a mesh of points satisfying
A = s1 < s2 < : : : < sm = B. We approximate the n �rst order di�erential
equations by the trapezoidal rule [117]

Yk �Yk�1

sk � sk�1
=

1

2
[Gk +Gk�1]; k = 2; 3; : : : ;m ; (10.47)

with boundary conditions

Y1 = �; Ym = � : (10.48)

Here the n-vectorsYk,Gk are meant to approximate y(sk) and g(sk).Y1 has
n1 known components, while Ym has n2 = n� n1 known components. This
discrete approximation will be accurate to the order of h2 (h = maxkfsk �
sk�1g). Equation (10.47) forms a system of (m � 1)n nonlinear equations
with mn unknowns Yk = (Y1; Y2; : : : ; Yn)

T
k (k = 1; : : : ;m). The remaining n

equations come from boundary conditions (10.48). Let us refer to (10.47) as

Fk = (F1;k; F2;k; : : : ; Fn;k)
T =

Yk �Yk�1

sk � sk�1
� 1

2
[Gk +Gk�1] = 0 ;

(10.49)

10.4 Initial approximation 277

where k = 2; 3; : : : ;m, and refer to (10.48) as

F1 = (F1;1; F2;1; : : : ; Fn1;1)
T = Y1 �� = 0 ;

Fm+1 = (F1;m+1; F2;m+1; : : : ; Fn2;m+1)
T = Ym � � = 0 ; (10.50)

then we have mn nonlinear equations

F = (FT1 ;F
T
2 ; : : : ;F

T
m+1)

T = 0 : (10.51)

This system of nonlinear equations can be solved by quadratically con-
vergent Newton iteration, if a su�ciently accurate starting vector Y(0) =
(YT

1 ;Y
T
2 ; : : : ;Y

T
m)

T is provided. The Newton iteration scheme is given by

Y(i+1) = Y(i) +�Y(i) ; (10.52)

[J(i)]�Y(i) = �F(i) ; (10.53)

where superscripts (i) denote i-th iteration and [J(i)] is the mn by mn Jaco-
bian matrix of F(i) with respect to Y(i).

Since the corrections are based on a �rst order Taylor approximation, the
usual Newton method may not be su�cient for a complex nonlinear problem
unless a good initial approximation is provided. If the vector norm of the
correction vector is large, then it is an indication that the problem is highly
nonlinear and may produce a divergent iteration. To achieve more stability
we can employ a step correction procedure

Y(i+1) = Y(i) + ��Y(i) ; (10.54)

where 0 < � � 1 chosen so that k �Y(i+1) k1 < k �Y(i) k1, where k �Y k1
is a scaled vector norm and de�ned as

k �Y k1=
mX
k=1

� j�ukj
Mu

+
j�vkj
Mv

+
j�pkj
Mp

+
j�qkj
Mq

�
; (10.55)

where Mu, Mv, Mp and Mq are the scale factors for each variable. Maekawa
[246] usedMu=Mv=1 andMp=Mq=10, since the magnitude of �pk and �qk
are roughly ten times larger that of �uk and �vk as numerical experiments
have shown. If � = 1 the equation reduces to the usual Newton's method,
while if � < 1 the rate of convergence will be less than quadratic. Newton's
method terminates when the norm of the solution vector is smaller than the
pre-speci�ed tolerance "N . The order of "N should be proportional to h2,
since we are using the trapezoidal rule (see (10.47)).

10.4 Initial approximation

10.4.1 Linear approximation

Linear approximation is the simplest and most often provides a good initial
approximation, since it is a solution to the system of geodesic equations

278 10. Geodesics

(10.17) to (10.20) when we neglect all the nonlinear terms in the right hand
side. We connect the two end points in the parameter space by a straight line
and de�ne a uniform mesh or grid by a set of k = 1; 2; : : : ;m points as shown
in Fig. 10.2 (a). Therefore we have

uk = uA +
uB � uA
m� 1

(k � 1) ; (10.56)

vk = vA +
vB � vA
m� 1

(k � 1) : (10.57)

When the uniform mesh in the parameter space is mapped onto the surface,
the corresponding arc length mesh will not be in general uniform.

A

C

D

B

(uA,vA)

(uB,vB)

k=m

Ak=1

B

u

v

u

v

(uA,vA)

k=1

k=m
(uB,vB)

(b)(a)

(uC,vC)

(uD,vD)

Fig. 10.2. Initial approximations (adapted from [246]): (a) linear approximation,
(b) circular arc approximation

If we assume that uA 6= uB then

dv

du
=
vB � vA
uB � uA � � ; (10.58)

hence

dv

ds
= �

du

ds
: (10.59)

By substituting this relation into the �rst fundamental form we obtain

E

�
du

ds

�2

+ 2F�

�
du

ds

�2

+G�2
�
du

ds

�2

= 1 : (10.60)

10.4 Initial approximation 279

Thus

pk =
du

ds
= � 1p

Ek + 2Fk�+Gk�2
; (10.61)

qk =
dv

ds
= � �p

Ek + 2Fk�+Gk�2
: (10.62)

When uA = uB, it is easy to �nd that pk = 0 and qk =
1p
Gk

. It is well known

that conjugate points do not exist on regions of a surface where the Gaussian
curvature is negative [411]. Therefore, the linear approximation will typically
provide a good initial approximation to the geodesic path in those regions.

10.4.2 Circular arc approximation

The problem of the straight line approximation is that when there are more
than one path, it cannot capture the other paths. To make the method more
reliable, the following algorithm has been developed [246]. First we pick two
points C and D in the parameter domain, which are on the bisector of the
two end points A and B, such that AC = AD or BC = BD as illustrated in
Fig. 10.2 (b). Then we determine two circular arcs which pass through the
three points A;C;B and A;D;B. If C and D are taken at a large enough
distance from AB, all the geodesic paths in the parameter domain between
points A and B are likely to lie within or close to the region surrounded by
the two circular arcs. Notice that the algorithm fails once the circular arcs
go outside the domain so these arcs are chosen such that they are entirely
within the domain. The uv coordinates in the parameter domain i.e. (uk; vk),
k = 1; : : : ;m can be obtained by equally distributing the points along the
circular arc in the parameter domain. Once we have a set of points in the
parameter domain, we can easily evaluate pk; qk by using the central di�erence
formula for a non-uniform mesh points [117], for k = 2; : : : ;m� 1

f 0(sk) =
hk
hk+1

(fk+1 � fk)� hk+1

hk
(fk�1 � fk)

hk + hk+1
; (10.63)

the forward di�erence formula for k = 1

f 0(s1) =
�h2
h3
f3 +

�
h2
h3

+ h3
h2

+ 2
�
f2 �

�
2 + h3

h2

�
f1

h2 + h3
; (10.64)

and the backward di�erence formula for k = m

f 0(sm) =
hm
hm�1

fm�2 �
�
hm�1

hm
+ hm

hm�1
+ 2
�
fm�1 +

�
2 + hm�1

hm

�
fm

hm�1 + hm
;

(10.65)

280 10. Geodesics

where f is replaced by u or v, and the step length hk = sk�sk�1 is evaluated
by computing the chord length between the successive points on the surface.
Even if the mesh points are equally distributed along the circular arc in the
parameter domain as shown in Fig. 10.2 (b), hk is not in general constant.

We give the ow chart of the algorithm based on circular arc approxi-
mation for computing the geodesic path between two given points in Fig.
10.3.

10.5 Shortest path between a point and a curve

In this section we solve a problem of �nding a shortest path between a point
and a curve on a free-form non-periodic parametric surface [246], which uti-
lizes the method we have developed in Sects. 10.3 and 10.4. This concept
is important in robot motion planning and constructing a medial axis on
a free-form surface. Suppose we have a point A and a curve C on a para-
metric surface r(u; v) de�ned as rc(t) = r(uc(t); vc(t)), we want to compute
the shortest path between point A and curve C as shown in Fig. 10.4. The
existence of such a shortest path follows from results shown in [447]. Let us
denote the intersection point of the curve C and the shortest path by B.
Wolter [448] developed a necessary condition to have a shortest path from
point A to curve C, provided that the point B is not an end point of the
curve C. The condition is given by the orthogonality of the tangent vector of
the geodesic curve, connecting A and C, at B and the tangent vector of C
at B. If point B were known, the problem could be reduced to an IVP, since
at point B, u, v, p and q are all known. However, point B can be found only
by solving the problem. We guess a parameter value t = tB for point B and
solve the BVP. In general the unit tangent vector of the curve rc(t) and the
unit tangent vector of the arc length parametrized geodesic curve rg(s) at the
guessing point will not be orthogonal to each other. Consequently, we need
to adjust the parameter value tB and iterate until those two unit tangent
vectors become orthogonal. Therefore for each iteration, we need to solve a
two point boundary value problem, which also requires iterations (i.e., nested
iteration). If we denote these two unit tangent vectors as tc and tg , then they
can be expressed as follows:

tc =
drc(t)
dt���drc(t)dt

��� =
ru

duc

dt + rv
dvc

dtq
(du

c

dt xu +
dvc

dt xv)
2 + (du

c

dt yu +
dvc

dt yv)
2
; (10.66)

tg =
drg(s)

ds
= ru

dug

ds
+ rv

dvg

ds
: (10.67)

Therefore the orthogonality condition can be written as

!(t) = tc � tg

10.5 Shortest path between a point and a curve 281

Solve the BVP and denote the solution vectors by (L, R)

|L − R|<ε

Add L and R to the solution list and push (L,R) into stack S

Add L to the solution list

Start with two circular arc approximations (YL, YR) as initial vectors

Yes

No
End

|L − R|<ε
Add L to the solution list

Compute a new approximation vector YM by taking the mid points
of L and R, i.e. YM=(L+R)/2

Solve the BVP with YM as input and denote the output by M

|L − M|<ε
or M moves further left to L

|R − M|<ε
or M moves further right to R

Push (YM,R) to stack S

Push (L,YM) to stack S

Yes

Yes

Yes

No

No

No

Pop (L,R) from stack S

We add M to the solution list and push (L,M) and (M,R) to stack S

Stack S is empty

End

No

Yes

Find the shortest path from the list of solution vectors

Fig. 10.3. Flow chart of the algorithm based on circular arc approximation for
computing the geodesic path between two given points (adapted from [246])

282 10. Geodesics

.

.

A

B

C

S

tg

tc

rc(t)

rg(s)

Fig. 10.4. Shortest path between point A and curve C (adapted from [246])

=
dug

ds
duc

dt E + (dv
g

ds
duc

dt + dvc

dt
dug

ds)F + dvg

ds
dvc

dt Gq
(du

c

dt xu +
dvc

dt xv)
2 + (du

c

dt yu +
dvc

dt yv)
2

= 0 : (10.68)

Consequently we need to �nd a parameter value tB such that !(tB) = 0.
Since the relationship described above is implicit, we use the secant method
[69] instead of Newton's method to obtain tB . The secant method can be de-

rived from Newton's method by replacing the derivative d!(i)

dt by the quotient

(!(i)�!(i�1))=(t(i)�t(i�1)) where superscripts (i) denote i-th iteration. This
leads to the following scheme

t(i+1) = t(i) +�t(i); �t(i) = � t(i) � t(i�1)

!(i) � !(i�1)
!(i); !(i) 6= !(i�1) :

(10.69)

Notice that the secant method requires two initial approximations t(1) and
t(2). Since the secant method has an order of convergence of 1

2 (1+
p
5) ' 1:618

[69], it converges within a reasonable number of iterations. If the correction
�t(i) is large, it is again an indication that the problem is highly nonlinear.
In such case we also employ a step correction procedure

t(i+1) = t(i) + ��t(i) ; (10.70)

where � is a correction factor 0 < � � 1, determined as for the modi�ed
Newton's method. Since we do not know how many solutions exist and the
corresponding parameter values of the curve beforehand, we can use a similar

10.6 Numerical applications 283

algorithm to the circular arc approximation. If the range of the parameter
value of the curve is 0 � t � 1, we start from both ends of the curve (i.e.
t(1)=0, t(2)=0.02 and t(1) = 1, t(2)=0.98). Then we recursively �nd the so-
lutions. Although we may have several footpoints B in di�erent locations of
the curve, for each footpoint there is only one unique solution between A and
B, since this can be viewed in the context of an initial value problem.

10.6 Numerical applications

10.6.1 Geodesic path between two points

The �rst example is a wave-like bicubic B-spline surface, whose control poly-
hedron is a lattice of 7�7 vertices with uniform knot vectors in both directions
and spans 0 � x � 1, 0 � y � 1. Let us compute the geodesic path between
two corner points, (uA, vA)= (0,0) and (uB , vB)=(1,1). We choose (uC ; vC)
to be (0.7, 0.3) and (uD; vD) to be (0.3, 0.7) for the circular arc approxima-
tion. The algorithm based on circular arc approximation �nds three geodesic
paths, as shown in Fig. 10.5 (solid thick lines). The computational condi-
tions such as number of mesh points, tolerance and correction factor for the
Newton's method "N , �, as well as computational results such as number of
iterations for convergence and the geodesic distances are listed in Table 10.1.
Symbols Lt, Md, Rt refer to left, middle and right geodesic paths in Fig.
10.5. The middle geodesic path is not a minimal path (s=1.865), while the
other two paths are the shortest path (s = 1:661) due to symmetry. Figure
10.6 shows how the initial approximation path (the right-most thick solid
line) converges gradually to the �nal solution (wavy thick solid line). The
intermediate paths are illustrated by the thin solid lines.

Table 10.1. Numerical conditions and results for the computation of the geodesic
path between corner points of the wave-like surface (adapted from [246])

Points Tolerance Correction Iterations Geodesic distance
m "N factor � Lt Md Rt Lt Md Rt
101 1.0E-3 0.2 22 1 22 1.661 1.865 1.661

The second example is a generalized cylinder represented by a biquadratic
rational B-spline surface, whose control polyhedron is a lattice of 6�9 vertices.
This surface was constructed by sweeping a circle of radius 0.5, the generatrix,
along a helix (x = cos t, y = � sin t, z = t

� , 0 � t � 2�), the spine, and is
approximated by rational B-spline interpolating a number of generatrices.
When we keep u constant, we obtain a curve on the surface which depends
only on v. This curve coincides with the generatrix. Similarly v = constant

284 10. Geodesics

x

y

z

Fig. 10.5. Geodesic paths on the wave-like bicubic B-spline surface between points
of two corners (adapted from [246])

represents another iso-parametric curve which is parallel to the spine. Two
end points are chosen to be (uA; vA)=(0, 0.4) and (uB ; vB)=(1, 0.6) as shown
in Fig. 10.7. In Fig. 10.7 three initial approximations are illustrated by the
thin solid lines, while the �nal solutions are illustrated by the thick solid lines.
The two circular arcs are determined by setting (uC ; vC) = (0.578, 0.108),
(uD; vD) = (0.422, 0.892). The circular arc approximation algorithm starts
with these two circular arcs and converges to the two minimal geodesic paths
which are shown as thick solid lines close to the initial circular arcs. The
minimal geodesic paths mapped onto the generalized cylinder are depicted in
Color Plate A.8 and Fig. 10.8. Then the algorithm computes the mid-points
of these solutions, which is shown as a thin straight line connecting the two
end points. This initial approximation converges to a sine wave-like solution.
This solution is a geodesic path but it does not provide the shortest distance
(see Fig. 10.9). Table 10.2 shows the list of computational conditions and
results as in Table 10.1.

10.6.2 Geodesic path between a point and a curve

Figure 10.10 shows a planar cubic B�ezier curve and point A (0.3, 0.2) in the uv
parameter domain, which will be mapped onto the wave-like B-spline surface

10.6 Numerical applications 285

x

y

z

Fig. 10.6. Convergence of the right geodesic path in Fig. 10.5 (adapted from [246])

Table 10.2. Numerical conditions and results for the computation of the geodesic
path between two points on generalized cylinder (adapted from [246])

Points Tolerance Correction Iterations Geodesic distance
m "N factor � Lt Md Rt Lt Md Rt
501 1.0E-2 0.2 8 10 8 5.860 6.983 5.860
1001 5.0E-3 0.2 10 10 10 5.843 6.956 5.843

as shown in Fig. 10.11. The algorithm �nds three geodesic paths AB, AB0 and
AB00, whose tangent vectors at B, B0 and B00 are orthogonal to the tangent
vectors at the curve at those points. Table 10.3 shows the list of computational
conditions and results. The entries t1, t2 and tB are the parameter values
of the curve corresponding to the �rst two initial approximations for the
secant method and the solution value. The following entries, m, � and � are
the number of mesh points, correction factors for the Newton and secant
methods. Tolerances for the convergence of Newton and secant methods are
given by "N , "S . The shortest path is given by path AB with s=0.275.

286 10. Geodesics

u

v

Fig. 10.7. Geodesic paths in the parameter domain of the generalized cylinder
(adapted from [246])

Table 10.3. Numerical conditions and results for the computation of the geodesic
path between a point and a curve on wave-like surface (adapted from [246])

t1 t2 tB m � � "N "S Iter. Geodesic
distance

0 0.02 0.266 101 0.2 0.05 1.0E-3 1.0E-6 16 0.275
1 0.98 0.727 101 0.2 0.05 1.0E-3 1.0E-6 14 0.371

0.496 0.516 0.579 101 0.2 0.05 1.0E-3 1.0E-6 8 0.387

10.7 Geodesic o�sets

In this section we focus on geodesic o�sets which are di�erent from the clas-
sical o�set de�nition. Geodesic o�sets or geodesic parallels are well known in
classical di�erential geometry. Let us consider an arbitrary curve C on a sur-
face. The locus of points at a constant distance measured from curve C along
the geodesic curve drawn orthogonal to C is called geodesic o�set (see Fig.
10.12). Patrikalakis and Bardis [295] provide an algorithm to construct such
geodesic o�sets on NURBS surfaces. The equations of the geodesics consist

10.7 Geodesic o�sets 287

x

y

z

Fig. 10.8. Top view of the minimal geodesic paths on the generalized cylinder
between two points of two circular edges (adapted from [246])

of four �rst order nonlinear ordinary di�erential equations (10.17) to (10.20)
which are solved as an initial value problem.

Let us consider a progenitor curve lying on a parametric surface r =
r(u; v) given by rc(t) = r(uc(t); vc(t)) and an arc length parametrized
geodesic curve rg(s) = r(ug(s); vg(s)) orthogonal to rc. We select n points
on the progenitor curve ti, 0 � i � n � 1 and compute a geodesic path for
each point by a distance equal to dg as an IVP. The initial direction tg =
(du

g

ds ;
dvg

ds) = (p; q) can be determined by the condition that the tangent vec-
tor along the progenitor curve _rc and the unit tangent vector of the geodesic
curve tg are orthogonal (see (10.68))

(_ucE + _vcF)p+ (_ucF + _vcG)q = 0 ; (10.71)

and the normalization condition

E(p)2 + 2Fpq +G(q)2 = 1 ; (10.72)

leading to

p = � !2p
E!2

2 � 2F!1!2 +G!2
1

; (10.73)

q = � !1p
E!2

2 � 2F!1!2 +G!2
1

; (10.74)

288 10. Geodesics

x

y

z

Fig. 10.9. A geodesic path on the generalized cylinder which is not the shortest
path (adapted from [246])

where !1 = _ucE + _vcF and !2 = _ucF + _vcG. The positive and negative
signs in (10.73) and (10.74) correspond to the two possible directions of the
geodesic path relative to the progenitor curve.

The terminal points of the geodesic paths, departing orthogonally from n
selected points of the progenitor curve on the surface, are interpolated in the
surface patch parameter space by a B-spline curve assuring that the o�set
curve lies entirely on the surface.

Wolter and his associates [339] compute medial curves on a surface, which
is the locus of points which are equidistant from two given curves on the
surface, utilizing the geodesic o�set function. Their method is also applicable
to the plane curve case. Also Wolter and his associates [213] applied the above
method to compute a Voronoi diagram on a parametric surface instead of the
Voronoi diagram in Euclidean space.

Traditionally the spacing between adjacent tool paths, which is referred
to as side-step or pick-feed, has been kept constant in either the Euclidean
space or in the parameter space. Recently geodesic o�set curves are used to
generate tool paths on a part for zig-zag �nishing using 3-axis NC machining
with ball-end cutter so that the scallop-height, which is the cusp height of
the material removed by the cutter, will become constant [416, 365]. This

10.8 Geodesics on developable surfaces 289

u

v

A

Fig. 10.10. Cubic B�ezier curve in the parameter domain (adapted from [246])

leads to a signi�cant reduction in size of the cutter location data and hence
in the machining time.

10.8 Geodesics on developable surfaces

In this section it is shown that all two point BVPs for solving geodesics on
developables can be reduced to IVPs using the di�erential geometry proper-
ties introduced in Sect. 9.7.1. Since a geodesic on a developable surface maps
to a straight line on the developed plane, there is only one solution to the
system (10.17)� (10.20) on a developable surface. Here we exclude periodic
surfaces such as cylinders where there can be more than one solution. The
basic procedure is to map the two desired points on the developable surface
to a plane, draw the straight line between them and determine the angle be-
tween the generator and the geodesic line at one of the end points. The angle
can be used to determine the initial direction (u0; v0) = (p; q). Thus, all the
information required for an IVP is available. Given two points A and B on
the developable surface r(u; v) as shown in Fig. 10.13(c), the corresponding
points (XA; YA) and (XB ; YB) in the developed planar surface are required.
The Frenet-Serret formulae (2.56) state that t0 = ��n where t is the unit
tangent vector to a curve, n is the unit normal vector to a curve and � is
the curvature. The minus sign ensures that � is positive when n points away

290 10. Geodesics

x

y

z

A

B"

B’B

Fig. 10.11. Geodesic paths from point A to B�ezier curve on the wave-like bicubic
B-spline surface (adapted from [246])

from the center of curvature (see Table 3.2). For a planar curve in the (X;Y)
plane, we can de�ne the unit normal vector as n = t�ez where ez = (0; 0; 1).
Substituting this equation into the Frenet-Serret formulae yields

d2X

ds2
+ �

dY

ds
= 0;

d2Y

ds2
� �dX

ds
= 0 ; (10.75)

where (X;Y) denote the 2D coordinates on the developed plane (X,Y). If we
rewrite the �rst equation of (10.75) in terms of the parameter u, we obtain

d2X

ds2
+ �

dY

ds
=
d2X

du2

�
du

ds

�2

+
dX

du

�
d2u

ds2

�
+ �

dY

du

du

ds
= 0 : (10.76)

Similarly the second equation of (10.75) can be rewritten in terms of the
parameter u. Since du

ds 6= 0, (10.75) reduce to

d2X

du2
+

�
d2u
ds2

�
�
du
ds

�2 dXdu +
��
du
ds

� dY
du

= 0 ;

d2Y

du2
+

�
d2u
ds2

�
�
du
ds

�2 dYdu � ��
du
ds

� dX
du

= 0 : (10.77)

10.8 Geodesics on developable surfaces 291

Fig. 10.12. Geodesic o�set curve on a B�ezier surface. Thick solid line represents
the progenitor curve and the thick dotted line represents the geodesic o�set curve
(adapted from [249])

The development is based on the fact that curves on isometric surfaces
have the same geodesic curvatures. Therefore, � in (10.77) can be replaced by
�g , the geodesic curvature of the curve on the developable surface [116]. If we
choose the curve on the developable surface to be r(u; vn), an iso-parametric

curve in terms of u, we can replace du
ds and d2u

ds2 in (10.77) by

du

ds
=

1

jru(u; vn)j ;
d2u

ds2
= � ru(u; vn) � ruu(u; vn)

(ru(u; vn) � ru(u; vn))2 : (10.78)

Thus we have

dX

du
= p;

dY

du
= q ; (10.79)

dp

du
= p

(ru � ruu)
(ru � ru) � q�gjruj;

dq

du
= q

(ru � ruu)
(ru � ru) + p�gjruj : (10.80)

To �nd the points A and B in the plane, we �rst set (X0; Y0) as the (0; 0)
point in the plane corresponding to r(0; 0) on the surface. We integrate the
system (10.79) and (10.80) along the directrix that corresponds to v = 0 to
determine the point C = (uA; 0), shown in Fig. 10.13(a). Since isometric maps
are conformal, the angle between the directrix and the generator at (uA; 0) is

the same in both representations and can be found by cos � = ru(uA;0)
jru(uA;0)j � c

jcj ,

where c =
�!
CA is a vector whose direction corresponds to the iso-parametric

292 10. Geodesics

X

Y

θ

ω
g(s)

A

B

C

(a) Surface developed onto plane (b) uv parametric space

u

v

θ

ω
g(s)

(c) Geodesic on 3-D surface

R(0,0) C

A

B

x
y

z

(d) 3-D surface with geodesic

Fig. 10.13. Geodesic on a degree (3,1) developable surface (adapted from [250])

line r(uA; v) which is a straight line on the surface. Therefore it is a geodesic
and will be developed into the plane as a straight line. The distance is given
by jcj =p(xA � xC)2 + (yA � yC)2 + (zA � zC)2. The point A on the plane
is found using C, jcj and �. The point B on the plane is found by following the
same procedure, and the points are connected as shown in Fig. 10.13(a). The

angle ! between c and b =
��!
AB is given by cos! = b�c

jbjjcj . The angles ! and

� are shown in Figs. 10.13(a) and (c). This angle ! is preserved between the
iso-parametric line r(uA; v) and the geodesic curve g(s) on the developable

surface at point A. Thus we have cos! = rv�g0(s)
jrv jjg0(s)j , where the tangent vector

to the geodesic is given by

g0(s) = ru
du

ds
+ rv

dv

ds
: (10.81)

Multiplying (10.81) by rv yields

rv � g0(s) = ru � rv du
ds

+ rv � rv dv
ds

= cos(!)jrv jjg0(s)j ; (10.82)

which (since jg0(s)j = 1) can be reduced to

10.8 Geodesics on developable surfaces 293

dv

ds
=

cos(!)p
G
� F

G

�
du

ds

�
; (10.83)

where F = ru � rv and G = rv � rv (coe�cients of the �rst fundamental form).
From the �rst fundamental form,

g0(s) � g0(s) = E

�
du

ds

�2

+ 2F
du

ds

dv

ds
+G

�
dv

ds

�2

= 1 : (10.84)

Plugging (10.83) into (10.84) and solving for du
ds yields

du

ds
= �

s
sin2(!)G

EG� F 2
; (10.85)

and thus (10.83) reduces to

dv

ds
=

cos(!)p
G
� 1p

G

Fp
EG� F 2

sin(!) : (10.86)

Evaluating (10.85) and (10.86) at the initial point, we have all the initial
conditions required to solve the IVP ((10.17) to (10.20)) for a geodesic. The
solution to the IVP yields the uv parametric values for the geodesic that are
graphed in Fig. 10.13(b). The corresponding three-dimensional coordinate
values are shown in Figs. 10.13(c) and (d). The geodesic runs from (uA; vA)
= (0.1, 0.3) to (uB ; vB) = (0.9, 0.8).

11. O�set Curves and Surfaces

11.1 Introduction

11.1.1 Background and motivation

O�set curves/surfaces, also called parallel curves/surfaces, are de�ned as the
locus of the points which are at constant distant d along the normal from the
generator curves/surfaces. A literature survey on o�set curves and surfaces
was carried out by Pham [312] and more recently by Maekawa [249]. O�sets
are widely used in various applications, such as tool path generation for 2 12 -D
pocket machining [157, 153, 348], 3-D NC machining [116, 52, 214, 365] (see
Fig. 11.1), in feature recognition through construction of skeletons or medial
axes of geometric models [297, 449] (see Fig. 11.2), de�nition of tolerance
regions [93, 352, 296] (see Fig. 11.3), access space representations in robotics
[236] (see Fig. 11.4), curved plate (shell) representation in solid modeling [300]
(see Fig. 11.5), rapid prototyping where materials are solidi�ed in successive
two-dimensional layers [114] and brush stroke representation [197].

Because of the square root involved in the expression of the unit normal
vector, o�set curves and surfaces are functionally more complex than their
progenitors. If the progenitor is a rational B-spline, then its o�set is usu-
ally not a rational B-spline, except for special cases including cyclide surface
patches [331, 83, 403], Pythagorean hodograph curves and surfaces (see Sect.
11.4) and simple solids [93]. Another di�culty arises when the progenitor
has a tangent discontinuity. Then its exterior and interior o�sets will become
discontinuous or have self-intersections as illustrated in Fig. 11.6. Further-
more o�sets may have cusps and self-intersections, even if the progenitor is
regular (see Figs. 11.9, 11.25). Frequently in applications, discontinuity in
o�sets must be �lled in and the loops arising from self-intersections must be
trimmed o�. In the following three sections, we will briey review some of the
literature on NC machining, medial axis transforms and tolerance regions.

11.1.2 NC machining

The purpose of milling is to remove material from a workpiece. The material
is removed in the form of small chips produced by the milling cutter which

296 11. O�set Curves and Surfaces

Center of Ball−End
Mill

R

R

Design Surface

Tool Driving Plane

Pick
Feed

Tool Path
Offset Surface

Machine Axis

(a) (b)

Fig. 11.1. NC machining: (a) 2 1
2
-D pocket milling (adapted from [253]), (b) 3-D

milling (adapted from [222])

Fig. 11.2. Medial axis (adapted
from [139])

rotates at a high speed. A machine tool is characterized by the motions it
can perform. Such motions as changing the relative position of the tool and
workpiece consist of linear translations and rotations about di�erent axes.
However, they do not include the rotation of the cutter or workpiece for
maintaining cutting action. NC machines are classi�ed as follows [290, 157]:

2-D Milling : 2-D milling refers to the contouring capability of a machine
tool limited to the xy-plane. By moving along the x and y axes simul-

11.1 Introduction 297

Fig. 11.3. De�nition of tolerance regions.

BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB
BBBBB

BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBB
BBBBBBBBBBBB

BBBBBB
BBBBBB
BBBBBB

Fig. 11.4. Access space representation in robotics (adapted from [236])

taneously, while keeping z constant, a complete 360 degrees contouring
capability can be achieved.

21
2
-D Milling : 2 12 -D milling has a capability between 2-D and 3-D milling.
In 2 12 -D milling, the cutting tool can follow any arbitrary curve in the xy-
plane, but can only move stepwise in the z-direction. This 2 12 -D milling
is also referred as pocket machining.

3-D Milling : 3-D milling refers to a cutting tool moving simultaneously
along the x, y and z axes, but not capable of performing tool rotation
with respect to the workpiece.

5-D Milling : A rotation around two of the axes x, y and z is added to x, y
and z translations, hence the tool orientation can vary. The 5-D milling

298 11. O�set Curves and Surfaces

Fig. 11.5. Plate representation

(a) (b)

Fig. 11.6. O�sets to a tangent discontinuous curve (adapted from [253])

is suitable for large production runs, because the two additional rotations
reduce the required setups signi�cantly [286].

The success of NC milling highly depends on the availability of e�cient al-
gorithms for de�ning tool paths. The books by Marciniak [261], and Choi
and Jerard [59] provide theoretical and practical information on sculptured
surface NC machining. The topic of optimal tool paths for NC machining of
sculptured surfaces is analyzed in [198].

The cutter motion for machining a part consists of roughing, semi-
roughing and �nishing, and should be considered separately, as illustrated
in Fig. 11.7 [231]. For each process, an appropriate tool size and tool path
needs to be determined.

11.1 Introduction 299

Rough machining : It should be as simple as possible and preferably
consist of a linear type motion only to minimize machining time. In other
words, the cutter path should be as short as possible and the depth of
cut and feedrate should be as large as possible.

Semi-rough machining : After rough machining, the shoulders left on the
part should be removed.

Finishing machining : The cutter should follow the pro�le during these
operations and the deviations of the cutter from the pro�le should always
be maintained within a designated tolerance.

Part Surface Cutting Plane

Shoulders Left
in Roughing

Flat−End Mill

@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@

Part Surface

@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@

@@@@
@@@@
@@@@
@@@@
@@@@
@@@@
@@@@

Shoulders Left
in Roughing

Ball−End Mill

Finishing
Allowance

(a)

(b)

 Moving
 Direction

Fig. 11.7. (a) Pocket machining with at-end mill in roughing, (b) semi-roughing
with large ball-end mill (adapted from [231])

More than 80% of all mechanical parts which are manufactured by milling
machines can be cut by NC pocket machining [157]. This is based on the facts
that most mechanical parts consist of faces parallel or normal to a single

300 11. O�set Curves and Surfaces

plane, and that free-form objects are usually produced from a raw stock by
2 12 -D roughing and 3-D or 5-D �nishing. When a cylindrical end-mill cutter
is used in 2 12 -D pocket machining, tool paths are generated by o�setting at a
distance equal to the radius of the cutter from the boundary curve. When the
cutter is located on the side of the curve where the center of curvature lies,
the cutter radius must be smaller than the smallest radius of curvature of the
boundary curve of the part to be machined to avoid local overcut (gouging).
Gouging is one of the most critical problems in NC pocket machining. To
avoid gouging, we need to determine the distribution of the curvatures along
the boundary curve to select an appropriate cutter size.

Figure 11.1 (a) shows the tool path of a cylindrical cutter pocket ma-
chining a region where the center of curvature of the parabolic boundary
curve lies. The parabola r(t) = (t; t2)T has the maximum curvature at (0; 0)
with curvature value � = 2. Thus if the radius of the cylindrical cutter ex-
ceeds 0:5, there will be a region of gouging as depicted in Fig. 11.10 (a),
where the cutter has a radius 0:8. Also the o�set with d = �0:8 has one self-
intersection and two cusps. Points on the segment of the o�set bounded by
the self-intersecting points on the o�set have distance less than the nominal
o�set distance 0.8 from the generator and this fact causes gouging. Therefore,
if we trim o� the region of the o�set bounded by the two parameter values
associated with the self-intersection, the cutter will not overcut the part but
will leave an undercut region as shown in Fig. 11.10 (b). The undercut region
must be revisited with the smaller size cutter. Each point on the trimmed
o�set curve is at least distance jdj from every point on the progenitor [102].
Therefore computing the self-intersection points of the o�set of a progenitor
curve is important.

Most of the tool path generation algorithms for 2 12 -D pocket machining
based on o�set contouring, �rst approximate the input curve with a com-
bination of straight lines and circular arc segments, since traditional CNC
interpolators accommodate only such elements and also the o�sets of those
elements are also straight lines and circular arc segments. Then the approxi-
mated boundary curves are o�set. The di�cult part is to identify and remove
all the loops arising from self-intersections. There are two di�erent approaches
to remove such loops, namely the Voronoi diagram method [157] and pair-
wise intersection method [153]. Persson's early work [306] is one of the �rst to
study spiral pocket machining using Voronoi diagrams. A book by Held [157]
reviews all the related work until roughly 1991 and introduces an algorithm
for the determination of tool paths for spiral and zig-zag milling, and the
optimization of tool paths. Held's spiral algorithm, based on an extension
of Persson's method [306] provides a general approach for fully automated
pocket machining.

In the pairwise intersection method, computing the self-intersections of
the o�sets reduces to computing the intersections of a straight line to a
straight line, a circle to a circle or a straight line to a circle. A brute force

11.1 Introduction 301

approach takes O(n2) time for computation where n is the number of seg-
ments plus the number of reex vertices. Reex vertices have an interior
angle larger than �. Hansen and Arbab [153] showed that careful elimina-
tion of non-intersecting segments reduces the computation time complexity
to KPO(n logn) for a given shape P .

Rohmfeld [348] developed an algorithm to generate tool paths for arbi-
trary simple piecewise smooth G0 generator curves. The redundant global
loops are removed by interval operations on the parameter space of the
generator curves using the invariance of Gauss-Bonnet values between the
generator and the so-called IGB (Invariant Gauss-Bonnet)-o�set, which is
equivalent to the rolling ball o�set.

When a ball-end mill cutter is used in 3-D machining, the cutter will not
gouge the design surface as long as the center of the ball-end mill moves
on the trimmed o�set surface, where loops arising from self-intersections are
removed, and with the o�set distance equal to the radius of the cutter (see
Fig. 11.1 (b)). A detailed literature review on this topic is given in [183, 78].
Among many methods, Sakuta et al. [360], Kuragano et al. [215], Kuragano
[214], Kim and Kim [196], Lartigue et al. [222] employ the o�set surface-plane
intersection method. Sakuta et al. [360] approximate an o�set surface by o�-
setting a quadrilateral mesh of points ignoring small gaps, while Kuragano et
al. [215] and Kuragano [214] generate a polygonal o�set surface by connecting
the o�set points, where points along the normal of the free-form surface are
o�set by the radius of the ball-end mill, to the desired accuracy. When there
is a self-intersection in the polygonal o�set surface, the portion bounded by
the self-intersection lines is trimmed o�. Then the approximated (trimmed)
o�set surface is intersected with parallel planes, which are called tool driving
planes, at a regular interval resulting in a series of intersection lines (see Fig.
5.2). The interval between two successive parallel planes is called pick feed.
The intersection curves of the approximated polygonal o�set surface with
these parallel planes generate the required tool paths.

11.1.3 Medial axis

The Medial Axis (MA) or skeleton of a solid is the locus of centers of balls
which are maximal within the solid, together with the limit points of this
locus (a ball is maximal within a solid if it is contained in the solid but is not
a proper subset of any other ball contained in the solid). The Medial Axis
Transform (MAT) is composed of the medial axis together with the associ-
ated radius function which is the radius of the maximal ball with center any
given point on the MA. The MA of a 2-D bracket-like region (2-D solid) is
shown in Fig. 11.2. The maximal disc associated with a point at the inter-
section of three MA branches is also shown. Originally proposed by Blum
[30, 29], the MAT has been developed extensively since then. It has several
properties which neither the Boundary Representation nor the Constructive

302 11. O�set Curves and Surfaces

Solid Geometry directly provide. First, because it elicits important symme-
tries of an object, it facilitates the design and interrogation of symmetrical
objects [29]. Second, the MAT exhibits dimensional reduction [54, 449]; for
example, it transforms a 3-D solid into a connected set of points, curves, and
surfaces, along with an associated radius function described in more detail be-
low. Third, once a solid is represented with the MAT, the skeleton and radius
function themselves may be manipulated, and the boundary will deform in a
natural way, suggesting applications in computer animation [450]. Fourth, the
skeleton may be used to facilitate the creation of coarse and �ne �nite element
meshes of the region [139, 140, 141, 142, 297, 405, 12, 417, 337]. Fifth, the
MAT determines constrictions and other global shape characteristics that are
important in mesh generation, performance analysis, manufacturing simula-
tion, and path planning [293, 297]. Sixth, the MAT can be used in document
encoding [43, 42] and other image processing applications [38]. Finally, the
MAT may be useful in tolerance speci�cation [171].

The MA is closely related with equidistantial point sets, especially the well
known Voronoi Diagram [334]. For a 2-D polygonal region or a 3-D polyhedral
region, the Voronoi Diagram is a superset of MA, while for objects with
nonlinear boundary, the Voronoi Diagram may not be a superset of MA. The
major di�erence is in that the MA is intrinsic to a solid, while the Voronoi
Diagram depends on the speci�c decomposition of the boundary of the solid.

Algorithms for determining the MAT or related sets. The MAT was
introduced and explored by Blum [30] and further explored by Blum [29]
and Blum and Nagel [31] to describe biological shape. Soon after it was
introduced, various algorithms for computing the MAT were developed for
special planar regions. Montanari [271] developed an algorithm to compute
the MAT of a multiply-connected polygonal region. His algorithm proceeds
by identifying signi�cant branch points and propagating the boundary con-
tour inward, while connecting the branch points with appropriate linear or
parabolic segments. A more e�cient algorithm for computing the MAT of a
convex polygonal region in O(n logn) was presented by Preparata [333] along
with an O(n2) algorithm for a non-convex polygonal region. Lee [228] devel-
oped an O(n log n) algorithm for polygonal regions with non-convex corners.
Srinivasan and Nackman [404] presented an O(nh + n logn) algorithm for
multiply connected polygonal regions with h holes. Gursoy and Patrikalakis
[140, 141, 142] developed an algorithm to compute the MAT of a multiply
connected planar region bounded by line segments and circular arcs, and
used this algorithm to generate �nite element meshes automatically and de-
termine global shape characteristics. Guibas and Stol� [137] investigate the
relationship between the Voronoi Diagram and the Delaunay Triangulation,
and develop the quad-edge data structure to represent them. Sugihara [415]
investigates the use of Voronoi Diagrams to approximate various types of
generalized Voronoi Diagrams. Rosenfeld [349] considers di�erent represen-
tations of shapes based on an axis and a generation rule. Held's book [157]

11.1 Introduction 303

contains a comprehensive review of Voronoi Diagram algorithms, which he
uses in the context of pocket machining. Another comprehensive review of
the state of the art in Voronoi Diagram algorithms has been compiled by
Aurenhammer [14].

Other work has concentrated on discrete and approximate approaches to
determine the MAT or its related sets. Nackman [281] proposes a 3-D algo-
rithm to use a polyhedral approximation of a smooth boundary and produce
a polyhedral approximation to the skeleton. The algorithm is an extension of
Bookstein's line skeleton approach [36] to 3-D. It takes as input a polyhedral
surface made up of convex polygons and generates a connected graph of con-
vex polygons approximating the MA of the original object; since the input
polyhedron is assumed to be an approximation to a smooth curved object,
the output is not the skeleton of the polyhedron itself but rather a collec-
tion of polygons approximately tangent to the skeleton of the true object.
Lavender et al. [225] use an octree-based approach to determine the Voronoi
Diagram. Their algorithm works on set-theoretic solid models, composed of
unions, intersections, and di�erences of primitive regions represented by a
collection of polynomial inequalities, and produces an octree (or quadtree in
two dimensions) which divides space into Voronoi regions at some speci�ed
resolution. Scott et al. [369] discuss a method for determining the Symmetric
Axis (a superset of the MA) which is based on a combined wave/di�usion
process in the plane. Their algorithm proceeds by assigning each boundary
pixel a unit displacement above the plane and every other pixel a zero dis-
placement, and then numerically propagating a wave from the boundary. The
wave is attenuated by a di�usion process to reduce numerical error, and local
maxima in the wave are declared to lie on the Symmetric Axis. Although
useful for binary images at low resolutions, the error may be large for higher
resolutions. Memory and processing requirements for this method tend to be
quite high as well.

Brandt, and Brandt and Algazi [41, 40, 39] �nd a continuous approxima-
tion to the skeleton in both the planar and the 3-D case by �rst discretizing
the boundary. The boundary is sampled at a given sampling density, yielding
a set of discrete points which form a pixelized or voxelized approximation to
the boundary. The next step is to run an e�cient discrete-point Voronoi dia-
gram on the set of points. Finally, portions of the skeleton which result from
the e�ects of quantization are pruned away [39]. This approach attempts to
classify each of the vertices in the interior Voronoi diagram according to how
many foot points the vertex has. The number of footpoints is determined
by taking the associated maximal sphere at the vertex, increasing the radius
slightly, and intersecting the dilated sphere with the boundary. This intersec-
tion partitions the surface of the sphere into areas which lie either inside or
outside the region. Each area lying outside the boundary is assumed to cor-
respond to a footpoint; since the most commonly occurring type of skeleton

304 11. O�set Curves and Surfaces

point has two footpoints, only these points are kept, and the rest are pruned
away.

Chiang [54] takes a planar region bounded by piecewise C2 curves and
performs a cellular decomposition of the plane in a neighborhood of the re-
gion. Each cell is assigned an approximate distance to the nearest point on
the boundary of the region using an algorithm due to Danielsson [70] which
computes the Euclidean distance transform. In order for us to explain the
Euclidean distance transform, we consider a given binary image S (where
each pixel (i; j) is assigned 0 or 1); we call �S the set of pixels with value 0.
The distance map is de�ned as a scalar function on S

L(i; j) = min(d[(i; j); �S]) ; (11.1)

where d is a distance function. If d is the Euclidean distance between two
pixels

de((i; j); (h; k)) =
p
(j � i)2 + (k � h)2 ; (11.2)

then the distance map is called the Euclidean distance map. This information
is later used to �nd a starting point for tracing axis branches in two dimen-
sions and for recognizing when the tracing has passed the end of a branch.
The tracing itself uses the distance information to determine on which bound-
ary elements the footpoints of the current Medial Axis point lie. Once these
elements are known, a set of simultaneous equations describing the local
structure of the MA near the given point is formed. Using these equations to
determine the tangent to the MA at the given point, a short distance along
the tangent is traversed, the point is re�ned with Newton iteration, and an-
other tracing step is taken. At each step, the distance information is used to
determine whether or not the current branch has become inactive. If so, a
branch point or an end point has been hit, and the tracing either proceeds
along another branch or stops. Although the tracing is not extended to three
dimensions, Chiang [54] notes that the same Euclidean distance transform in
3-D may be used to determine an approximation to the skeleton. One simple
way of using the distance transform in this way is to identify those points
which have locally maximal distance values after the distance transform is
carried out. Such points are clearly close to centers of maximal disks, and so
can be considered to provide an approximation to the skeleton.

Sudhalkar et al. [414] introduce a set called the box skeleton which they
argue has the properties which make the MAT desirable as an alternate rep-
resentation of shape. In particular, the box skeleton exhibits dimensional
reduction, homotopic equivalence and invertibility. However, their skeleton is
de�ned using the L1 norm (the box norm) instead of the Euclidean norm
and thus may be quite di�erent from the Medial Axis. Their algorithm for de-
termining the box skeleton operates on discrete objects made of unit squares
(or cubes, in 3-D) and proceeds by thinning the object while maintaining ho-
motopic equivalence to the original object. In order to perform the thinning,

11.1 Introduction 305

the object is transformed into a graph; in the planar case, the boundaries
between adjacent pixels are considered to be edges of the graph, and the in-
tersections of these edges are the vertices of the graph. The �rst thinning step
proceeds by replacing the graph by that portion of the dual graph which is
interior to the original (primal) graph. Since this procedure alone may result
in a disconnected skeleton, the boundary \shrink wraps" around the skeleton
as it thins. Procedures based on these concepts are developed for both 2-D
and 3-D discrete objects.

Most of the 3-D algorithms in existence (such as the ones above) are fun-
damentally discrete algorithms. To our knowledge, few continuous approaches
have been proposed, due largely to the computational complexity involved.
One of the few such techniques is developed by Ho�mann [170], who proposed
a method for assembling the skeleton of a CSG object. His method proceeds
by determining points of closest approach between pairs of boundary ele-
ments and checking these points to make sure they are in fact on the Medial
Axis. (Each of these points are on the MA if and only if the distance to the
pair of elements is less than or equal to the distances to the other boundary
elements.) The points are then sorted in order of increasing distance from
the boundary, and then a local analysis around each point is performed, in
an attempt to identify whether the point lies on a face, edge, or vertex of
the Medial Axis. This determination is made by identifying all boundary el-
ements which lie at the same minimum distance from the point and forming
a set of simultaneous equations in n variables which describe the equidis-
tantial set that the point belongs to. Based on the rank of the Jacobian of
this set of equations, the point is predicted to lie on a face, edge, or vertex
of the skeleton. Then neighboring faces and edges are traced out in order of
increasing distance from the boundary. The method requires intersection of
equidistantial sets with one another in order to trim away portions which
do not belong to the Medial Axis. Related papers by Dutta and Ho�mann
[81, 82] consider the exact representation of the bisectors which appear as
skeleton branches in the skeleton of CSG objects bounded by planes, natural
quadrics, and torii.

Reddy and Turkiyyah [340] propose an algorithm for determining the
skeleton of a 3-D polyhedron based on a generalization of the Voronoi Dia-
gram. They compute an abstract Delaunay Triangulation of the polyhedron
and use the result to obtain the dual, the generalized Voronoi Diagram. The
Delaunay triangulation computed is a generalization of the usual Delaunay
triangulation, which connects isolated nodes together with line segments. In
the generalization, the nodes represent parts of a polyhedron (speci�cally,
either a face or a non-convex edge or a non-convex vertex of the polyhedron)
and therefore the triangulation is an abstract graph. It still maintains dual-
ity with the generalized Voronoi Diagram, and is easier to compute since the
Voronoi Diagram may contain trimmed quadric surfaces. The skeleton of the
polyhedron is obtained by trimming away certain elements of the generalized

306 11. O�set Curves and Surfaces

Voronoi Diagram which are in the Voronoi Diagram but not the skeleton (for
example, the equidistantial point set between a face and a non-convex vertex
bounding it). The algorithm can explicitly determine certain critical points
of the skeleton, but does not contain highly accurate explicit representations
of the curves and surfaces making up the skeleton. Under the same approach,
Turkiyyah et al. [427] developed an accelerated algorithm using Delaunay
triangulation with a local optimization scheme for the generation of accurate
skeletons of 3D solid models. The accelerated algorithm has linear complexity
in terms of the number of points used for skeleton approximation.

Sheehy et al. [384, 383] investigate the use of a domain Delaunay trian-
gulation on a distribution of points on the boundary (in a manner similar to
Brandt [39]) to attempt to determine the topological features of the Medial
Axis of a 3-D solid. The steps of an algorithm to compute the Medial Axis
from these features are outlined.

Sherbrooke et al. [392] developed an algorithm for determining the MAT of
a general polyhedral solid with simply connected faces and without cavities.
In [393] and [390], that algorithm was re�ned, simpli�ed and extended to
work for polyhedral solids of arbitrary genus without cavities, with nonconvex
vertices and edges. The algorithm is based on a classi�cation scheme that
relates di�erent pieces of the medial axis to one another even in the presence
of degenerate MA points. Vertices of the MA are connected to one another
by tracing along adjacent edges, and �nally the faces of the axis are found by
traversing closed loops of vertices and edges. The completeness, complexity
and stability of the algorithm were also analyzed.

Etzion and Rappoport [91] presented an algorithm for computing the
Voronoi Diagram of a 3-D polyhedron based on subdivision of space. This
method enables local and partial computation of the Voronoi diagram. By
separating the computation of the symbolic (Voronoi graph) and geometric
parts of the diagram, the algorithm tends to be more robust. In addition, a
tracing algorithm for the MAT of a 3-D polyhedron is developed by Culver
et al. [68] to improve accuracy using exact arithmetic and exact geometric
representations. In order to improve the e�ciency in searching MA elements,
spatial decomposition and linear programming are utilized. Sheets in this
methods are in the form of quadrics. The method also includes a new al-
gorithm for analysis of the topology of an algebraic plane curve and a fast
numerical method for implicit geometric computation.

Wolter and his associates [339, 450] compute medial curves on a surface,
which is the locus of points being equidistant from two given curves on the
surface, utilizing the geodesic o�set function. Their method is also applicable
to the plane curve case. Also Wolter and his associates [213] applied the above
method to compute a Voronoi diagram on a parametric surface instead of the
usual Voronoi diagram in Euclidean space.

In addition to the work described above which discusses the determina-
tion of the MAT, there has been additional work on the inverse problem of

11.1 Introduction 307

reconstructing the original solid from the Medial Axis and the radius function.
Reconstruction of boundary surfaces from curves and surfaces of the Medial
Axis in 3-D is discussed by Gelston and Dutta [125]. Vermeer [430] consid-
ers the problem of boundary reconstruction from the MAT in 2-D and 3-D.
Recently, Verroust and Lazarus [431] developed a method to extract skeletal
curves from a set of scattered points that are sampled from a surface using a
geodesic graph and distance map with various levels of decomposition. The
skeletal curves extracted can be applied in surface reconstruction.

Work on the MAT and its applications has been somewhat limited by the
di�culty of developing an algorithm which is robust, accurate, and e�cient to
carry out the transformation especially for curved solids. Most recent work
on the 3-D problem has tried to generate a discrete approximation to the
actual MAT; while such algorithms may be well-suited for some meshing
applications, particularly if they involve some degree of user interaction, they
are less satisfactory for modeling since they do not capture the topological
structure of the shape accurately. However, because the skeleton is typically
path connected, and because branch points on the skeleton may be expressed as
solutions of a set of simultaneous nonlinear polynomial equations, we believe
that a continuous approach to the problem is promising especially if combined
with interval or even exact arithmetic methods, as for example in the recent
work by Culver et al. [68] for 3-D polyhedra.

Theoretical analysis of the MAT properties. There exists considerable
theoretical work on the mathematical properties of the MAT and other re-
lated sets. Wolter [449] provides a thorough analysis of topological properties
of the MAT in a very general context, and establishes the relationship be-
tween the MA and related symmetry sets such as the cut locus. Principal
results of his paper include his proof of homotopic equivalence between an
object with a C2 boundary and its Medial Axis, the invertibility of the MAT
(under conditions more general than piecewise C2 boundaries), and the C1

smoothness of the distance function on the complement of the cut locus. For
a 2-D solid with piecewise C2 boundaries, the medial axis is homotopically
equivalent to the 2-D solid, which implies the connectedness of the medial
axis. Wolter [448, 446] also earlier analyzed the di�erentiability of the dis-
tance function.

Farouki and Johnstone [99, 100] have studied bisector problems between a
planar curve and a point on its plane, and between two co-planar curves. They
introduce a natural method for tracing the bisector between two curves by
using the exact representation of the bisectors of the �rst curve and successive
points on the second curve.

Chiang [54] and Brandt [38, 39] studied many of the mathematical proper-
ties of the MAT, primarily for the domain of 2-D regions. Chiang [54] provides
a proof that for two-dimensional regions with piecewise C2 boundaries, the
MA is connected, the MAT is invertible, and, provided the 2-D solid is home-
omorphic to the closed unit disk, the maximal disc of a given MA point (not

308 11. O�set Curves and Surfaces

an end point of a MA arc) divides the MA and the solid into two disjoint
trees and two disjoint 2-D solids, respectively (which provides justi�cation
for divide-and-conquer approaches). Brandt [38, 39] computes �rst order and
second order di�erential properties of the planar skeleton, and explores the
determination of the skeleton under di�erent metrics (which may be useful
for determining the skeleton of binary images). He also explores the notion of
skeleton point classi�cation [39], classifying skeleton points according to the
number of footpoints.

The three-dimensional problem is studied in some detail by Nackman
[281] and Nackman and Pizer [282], who also derive relationships between
curvatures of the boundary, the skeleton, and the associated radius func-
tion. Curvature relationships in the planar case are considered by Blum [29].
Anoshkina et al. [9, 8] consider properties of the Medial Axis in the context
of an investigation of singularities of the distance function to the bounding
surface.

Sherbrooke et al. [394, 390] further developed the theory of the MAT
of 3-D objects. They established the relationships between the curvature of
the boundary and the position of the medial axis and also set up a defor-
mation retract between each object and its medial axis for n-dimensional
submanifolds of Rn with boundaries which are piecewise C2 and completely
G1. They demonstrated that if the object is path connected, then so is the
medial axis. Speci�cally, they proved that path connected polyhedral solids
without cavities have path connected medial axes.

Stifter [406, 407] considers the Voronoi Diagram of any subset of 3-D
space characterized by certain axioms and analyzes various properties of the
subset with applications to robotics.

11.1.4 Tolerance region

A tolerance region of a solid is constructed according to the ball-o�set oper-
ator model as in Rossignac [350]. Farouki [93] studied the problem of �nding
exact o�sets on the exterior of simple solids. He handled the tangent discon-
tinuities at the edge and vertices by using the rolling ball o�set de�nition.
The class of solids studied are closed convex solids like solids of revolution
and extrusion.

Patrikalakis and Bardis [296] construct a tolerance region of a quadrilat-
eral design surface patch which is bounded by ten surfaces as illustrated in
Fig. 11.3. For the shapes of interest in practical applications and the strict tol-
erance requirements under consideration, they assumed that there will be no
self-intersections in the ten bounding surfaces. These ten surfaces are: 1) four
pipe or canal surfaces (see Sect. 11.6), the o�sets to the edges of the design
surface; 2) two o�set surfaces, one along the normal and one in the opposite
direction to that of the normal to the design surface; 3) four spherical surface
patches, the o�sets of the corners of the design surface. They approximated
the pipe surfaces with rational B-splines and the normal o�sets by integral

11.2 Planar o�set curves 309

B-splines and expressed the spherical segments exactly by rational B-spline
surface patches. It is interesting to note that the design surface is the medial
axis of the tolerance region.

11.2 Planar o�set curves

11.2.1 Di�erential geometry

C

P

r(t)

n t

x

y

ez

Fig. 11.8. De�nitions of unit tangent and normal vectors (adapted from [253])

In this entire chapter we employ the convention (b) (see Fig. 3.7 (b) and
Table 3.2) such that the curvature � of a curve at point P is positive when
the center of curvature C is on the opposite direction of the unit normal
vector n as illustrated in Fig. 11.8. Following this convention, the Frenet-
Serret formulae for a planar curve r = r(t), t1 � t � t2 with arbitrary speed
(2.57) reduce to

_t = �v�n; _n = v�t ; (11.3)

where v = j _r(t)j is the parametric speed. The second equation of (11.3) can
be rewritten as follows:

_n = � _r : (11.4)

A planar o�set curve r̂(t) with signed o�set distance d to the progenitor
planar curve r(t) is de�ned by

310 11. O�set Curves and Surfaces

r̂(t) = r(t) + dn(t) : (11.5)

The unit tangent and normal vectors and the curvature of the o�set curve
are given by [102]

t̂ =
_̂r

j _̂rj =
1 + �d

j1 + �djt ; (11.6)

n̂ = t̂� ez = 1 + �d

j1 + �djn ; (11.7)

�̂ =
�

j1 + �dj ; (11.8)

where (11.3) (11.4) are used for the derivation.

11.2.2 Classi�cation of singularities

There are two types of singularities on the o�set curves of a regular progenitor
curve, irregular points and self-intersections. Irregular points include isolated
points and cusps. A point P on a curve C is called an isolated point of C if
there is no other point of C in some neighborhood of P . This point occurs
when the progenitor curve with radius R is a circle and the o�set is d = �R.
A cusp is an irregular point on the o�set curve where the tangent vector
vanishes. Cusps at t = tc can be further subdivided into ordinary cusps when
_�(tc) 6= 0 and extraordinary points when _�(tc) = 0 and ��(tc) 6= 0 [102]. An
isolated point and a cusp occur when j _̂r(t)j = 0, which using (11.6) reduces
to

�(t) = �1
d
: (11.9)

Note that (1 + �d)=j1+ �dj in (11.6) and (11.7) changes abruptly from -1 to
1 when the parameter t passes through t = tc at an ordinary cusp, while at
extraordinary points (1+�d)=j1+�dj does not change its value (see Fig. 11.9
(b)).

O�set curve/surface may self-intersect locally when the absolute value
of the o�set distance exceeds the minimum radius of curvature in the con-
cave regions (see Fig. 11.10 (a)). Also the o�set curve/surface may self-
intersect globally when the distance between two distinct points on the
curve/surface reaches a local minimum (i.e. the presence of a constriction
of the curve/surface as illustrated in Fig. 11.11). These local and global
self-intersections can be visualized as machining a part using a cylindri-
cal/spherical cutter whose radius is too large for 2 12 -D/3-D milling. It is
an essential task for many practical applications to detect all components
of the self-intersection points/curves correctly and generate the trimmed o�-
set curve/surface. If the cutter follows the trimmed o�set, there will be no

11.2 Planar o�set curves 311

(a) (b)

Fig. 11.9. (a) O�sets to a parabola r = (t; t2)T , �2 � t � 2 (thick solid line)
with o�sets d=-0.3, -0.5, -0.8 (adapted from [94]), (b) at d=-0.3, -0.5 the tangent
and normal vectors of the o�set have the same sense as the progenitor, while at
d = �0:8 they ip directions

overcut or gouging, however we are left with undercut regions which must be
milled with a smaller size cutter (see Fig. 11.10 (b)).

Self-intersections of o�set curves include nodes and tacnodes. A node P
is a point of curve C where two arcs of C pass through P and the arcs have
di�erent tangents. A tacnode is a special case of a node whose two tangents
coincide, as illustrated in Fig. 11.11. Self-intersections of an o�set curve can
be obtained by seeking pairs of distinct parameter values � 6= t such that

r(�) + dn(�) = r(t) + dn(t) : (11.10)

Example 11.2.1. (see Figs. 11.9 and 11.10)
Given a parabola r = (t; t2)T , �2 � t � 2, the unit tangent and normal
vectors are given by

t =
dr

ds
=
dr

dt

dt

ds
=

(1; 2t)Tp
1 + 4t2

; n = t� ez = (2t;�1)Tp
1 + 4t2

:

The curvature and its �rst and second derivatives are given by

�(t) =
(_r� �r) � ez
j _rj3 =

2

(1 + 4t2)
3
2

> 0 ;

_�(t) =
�24t(1 + 4t2)

1
2

(1 + 4t2)3
; ��(t) =

24(16t2 � 1)

(1 + 4t2)
7
2

:

312 11. O�set Curves and Surfaces

(a) (b)

Fig. 11.10. Self-intersection of the o�set curve of a parabola (adapted from [253]):
(a) o�sets to the parabola r(t) = (t; t2)T with d = �0:8 and cutter path with
gouging, (b) trimmed o�sets to the parabola r(t) = (t; t2)T with d = �0:8 and
cutter path with undercut

Thus a stationary point of curvature occurs at t = 0. Since ��(0) = �24 < 0,
�(0) is a maximum with a curvature value �(0) = 2. It is evident that the
o�set distance d has to be negative to have a cusp, since �(t) is always positive
for any t. Now let us solve �(t) = �1=d for t which yields

t = �
p

3
p
4d2 � 1

2
:

We can easily see that if d > � 1
2 , there is no real root. This means that there

is no singularity as long as the magnitude of the o�set distance is smaller
than 1

2 . If d = � 1
2 , there exists a double root t = 0, while if d < �1=2 there

exist two symmetric values of t. When d = � 1
2 , at t = 0, we have _�(0) = 0,

��(0) 6= 0, therefore t = 0 is an extraordinary point, while when d < � 1
2 ,

_�(�tc) 6= 0, so at points t = �tc there are ordinary cusps on the o�set curve.
The o�set to the parabola r = (t; t2)T is given by

r̂ = (t; t2)T + d
(2t;�1)Tp
1 + 4t2

:

Therefore the equations for self-intersection of o�set curve to the parabola in
x and y components become

� +
2d�p
1 + 4�2

= t+
2dtp
1 + 4t2

;

11.2 Planar o�set curves 313

�2 � dp
1 + 4�2

= t2 � dp
1 + 4t2

:

It is readily observed that the o�set is symmetric with respect to y-axis,
which implies that the pair of distinct parameter values forming the self-
intersection must satisfy � = �t. The y component results in identity, while
the x component yields

t

�
1 +

2dp
1 + 4t2

�
= 0 ;

Finally, the non-trivial solutions are t = �
p
4d2�1
2 .

11.2.3 Computation of singularities

Using (2.25) with ez = (0; 0; 1)T , _r(t) = (_x(t); _y(t))T and �r(t) = (�x(t); �y(t))T ,
(11.9) for �nding the locations of isolated points and cusps of planar o�set
curve reduces to [253]

d [�x(t) _y(t)� _x(t)�y(t)]�
p

_x2(t) + _y2(t)
�
_x2(t) + _y2(t)

�
= 0 : (11.11)

Consequently, if r(t) is a polynomial curve, locations of irregular points can be
obtained by solving the above univariate irrational function involving poly-
nomials and square roots of polynomials, which can be transformed into two
equations with two unknowns using the auxiliary variable method introduced
in Sect. 4.5. The additional equation and variable result from replacing the
square root involved in (11.11) leading to:

d [�x(t) _y(t)� _x(t)�y(t)]� %3 = 0 ; (11.12)

%2 � � _x2(t) + _y2(t)
�
= 0 : (11.13)

By substituting the expression for the normal vector for the planar para-
metric curve (2.24) (see Fig. 3.7 (b) and Table 3.2) into (11.10) yields the
following system for locating the self-intersections of the o�set of the planar
curve:

x(�) +
_y(�)dp

_x2(�) + _y2(�)
= x(t) +

_y(t)dp
_x2(t) + _y2(t)

;

y(�)� _x(�)dp
_x2(�) + _y2(�)

= y(t)� _x(t)dp
_x2(t) + _y2(t)

: (11.14)

If r(t) is a polynomial curve, (11.14) are two simultaneous bivariate irra-
tional functions involving polynomials and square root of polynomials. Using
the auxiliary variable method, system (11.14) can be transformed into four
polynomial equations with four unknowns �, t, !, % as follows [253]:

314 11. O�set Curves and Surfaces

!% [x(�) � x(t)] + d [% _y(�) � ! _y(t)] = 0 ;

!% [y(�)� y(t)] + d [�% _x(�) + ! _x(t)] = 0 ;

!2 � � _x2(�) + _y2(�)
�
= 0 ;

%2 � � _x2(t) + _y2(t)
�
= 0 : (11.15)

The trivial solution � = t can be avoided by factoring out � � t from the
above equations. It is apparent that the two additional equations obtained
through the auxiliary variables do not contain the factor � � t. However,
the original two equations, where the square roots of polynomials have been
replaced by the auxiliary variables, possess the factor � � t as can been
seen after some algebraic manipulations [253]. Once the division operations
are completed, we obtain a system of four polynomial equations with four
unknowns without the trivial solution � = t.

Similarly to (11.14), intersections of the normal o�sets at distance d of
two distinct planar curves rA(�) and rB(t) can be computed by solving the
following system:

xA(�) +
_yA(�)dp

(_xA)2(�) + (_yA)2(�)
= xB(t) +

_yB(t)dp
(_xB)2(t) + (_yB)2(t)

;

yA(�) � _xA(�)dp
(_xA)2(�) + (_yA)2(�)

= yB(t)� _xB(t)dp
(_xB)2(t) + (_yB)2(t)

:

(11.16)

Note that for (11.14) we need to �nd a method to eliminate the trivial solution
� = t, while for (11.16) � = t can be a solution. When the input curve is a
B-spline curve, we can always split it into B�ezier (polynomial) segments by a
knot insertion algorithm [34, 63]. In such cases not only the self-intersection
in the o�set of each split polynomial segment but also the intersections among
the o�sets of di�erent split segments must be checked.

A system of nonlinear polynomial equations can be robustly and e�-
ciently solved by the subdivision-based Interval Projected Polyhedron algo-
rithm [253, 179], which was introduced in Chap. 4. A remarkable feature of
this algorithm when applied to the system (11.15) is that both local and
global self-intersections can be found by the same algorithm without any
initial approximations (see Figs. 11.10, 11.11, 11.12).

11.2.4 Approximations

In general, an o�set curve is functionally more complex than its progenitor
curve because of the square root involved in the expression of the unit normal
vector. If the progenitor is a NURBS curve, then its o�set is usually not a
NURBS curve, except for some special cases such as straight lines and circles
etc. L�u [237] has shown that the o�set of a parabola is a rational curve. How-
ever, this result has not been generalized to higher order curves. Farouki and

11.2 Planar o�set curves 315

(a) (b)

Fig. 11.11. Global self-intersections of o�sets: (a) degree six B�ezier curve and
its o�set with d = �0:05, (b) o�set curve self-intersects forming a tacnode with
d ' �0:03141 (adapted from [253])

Ne� [101] have shown that the two-sided o�sets of planar rational polyno-
mial curves are high-degree implicit algebraic curves of potentially complex
shape. These equations cannot typically be separated into two equations de-
scribing positive and negative o�sets individually. The degree of this implicit
o�set curve is no = 4n � 2 � 2m, where n is the degree of polynomial gen-
erator curve r = (x(t); y(t))T and m is the degree of �(t) = GCD(_x(t); _y(t))
where GCD denotes the greatest common divisor. For example the degree of
the two-sided o�set curve of a parabola r(t) = (t; t2)T is 6 and of a general
polynomial cubic curve is 10 with �(t) a constant.

Because of the wide application of o�set curves and the di�culty in di-
rectly incorporating such entities in geometric modeling systems, due to their
potential analytic and algebraic complexity, a number of researchers have de-
veloped approximation algorithms for these types of geometries in terms of
piecewise polynomial or rational polynomial functions. A literature survey
on approximation of planar o�set curves is compiled in [312, 249]. A paper
by Elber et al. [88] presented qualitative as well as quantitative comparisons
for several plane o�set curve approximation methods, namely the control
polygon-based methods by Cobb [62], Tiller and Hanson [420], Coquillart
[65], and Elber and Cohen [86], the interpolation methods by Klass [202],
and Pham [311], the least square methods by Hoschek [174], the nonlinear
optimization technique by Hoschek and Wissel [176], and the circle approxi-
mation method by Lee et al. [229]. They counted the number of control points

316 11. O�set Curves and Surfaces

(a) (b)

Fig. 11.12. (a) Trimmed o�set of degree six B�ezier curve with d = �0:05, (b) tool
path along the trimmed o�set (adapted from [253])

of the approximated o�set as a measure for e�ciency, while the approxima-
tion error was within a prescribed tolerance. They found in general that the
least square methods perform very well. However, when the progenitor curve
is quadratic they showed that the simple method due to Tiller and Hanson
[420], which translates each edge of the control polygon into the edge normal
direction by an o�set distance, outperforms the other methods. Therefore as
an example we summarize the algorithm by Tiller and Hanson [420] with an
illustration in Fig. 11.13:

1. Let C be a rational B-spline progenitor curve with control vertices p(1)
in homogeneous representation and knot vector T(1). Set i = 1.

2. O�set each leg of the control polygon by d.
3. Intersect consecutive legs of polygon to �nd new vertices p̂(i). Then the

approximated o�set Ĉ is de�ned by p̂(i) and T(i).
4. Check deviation of the approximate o�set from the true o�set.
5. If the deviation is larger than the given tolerance subdivide p(i) and T(i)

to obtain p(i+1) and T(i+1). Then set i i + 1 and go back to step 2.
Stop if the deviation is smaller than the given tolerance.

Sederberg and Buehler [374] approximate an o�set of a B�ezier curve using
Hermite interpolation of any even degree not less than the degree of the initial

11.2 Planar o�set curves 317

d
d

d

Approximated Offset Curve

Progenitor Curve

Fig. 11.13. O�set curve approximation

B�ezier curve. The representation of the o�set is a special interval B�ezier
curve of even degree with only the middle control point as a rectangular
interval. The size of the rectangular interval indicates the tightness of the
approximation.

Most of the existing o�set approximation schemes generate the approxi-
mate o�set curve in terms of B�ezier /B-spline format in an iterative manner
based on a subdivision technique to improve the accuracy of the o�set curve.
If local and global self-intersections exist, they must be eliminated after the
approximation. Elber and Cohen [85] identify the local loops by using the
fact that a pair of cusps always exist within the local self-intersection loop of
the o�set curve. The tangent vector of the o�set t̂(t) ips its direction at the
cusps, and thus !(t) = t(t) � t̂(t), where t(t) is the tangent vector of the input
curve, becomes negative at the regions bounded by the cusps. Consequently,
the local loops can be identi�ed by �nding the zero set of !(t). Once a local
loop is identi�ed the curve is split into three parts, the region before the
�rst cusp, the region between the cusps and the region after the second cusp.
The o�set of the curve before the �rst cusp and the o�set of the curve after
the second cusp are intersected to �nd the self-intersection point. The region
bounded by the parameters corresponding to the self-intersection point are
trimmed o�.

Lee et al. [229] eliminate the local and global self-intersections by approx-
imating the input curve by discrete points and the connecting polygon. Then
the o�set curve is generated by o�setting these discrete points. The local re-
dundant polygon edges can be detected by checking the dot product between
the line segment and its corresponding o�set line segment. If the dot product
is negative, the o�set segment is eliminated. The global self-intersections are
detected by a plane sweep algorithm among the o�set line segments. Once
a valid boundary topology on the o�set polygon is computed, the valid pa-
rameter intervals of the input curve are extracted. The intersection points
of polygonal approximations may not provide accurate parameter values for
the intersection points of the o�set curve and hence they need to be re�ned
using, for example Newton's method.

318 11. O�set Curves and Surfaces

The method introduced by Kimmel and Bruckstein [200] generates o�sets
via wavefront propagation methods in uid dynamics. The algorithm works
on a square grid with a resolution chosen according to the desired accuracy.
Finally the contour lines (o�sets) are generated based on grid values. Gurbuz
and Zeid [138] employ a di�erent approach to avoid self-intersections. Instead
of o�setting analytically, the o�setting process is carried out by �lling the
closed balls of radius d for each point on the object. The union of the closed
balls is subtracted from the object to construct the o�set. An o�set of a
point in space is considered as a sphere. They simpli�ed the implementation
by assuming that the shape of a point is a cube and its o�set is also a cube.
First the object to be o�set and its enclosing space are divided into small
cubic cells. Therefore the accuracy is governed by the size of the cell. The cells
that are on the object are referred to as boundary cells. The boundary cells
separate the original set of cells into two subspaces, in and out of the object.
O�set operation is carried out for each boundary cell. Chiang et al. [55]
also compute o�sets without self-intersections using a technique developed in
image processing. First the domain is discretized into a two-dimensional grid
and the progenitor curve is assigned to the nearest grid point. For each grid
point, the distance to the discretized curve is evaluated. By extracting the
grid points whose distances are equal to the o�set distance, an o�set without
self-intersection can be constructed. This approach also obviously involves a
trade-o� between accuracy achieved and memory required.

11.3 O�set surfaces

11.3.1 Di�erential geometry

A parametric o�set surface r̂(u; v) is a continuum of all points at a constant
distance d along normal to another parametric surface r(u; v) and de�ned as

r̂(u; v) = r(u; v) + dN(u; v) ; (11.17)

where d may be a positive or negative real number and N is the unit normal
vector of r(u; v) (see (3.3)). As we mentioned at the beginning of this chapter
we employ the convention that the normal curvature is positive if its asso-
ciated center of curvature is opposite to the direction of the surface normal
(see Fig. 3.7 (b) and Table 3.2).

If N̂(u; v) is the unit normal vector of r̂(u; v), then the relation between

N and N̂ is given by [443]

ŜN̂ = (1 + d�max)(1 + d�min)SN ; (11.18)

where Ŝ = jr̂u � r̂v j and S = jru � rvj or expanding the right hand side of
(11.18) and using the de�nitions of Gaussian curvature K (3.61) and mean
curvature H (3.62), (11.18) can be rewritten as follows:

11.3 O�set surfaces 319

ŜN̂ = S(1 + 2Hd+Kd2)N : (11.19)

If we take the norm of (11.18), we obtain

Ŝ = Sj(1 + d�max)(1 + d�min)j ; (11.20)

and substituting Ŝ into (11.18) yields

N̂ =
(1 + d�max)(1 + d�min)

j(1 + d�max)(1 + d�min)jN : (11.21)

If we denote by

e =
1+ 2Hd+Kd2

j1 + 2Hd+Kd2j =
(1 + d�max)(1 + d�min)

j(1 + d�max)(1 + d�min)j = �1 ; (11.22)

then (11.21) gives

N̂ = eN : (11.23)

From this relation we can see thatN and N̂ are collinear but may be directed
in opposite directions, if d�max + 1 and d�min + 1 have opposite signs. This
occurs when the o�set is taken towards the concave region of the progenitor
surface. O�setting towards the concave region of a surface is equivalent to
taking the o�set d > 0 where �min < 0 and d < 0 where �max > 0, provided
the above sign convention is used. In machining, the cutter radius must not
exceed the smallest concave principal radius of curvature of the surface to
avoid gouging [116].

Principal curvatures of the o�set surface corresponding to �max and �min

of the progenitor surface can be easily obtained by adding the signed o�set
distance to the signed radius of principal curvature of the progenitor surface
and inverting it. Taking into account the direction in which the normal vector
points, we have

�̂a =
e�max

1 + d�max
; (11.24)

�̂b =
e�min

1 + d�min
: (11.25)

Gaussian and mean curvatures of the o�set surface are readily computed
by

K̂ = �̂a�̂b =
K

1 + 2Hd+Kd2
; (11.26)

Ĥ =
�̂a + �̂b

2
=

H +Kd

j1 + 2Hd+Kd2j : (11.27)

Given the o�set distance d, the critical curvature is de�ned as �crit =
�1=d and three categories arise [94]:

320 11. O�set Curves and Surfaces

�max > �min > �crit: The normal vector of the progenitor and its o�set
are directed in the same direction, since e = 1. Also the sign of Gaussian and
principal curvatures of the o�set are the same that of the progenitor.

�max > �crit > �min: The normal vector of the progenitor and its o�set
are directed in the opposite direction, since e = �1. Also the sign of Gaussian
and the principal curvature of the o�set corresponding to �max are opposite
to that of the progenitor, while the sign of the principal curvature of the
o�set corresponding to �min is the same to that of the progenitor.

�crit > �max > �min: The normal vector of the progenitor and its o�set
are directed in the same direction (e = 1), while the sign of both principal
curvatures of the o�set are opposite to that of the progenitor and thus the sign
of Gauss curvature of the o�set remains the same as that of the progenitor.

11.3.2 Singularities of o�set surfaces

Similar to the o�set curve case, there are two types of singularities on o�set
surfaces, namely irregular points and self-intersections. It is apparent from
(11.21) that o�set surfaces become singular at points which satisfy

�min(u; v) = �1
d

or �max(u; v) = �1
d
: (11.28)

The vector-valued mapping of a curve in the uv-parametric space, which
satis�es �max(u; v) = � 1

d or �min(u; v) = � 1
d , into three-dimensional coor-

dinates using (11.17) form ridges of the o�set surface. These curves can be
viewed as contour lines of constant principal curvatures of � 1

d . The detailed
formulation and a robust method for tracing constant curvature lines was
discussed in Chap. 8. Isolated points and cusps can be treated as a special
case of ridges. When the surface is part of a sphere with radius R, then
�min(u; v) = �max(u; v) = � 1

R everywhere. Therefore if the o�set distance is
d = R, o�set surface degenerates to a point which is the center of the sphere.
At an umbilic �max = �min = �umb, where �umb is the normal curvature
at the umbilic, and if the o�set is d = � 1

�umb
, the o�set surface becomes

singular at the point corresponding to the umbilic and forms a cusp. There-
fore to detect a cusp on the o�set, we need to locate all the umbilics on the
progenitor surface. A robust method to locate umbilics is described in Chap.
9.

Self-intersections of an o�set surface are de�ned by �nding pairs of distinct
parameter values (�; t) 6= (u; v) such that

r(�; t) + dN(�; t) = r(u; v) + dN(u; v) : (11.29)

Chen and Ravani [52] present a marching algorithm to compute the self-
intersection curve of an o�set surface. The algorithm generates a straight-
line approximation to a small portion of the intersection curve by looking
at the intersection of two triangular elements representing the two tangent

11.3 O�set surfaces 321

planes to the self-intersecting surfaces. The starting line segment is obtained
by searching only the bounding curves of the patch. Aomura and Uehara [11]
also developed a marching method to compute the self-intersection curves on
the o�set surface of a uniform bicubic B-spline surface patch. The starting
points for marching are obtained by the Powell-Zangwill method based on a
dense grid of points. Then the self-intersection curves are traced by integrat-
ing a system of ordinary di�erential equations using the Runge-Kutta-Gill
method. Visualization of self-intersecting o�sets of B�ezier patches by means
of ray tracing was studied in [429]. Self-intersection of o�sets of regular B�ezier
surface patches due to local di�erential geometry and global distance function
properties is investigated by Maekawa et al. [252]. The problem of comput-
ing starting points for tracing self-intersection curves of o�sets is formulated
in terms of a system of nonlinear polynomial equations and solved robustly
by the Interval Projected Polyhedron algorithm. Trivial solutions are ex-
cluded by evaluating the normal bounding pyramids of the surface subpatches
mapped from the parameter boxes computed by the polynomial solver with
a coarse tolerance (see Sect. 11.3.5). Since it is an essential task for many
practical applications to detect all components of the self-intersection curves
and to trace them correctly for generating the trimmed o�set, we will dis-
cuss this topic in greater detail in the following three sections. In Sect. 11.3.3
we discuss the self-intersection of o�sets of implicit quadratic surfaces, while
in Sect. 11.3.4 we discuss the self-intersection of o�sets of explicit quadratic
surfaces. In Sect. 11.3.5 we introduce a method to �nd the self-intersections
of o�sets of more general polynomial parametric surface patches.

11.3.3 Self-intersection of o�sets of implicit quadratic surfaces

The second order algebraic surfaces (i.e. quadric surfaces) are widely used
in mechanical design. Especially the natural quadrics, i.e. sphere, circular
cone and circular cylinder result from machining operations such as rolling,
turning, �lleting, drilling and milling [149]. The o�sets of the natural quadrics
are also natural quadrics. Implicit quadrics such as ellipsoids, elliptic cones
and elliptic cylinders are commonly found in die cavities and punches and are
manufactured by NC machining [60]. Although Salmon [361] discussed the
o�sets of quadrics more than a century ago, this was not widely known in the
CAGD literature until recently. Maekawa [248] showed that self-intersection
curves of o�sets of all the implicit quadratic surfaces are planar implicit conics
and their corresponding curve on the progenitor surface can be expressed as
the intersection curve between an ellipsoid, whose semi-axes are proportional
to the o�set distance, and the implicit quadratic surfaces themselves.

The equations of implicit quadrics including ellipsoids, hyperboloids of
one and two sheets, elliptic cones, elliptic cylinders and hyperbolic cylinders
can be expressed in a standard form (3.74). In the sequel we assume a � b � c
without loss of generality.

322 11. O�set Curves and Surfaces

The components x̂, ŷ, ẑ of the position vector r̂ of the o�set of implicit
surface f(x; y; z) = 0 can be expressed as

x̂(x; y; z) = x+
fx(x; y; z)

jrf(x; y; z)jd ; (11.30)

ŷ(x; y; z) = y +
fy(x; y; z)

jrf(x; y; z)jd ; (11.31)

ẑ(x; y; z) = z +
fz(x; y; z)

jrf(x; y; z)jd ; (11.32)

where (x; y; z) satisfy f(x; y; z) = 0 and fx, fy, fz are the x, y z components
of rf(x; y; z). Note that jrf(x; y; z)j is zero at the apex of a cone and in
this case the normal vector is not de�ned. Substituting (3.74) into (11.30),
(11.31), (11.32) yields

x̂(x; y; z) = x+
�xd

a2
q
�2 x

2

a4 + �2 y
2

b4 + �2 z
2

c4

; (11.33)

ŷ(x; y; z) = y +
�yd

b2
q
�2 x

2

a4 + �2 y
2

b4 + �2 z
2

c4

; (11.34)

ẑ(x; y; z) = z +
�zd

c2
q
�2 x

2

a4 + �2 y
2

b4 + �2 z
2

c4

: (11.35)

It is obvious from (11.33) to (11.35) that the o�sets of implicit quadratic
surfaces in a standard form are symmetric with respect to xy, xz and yz-
planes.

Self-intersection of o�sets of implicit surfaces can be formulated by seeking
pairs of distinct points on the progenitor surface (x1; y1; z1) 6= (x2; y2; z2) such
that

x̂(x1; y1; z1) = x̂(x2; y2; z2) ; (11.36)

ŷ(x1; y1; z1) = ŷ(x2; y2; z2) ; (11.37)

ẑ(x1; y1; z1) = ẑ(x2; y2; z2) : (11.38)

Hence using (11.33) to (11.35), the equations for self-intersection reduce to

x1 +
�x1d

a2
q
�2

x21
a4 + �2

y21
b4 + �2

z21
c4

= x2 +
�x2d

a2
q
�2

x22
a4 + �2

y22
b4 + �2

z22
c4

; (11.39)

y1 +
�y1d

b2
q
�2

x21
a4 + �2

y21
b4 + �2

z21
c4

= y2 +
�y2d

b2
q
�2

x22
a4 + �2

y22
b4 + �2

z22
c4

; (11.40)

z1 +
�z1d

c2
q
�2

x21
a4 + �2

y21
b4 + �2

z21
c4

= z2 +
�z2d

c2
q
�2

x22
a4 + �2

y22
b4 + �2

z22
c4

: (11.41)

11.3 O�set surfaces 323

The self-intersection curve of an o�set can be considered as a locus of the
center of a sphere, whose radius is the o�set distance, rolling on the progenitor
surface with two contact points. Because of the symmetry of the o�sets of
implicit quadratic surfaces, the center of rolling sphere must move only on the
planes of symmetry and hence the self-intersection curves are on the planes
of symmetry. In other words, a pair of points (x1; y1; z1) and (x2; y2; z2) on
the progenitor surface are located symmetrically with respect to yz, xz or
xy-plane and their o�sets meet on the yz, xz or xy-plane.

When the o�sets self-intersect in the x-direction, the self-intersection
curve will lie on the yz-plane. In such case we can set x = x1 = �x2,
y = y1 = y2, z = z1 = z2 and � 6= 0, thus �2 = 1 and hence (11.39)
reduces to

a2
r
x2

a4
+ �2

y2

b4
+ �2

z2

c4
= ��d ; (11.42)

while (11.40) and (11.41) reduce to identities. Similarly we obtain

b2
r
�2
x2

a4
+
y2

b4
+ �2

z2

c4
= ��d ; (11.43)

c2
r
�2
x2

a4
+ �2

y2

b4
+
z2

c4
= ��d ; (11.44)

for the y and z-directions respectively. Since all the left hand sides are pos-
itive, the right hand sides ��d, ��d and ��d must be also positive. By
referring to Table 3.1, we can easily �nd the o�setting direction (sign of d)
to have self-intersection. By squaring both hand sides of (11.42) to (11.44),
and summarizing the results of this section we have:

Theorem 11.3.1. The o�set of an implicit quadratic surface self-intersects
in x-direction if the progenitor surface intersects the following ellipsoid pro-
vided that the o�set distance is taken such that ��d is positive, namely

EPx :
x2

d2
+ �2

y2

(ba)
4d2

+ �2
z2

(ca)
4d2

= 1 : (11.45)

Similarly the self-intersections in y and z-directions occur if the progenitor
surface intersects the following ellipsoids

EPy : �2
x2

(ab)
4d2

+
y2

d2
+ �2

z2

(cb)
4d2

= 1 ; (11.46)

EPz : �2
x2

(ac)
4d2

+ �2
y2

(bc)
4d2

+
z2

d2
= 1 ; (11.47)

provided that ��d and ��d are positive, respectively. The intersection curves
between the progenitor surface and each ellipsoid are the foot point curves of
the self-intersection curves of o�sets [248].

324 11. O�set Curves and Surfaces

Remark 11.3.1. When one of the coe�cients �, �, � is zero, the progenitor
surface reduces to either an elliptic cylinder or hyperbolic cylinder. Also the
three ellipsoids (11.45), (11.46), (11.47) reduce to two elliptic cylinders.

We will not go into the details of quadric-surface intersection problems,
but rather refer to many papers on this problem [232, 233, 366, 104, 442, 267].
Using (3.74), (11.33) to (11.35) and (11.42) to (11.44), it is easy to show that
the self-intersection curves in the x, y and z-directions are implicit conics in
the yz, xz and xy-planes given by

�b2 � ��2a2
(�b2 � �a2)2 y

2 +
�c2 � ��2a2
(�c2 � �a2)2 z

2 =
�a2 � �d2

a2
; (11.48)

�a2 � ��2b2
(�a2 � �b2)2x

2 +
�c2 � ��2b2
(�c2 � �b2)2 z

2 =
�b2 � �d2

b2
; (11.49)

�a2 � ��2c2
(�a2 � �c2)2x

2 +
�b2 � ��2c2
(�b2 � �c2)2 y

2 =
�c2 � �d2

c2
: (11.50)

Example 11.3.1. Cylindrical surfaces include elliptic cylinders and hyperbolic
cylinders. Here we will only examine the hyperbolic cylinder with � = � = 1,
� = �1 and � = 0,

HC : f(x; y) =
x2

a2
� y2

b2
� 1 = 0 ; (11.51)

since the rest of the cases for cylindrical surfaces (see Table 3.1) can be
derived in a similar way. The curvatures of the hyperbolic cylinder (11.51)
based on the curvature sign convention (a) are given in (3.79) and (3.80). For
the curvature sign convention (b), we have

K = 0; H =
�b2x2 + a2y2

2a4b4(x
2

a4 +
y2

b4)
3
2

; �max = 0; �min =
�b2x2 + a2y2

a4b4(x
2

a4 +
y2

b4)
3
2

;

where (x; y; z) 2 HC. The extrema of the minimum principal curvature can
be computed by using the Lagrangemultiplier technique described in Sect. 8.4
(see (8.89), (8.90)), which yields points (x; y) = (�a; 0). The corresponding
minimum principal curvature is �min(�a; 0) = � a

b2 .
The three ellipsoids in (11.45), (11.46) and (11.47) reduce to the following

two elliptic cylinders

x2

d2
+

y2

(ba)
4d2

= 1 ; (11.52)

x2

(ab)
4d2

+
y2

d2
= 1 : (11.53)

Since ��d must be positive to have self-intersection in x-direction (see
(11.42)), d is forced to be negative, while d must be positive to have self-
intersection in y-direction to satisfy ��d > 0 (see (11.43)). Now let us con-
sider the self-intersection in x-direction which is illustrated in Fig. 11.14 (a).

11.3 O�set surfaces 325

According to Theorem 11.3.1, hyperbolic cylinder (11.51) must intersect the
elliptic cylinder (11.52) to have self-intersection in the x-direction. It is ap-
parent that these two surfaces will intersect if d � �a, since the minor axis
of the elliptic cylinder is d and hyperbolic cylinder intersects the x-axis at
(�a; 0). This self-intersection is due to the global distance function property
(constriction) of the hyperbola. Similarly the self-intersection in y-direction

occurs if d � b2

a , which corresponds to the maximum concave radius of cur-
vature as obtained above.

Figures 11.14 (a) (b) show the cross section of self-intersections of o�sets
of a hyperbolic cylinder (with a = 0:8, b = 1) in x-direction with d = �3
and in y-direction with d = 3. The thick and thin solid lines represent the
hyperbolic cylinder and its o�set. The thick dashed dot lines represents the
elliptic cylinders (11.52) and (11.53). Four thin dashed lines emanating from
the intersections points and intersecting at the self-intersection points of the
o�set are the vector dn. The four intersection points between the hyperbolic
cylinder (11.51) and elliptic cylinder (11.52) in Fig. 11.14 (a), and the four in-
tersection points between hyperbolic cylinder (11.51) and the elliptic cylinder
(11.53) in Fig. 11.14 (b) are given by
�
r
b2d2 + a4

a2 + b2
; �b

2

a

r
d2 � a2
a2 + b2

!
;

�a

2

b

r
b2 + d2

a2 + b2
; �

r
a2d2 � b4
a2 + b2

!
:

Figure 11.15 shows the self-intersecting o�sets of an elliptic cylinder (with
� = � = 1, � = 0, a = 0:6 and b = 0:8) in the x-direction (a) with d = �0:55
and in the y-direction (b) with d = �0:9. The four intersection points for
both cases are given by
�
r
b2d2 � a4
b2 � a2 ; �b

2

a

r
a2 � d2
b2 � a2

!
;

�a

2

b

r
d2 � b2
b2 � a2 ; �

r
b4 � a2d2
b2 � a2

!
:

Example 11.3.2. Consider an ellipsoid (with � = � = � = � = 1) of the form

EP : f(x; y; z) =
x2

a2
+
y2

b2
+
z2

c2
� 1 = 0 : (11.54)

The curvatures based on the curvature sign convention (a) are given in (3.82)
and (3.83). For the curvature sign convention (b) we have

K =
1

a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

�2 ; H = �x
2 + y2 + z2 � a2 � b2 � c2

2a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

� 3
2

; (11.55)

� =
�(x2 + y2 + z2 � a2 � b2 � c2)

2a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

� 3
2

(11.56)

326 11. O�set Curves and Surfaces

(a)

(b)

Fig. 11.14. Cross sections of self-intersecting o�sets of a hyperbolic cylinder
(adapted from [248]): (a) x-direction, (b) y-direction

11.3 O�set surfaces 327

(a) (b)

Fig. 11.15. Cross sections of self-intersecting o�sets of an elliptic cylinder (adapted
from [248]): (a) x-direction, (b) y-direction

�

r
(x2 + y2 + z2 � a2 � b2 � c2)2 � 4a2b2c2

�
x2

a4 +
y2

b4 + z2

c4

�
2a2b2c2

�
x2

a4 +
y2

b4 + z2

c4

� 3
2

;

where (x; y; z) 2 EP .
The critical points of both principal curvatures can be obtained by using

the Lagrange multiplier technique described in Sect. 8.4 (see (8.89), (8.90)).
Since we are assuming a � b � c, the maximum principal curvature has
a global minimum a

b2 at (�a; 0; 0), a local maximum b
a2 at (0;�b; 0) and a

global maximum c
a2 at (0; 0;�c), while the minimum principal curvature has a

global minimum a
c2 at (�a; 0; 0), a local minimum b

c2 at (0;�b; 0) and a global
maximum c

b2 at (0; 0;�c). Figure 11.16 shows the locations of extrema (black

square), umbilics
�
�a
q

b2�a2
c2�a2 ; 0; �c

q
c2�b2
c2�a2

�
(white circle), the maximum

principal curvature lines (solid line) and the minimum principal curvature
lines (dotted line).

It is apparent from (11.42) to (11.44) that d must be negative to have
self-intersections in the o�set. First we consider the case of self-intersection
in x-direction. The two ellipsoids EPx and EP will not intersect when EPx
is inside EP (jdj < a2

c), or EP is inside EPx (jdj > a). This leads to the

328 11. O�set Curves and Surfaces

conclusion that EPx and EP intersect if

�a � d � �a
2

c
:

The magnitude of the upper bound corresponds to the smallest concave ra-
dius of curvature at (0; 0;�c), while the magnitude of the lower bound cor-
responds to the smallest semi-axis. With a similar discussion, we can derive
the conditions for the self-intersection in the y and z-directions as

y-direction: � b2

a � d � � b2

c ;

z-direction: � c2

a � d � �c :
Figure 11.17 shows two ellipsoids EP (with a = 0:6, b = 0:8, c = 1:0)

and EPx ((11.45) with d = �a2

b =-0.45) which is equal to the maximum
principal radius of curvature at (0;�b; 0), intersecting each other. This is a
degenerate intersection of two ellipsoids, consisting of two ellipses, which have
the rational parametrization given by

x(t) = �a
2

b

r
c2 � b2
c2 � a2

1� t2
1 + t2

; y(t) = b
2t

1 + t2
; z(t) = �c

2

b

r
b2 � a2
c2 � a2

1� t2
1 + t2

;

(11.57)

for �1 � t � 1. The self-intersection curve of the o�set in the yz-plane is an
ellipse given by

y2

(b2�a2)(a2�d2)
a2

+
z2

(c2�a2)(a2�d2)
a2

= 1 ; (11.58)

which is obtained by substituting � = � = � = � = 1 into (11.48). Figures
11.18 show the wireframe of the ellipsoid EP , the intersection curves of two
ellipsoids (two ellipses) and pairs of vectors dn emanating from the intersec-
tion curves and intersecting in the yz-plane from two di�erent view points.
The locus of these intersecting points in (a) is the ellipse (11.58).

Example 11.3.3. Consider an elliptic cone (� = � = 1, � = �1 and � = 0) of
the form

EC : f(x; y; z) =
x2

a2
+
y2

b2
� z2

c2
= 0 : (11.59)

The curvatures of the elliptic cone (11.59) based on the curvature sign con-
vention (a) are given in (3.85) and (3.86). For the sign convention (b) they
are

K = 0; H =
x2 + y2 + z2

2a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

� 3
2

; (11.60)

�max =
x2 + y2 + z2

a2b2c2
�
x2

a4 +
y2

b4 + z2

c4

� 3
2

; �min = 0 ; (11.61)

11.3 O�set surfaces 329

x
y

z

Fig. 11.16. Locations of extrema of principal curvatures (black square), umbilics
(white circle) and line of curvatures of ellipsoid (a=0.6, b=0.8, c=1.0) (adapted
from [248])

where (x; y; z) 2 EC except at the apex (0,0,0).
Since the Gaussian curvature is zero everywhere, the elliptic cone is a

developable surface and hence the minimum principal curvature lines are in
the ruling direction (see Sect. 9.7.1). The maximum principal curvature lines,
which are orthogonal to the minimum principal curvature lines, are thus or-
thogonal to the ruling directions. Therefore as a point on a ruling approaches
the apex, the maximum principal curvature monotonically increases and will
become in�nite at the apex.

It is apparent from (11.42) to (11.44) that the o�set of the elliptic cone
self-intersects in the x and y-directions if the o�set distance d is negative,
while it self-intersects in the z-direction if the o�set distance d is positive.
Unlike the case for ellipsoids, all the three ellipsoids intersect with the elliptic
cone for all nonzero d, provided the correct sign is chosen. This observation
agrees with the result that the maximum principal curvature has an in�nite
value at the apex.

Figure 11.19 (a) shows the elliptic cone EC (a=0.6, b=0.8 and c=1.0)
intersecting the EPx (d=-0.45). The self-intersection curve in the yz-plane is

330 11. O�set Curves and Surfaces

-0.6-0.4-0.200.20.40.6 x

-0.8
-0.6

-0.4
-0.2

0
0.2

0.4
0.6

0.8
y

-1

-0.5

0

0.5

1

z

Fig. 11.17. Two intersecting ellipsoids (adapted from [248]): intersection curves,
which comprise of two ellipses, represent the footpoint curve of the self-intersection
curve of o�set of ellipsoid

given by setting � = � = 1; � = �1 and � = 0 into (11.48)

� y2

(b2�a2)d2
a2

+
z2

(c2+a2)d2

a2

= 1 ; (11.62)

which is a hyperbola. Figure 11.19 (b) shows the wireframe of the elliptic
cone EC, the intersection curves of EC and EPx and pairs of vectors dn
emanating from the intersection curves and intersecting in the yz-plane. The
locus of these intersecting points is the hyperbola (11.62).

Theorem 11.3.1 provides a generalized method for obtaining the self-
intersection curves of o�sets and the corresponding foot point curves on the
progenitor implicit quadratic surfaces. The theorem is useful for tool path
generation for NC machining and other engineering applications.

11.3.4 Self-intersection of o�sets of explicit quadratic surfaces

Although o�set surfaces are widely used in various engineering applications,
their degenerating mechanism is not well known in a quantitative manner. We

11.3 O�set surfaces 331

x
y

z

(a)

xy

z

(b)

Fig. 11.18. Wireframe of the ellipsoid EP , the intersection curves of two ellipsoids
(two ellipses) and pairs of vectors dn emanating from the intersection curves and
intersecting on the self-intersection curves, adapted from [248]: (a) view parallel to
the yz-plane, (b) view parallel to the xz-plane

have seen in Sect. 8.3, that any regular surface can be locally approximated
in the neighborhood of a point P by an explicit quadratic surface of the form

r(x; y) = [x; y;
1

2
(�x2 + �y2)]T ; (11.63)

to the second order where �� and �� are the principal curvatures at point
P . The minus signs are consistent with curvature sign convention (b). There-
fore investigations of the self-intersection mechanisms of the o�sets of explicit
quadratic surfaces due to di�erential geometry properties lead to an under-
standing of the self-intersecting mechanisms of o�sets of regular parametric
surfaces.

In the sequel we assume d > 0, � > 0 and � � � without loss of generality.
According to this assumption the surface is a hyperbolic paraboloid when
� < 0, an elliptic paraboloid when 0 < � < �, a paraboloid of revolution
when 0 < � = �, and a parabolic cylinder when � = 0 as illustrated in Fig.
8.9. The paraboloid of revolution and the parabolic cylinder can be considered
as degenerate cases of the elliptic paraboloid. When � = �, the principal
direction is not de�ned and the point (0; 0; 0) will become an umbilic. If �
and � vanish at the same time, the surface is part of a plane, and we do not
investigate such cases.

332 11. O�set Curves and Surfaces

-0.6-0.4-0.200.20.40.6 x

-0.8-0.6-0.4-0.2 00.20.40.60.8
y

-1

-0.5

0

0.5

1

z

x

y

z

(a) (b)

Fig. 11.19. (a) Intersection between EC (a = 0:6, b = 0:8, c = 1:0) and EPx

(d = �a2

b
=-0.45), (b) wireframe of the elliptic cone EC, the intersection curves of

EC and EPx and pairs of vectors dn emanating from the intersection curves and
intersecting on the self-intersection curves (adapted from [248])

In the case for o�sets of explicit quadratic surfaces, there are no self-
intersections due to global distance function properties [26], thus if d > 0
the maximum absolute value of the negative minimum principal curvature
determines the largest o�set d without degeneracy. The largest magnitude
of o�set distance without degeneracy is called the maximum o�set distance
jdmaxj. In Sect. 8.3 we discussed how to �nd the global minimum of the
minimum principal curvature of explicit quadratic surfaces.

Due to Lemma 8.3.1 the global minimum of the minimum principal cur-
vature of the explicit quadratic surface occurs at the origin, except for a
parabolic cylinder ((11.63) with �=0) which has minima along the x-axis
with curvature value �min = ��, and hence the maximum o�set distance
is determined to be jdmaxj = 1

� . If the o�set distance exceeds 1
� , the o�set

starts to degenerate from the point (0; 0; 1�) on the o�set surface except for
a parabolic cylinder progenitor, where the o�set starts to degenerate along
the line (x; 0; 1�).

Substitution of the expression of the o�set of the explicit quadratic surface
(11.63)

11.3 O�set surfaces 333

r̂(x; y) = [x; y;
1

2
(�x2 + �y2)]T +

dp
1 + �2x2 + �2y2

[��x;��y; 1]T ;

(11.64)

into (11.29) yields a vector equation for the self-intersection curve of such
o�set. The x, y and z components of this vector equation are given by

� � ��dp
1 + �2�2 + �2t2

= u� �udp
1 + �2u2 + �2v2

; (11.65)

t� �tdp
1 + �2�2 + �2t2

= v � �vdp
1 + �2u2 + �2v2

;

1

2
(��2 + �t2) +

dp
1 + �2�2 + �2t2

=
1

2
(�u2 + �v2) +

dp
1 + �2u2 + �2v2

;

The self-intersection curve of an o�set can be considered as the locus of the
center of a sphere, whose radius is the o�set distance, rolling on the progenitor
surface with two contact points. It is evident from (11.64) that the o�sets of
explicit quadratic surfaces are symmetric with respect to xz and yz planes.
Because of the symmetry of the o�sets of explicit quadratic surfaces, the
center of the rolling sphere must move only on the planes of symmetry and
hence the self-intersection curves are on the plane of symmetry. Therefore we
can set � = �u and t = v in (11.65). The y and z components will only result
in identities, while the x component results inp

1 + �2�2 + �2t2 = �d ; (11.66)

where the trivial solution � = u = 0 is excluded. Similarly, we can set � = u
and t = �v in the (11.65). The x and z components will only result in
identities, while the y component results inp

1 + �2�2 + �2t2 = �d ; (11.67)

where the trivial solution t = v = 0 is excluded. Therefore (11.65) have been
reduced to two uncoupled equations in � and t. Next we give a useful theo-
rem for evaluating the self-intersection curves of o�sets of explicit quadratic
surfaces (11.63) and their corresponding planar curve in the xy-plane, i.e.
pre-image of the self-intersection curve. In this theorem we assume that the
x and y axes are taken as the directions of maximum and minimum principal
curvatures.

Theorem 11.3.2. The self-intersection curves of o�sets of the explicit quadratic
surfaces r(x; y) = [x; y; 12 (�x

2 + �y2)]T and their pre-images in the xy-plane
are as follows [247]:

1. An o�set of a hyperbolic paraboloid (� < 0 < �) self-intersects only in
the y-direction when 1

� < d. The resulting self-intersection curve is a
parabola given by

334 11. O�set Curves and Surfaces

z =
��

2(� � �)x
2 +

(�d)2 + 1

2�
; y = 0 ; (11.68)

where � � � �
��

p
(�d)2 � 1 � x � � � �

��

p
(�d)2 � 1 ;

and its pre-image in the xy-plane is an ellipse when j�j 6= � or a circle
when j�j = �, (see Fig. 11.21 (a)) given by

x2�p
(�d)2�1

�

�2 +
y2�p

(�d)2�1

�

�2 = 1 : (11.69)

2. An o�set of an elliptic paraboloid (0 < � < �) self-intersects only in the
y-direction when 1

� < d < 1
� and self-intersects in both x and y-directions

when 1
� < d. The self-intersection curve which self-intersects in the y-

direction is a parabola (see Fig. 11.20) given by (11.68) and its pre-image
in the xy-plane is an ellipse (see Figs. 11.20, 11.21 (b)) given by (11.69).
The self-intersection curve which self-intersects in the x-direction is also
a parabola given by

z =
��

2(�� �)y
2 +

(�d)2 + 1

2�
; x = 0 ; (11.70)

where � �� �
��

p
(�d)2 � 1 � y � �� �

��

p
(�d)2 � 1 ;

and its pre-image in the xy-plane is an ellipse (see Figs. 11.21 (c), (d))
given by

x2�p
(�d)2�1

�

�2 +
y2�p

(�d)2�1

�

�2 = 1 : (11.71)

3. An o�set of a paraboloid of revolution (0 < � = �) self-intersects in
all directions, when 1

� = 1
� < d. The self-intersection curve is a point

(0; 0; (�d)
2�1

2�), and its pre-image in the xy-plane is a circle (see Fig.

11.21 (e)) given by

x2 + y2 =

 p
(�d)2 � 1

�

!2

: (11.72)

4. An o�set of a parabolic cylinder (� = 0 < �) self-intersects only in the
y-direction when 1

� < d. The resulting self-intersection curve is a straight
line in the xz-plane

z =
(�d)2 � 1

2�
; y = 0 ; (11.73)

11.3 O�set surfaces 335

and its pre-image in the xy-plane (see Fig. 11.21 (f)) are two straight
lines given by

y = �
p
(�d)2 � 1

�
: (11.74)

Proof:
Case (1): Since � is negative for the hyperbolic paraboloid and we are assum-
ing d > 0 and the left hand side of (11.66) is always positive, this equation
cannot be used to derive the self-intersection curve. This implies that the
o�set of a hyperbolic paraboloid does not self-intersect in the x-direction
(maximum principal direction). However, we can use (11.67) to derive the
self-intersection curve in the y-direction (minimum principal direction). Upon
squaring and replacing � by x and t by y we obtain

�2x2 + �2y2 = (�d)2 � 1 : (11.75)

This equation describes an ellipse in the xy-plane and is equivalent to (11.69).
Since the left hand side of (11.75) is always positive, the equation is only valid
when 1

� < d. This indicates that there is no self-intersection unless the o�set

distance exceeds the maximum o�set distance jdmaxj = 1
� . Now we can obtain

the self-intersection curve in the xz-plane by mapping the ellipse in xy-plane
(see (11.75)) into the 3-D coordinates using (11.64), resulting in:

r̂(x; y) = [x̂(x; y); ŷ(x; y); ẑ(x; y)]T

= [(
� � �
�

)x; 0;
1

2�
f�(� � �)x2 + (�d)2 + 1g]T ; (11.76)

where �
p

(�d)2�1

� � x �
p

(�d)2�1

� . The range of parameter x comes from
(11.75). If we eliminate the parameter x from (11.76) and replace x̂ by x and
ẑ by z, we obtain the same result as (11.68).

Case (2): Since � is positive for the elliptic paraboloid, both (11.66),
(11.67) can be used to obtain the self-intersection curves in the xy-plane.
This implies that the o�set of an elliptic paraboloid may self-intersect in both
principal directions. Since we have already derived the equation from (11.67),
we derive another equation from (11.66). Upon squaring and replacing � by
x and t by y we obtain

�2x2 + �2y2 = (�d)2 � 1 ; (11.77)

which is equivalent to (11.71). Also this equation is only valid when 1
� < d.

The self-intersection curve in 3-D coordinates can easily be obtained in a
similar manner with Case (1).

Case (3): If we set � = � in (11.75) and (11.77), both equations reduce
to (11.72). Also if we set � = � in (11.76), the parabola reduces to the point

(0; 0; (�d)
2+1

2�).

336 11. O�set Curves and Surfaces

Case (4): Since � is zero for the parabolic cylinder, (11.66) is not valid.
Thus we set � = 0 in (11.67) and replacing t by y we obtain �2y2 = (�d)2�1,
which is equivalent to (11.74). The self-intersection curve in three dimensional
coordinates can easily be obtained in a similar manner with Case (1).

Note that the self-intersection curve of the o�set of an elliptic paraboloid
(when 1

� < d < 1
�) has a positive quadratic term, while those of a hyperbolic

paraboloid and an elliptic paraboloid (when 1
� < d) have negative quadratic

terms.

Example 11.3.4. Consider an elliptic paraboloid z = 1
2 (2x

2+4y2) with o�set
distance d = 0:3. Since 1

� = 1
4 < d = 0:3 < 1

2 = 1
� , the o�set surface self-

intersects only in the y-direction. The self-intersection curve is z = 2x2+0:305

(dashed line in Fig. 11.20) and its pre-image in the xy-plane is x2

0:11+
y2

0:0275 = 1
(solid line in Fig. 11.20). The dot dashed line in this �gure illustrates the set
of footpoints of the self-intersection curve on the progenitor surface. A pair
of thin solid straight lines emanating from two distinct points on the surface
r(�; t), r(u; v) and intersecting along the parabola are the pairs of vectors
dN(�; t) and dN(u; v).

x

y z

Fig. 11.20. Self-intersection curves of an o�set of elliptic paraboloid (� = 2, � = 4)
with d = 0:3 (adapted from [247])

To illustrate Theorem 11.3.2, we plot pre-images of the self-intersection
curves along with ridge curves in the xy-plane for the hyperbolic paraboloid
(� = �2, � = 2, d = 0:6), the elliptic paraboloids (� = 1:75, � = 2, d = 0:55),
(� = 1:75, � = 2, d = 0:6) and (� = 1:75, � = 2, d = 0:65), the paraboloid

11.3 O�set surfaces 337

(� = b = 2, d = 0:6) and the parabolic cylinder (� = 0, � = 2, d = 0:6) as
depicted in Figs. 11.21 (a) to (f).

It is interesting to note that when the progenitor surface is a hyperbolic
paraboloid or an elliptic paraboloid (see Fig. 11.21 (a) to (d)), the pre-images
of the self-intersection curve of its o�set which self-intersects in the y-direction
and the ridge curve �min(x; y) = � 1

d always intersect tangentially at y =
0. The pre-image of the self-intersection curve of the o�set of an elliptic
paraboloid (see Fig. 11.21 (c)), which self-intersects in x-direction, and the
ridge curve �max(x; y) = � 1

d intersect tangentially at x = 0, when the two
ridge curves intersect with the y-axis within the two umbilics. Whereas when
the two ridge curves intersect the y-axis outside the two umbilics (see Fig.
11.21 (d)), the pre-images of the self-intersection curve and the ridge curve
�min(x; y) = � 1

d intersect tangentially at x = 0.
It is apparent from (11.21) that the direction of the normal vector of the

o�set surface is opposite to that of the progenitor surface inside the loop of
�min(x; y) = � 1

d (dashed line) in the absence of the loop of �max(x; y) = � 1
d

(see Figs. 11.21 (a), (b), (e)), and the regions between outside the loop of
�max(x; y) = � 1

d (dot dot dashed line) and inside the loop of �min(x; y) = � 1
d

(see Figs. 11.21 (c), (d)), while the direction is the same within the loop of
�max(x; y) = � 1

d (see Figs. 11.21 (c), (d)).
Figures 11.22, 11.23 and 11.24 show self-intersecting o�set surfaces, self-

intersection and ridge curves in 3-D space and the trimmed o�set surface of
a hyperbolic paraboloid (� = �2, � = 2, d = 0:6), an elliptic paraboloid
(� = 1:75, � = 2, d = 0:6) and an elliptic paraboloid (� = 1:75, � = 2,
d = 0:65), respectively.

Figure 11.25 illustrates the self-intersections of the o�set of a bicubic
B�ezier surface patch. Figure 11.25 (a) shows the pre-images of the self-
intersection curve in the parameter domain. The thick line represents the
numerically traced self-intersection curve, while the thin line represents the
ellipses of (11.69), (11.71), which are in quite good agreement. The same bul-
let symbols are mapped to the same locations on the o�set surface. Figure
11.25 (b) shows the mapping of the self-intersection curves in the parameter
domain onto the progenitor surface. Finally, Fig. 11.25 (c) shows the o�set
surface with its self-intersections.

11.3.5 Self-intersection of o�sets of polynomial parametric surface
patches

For parametric surface patches r(u; v) = (x(u; v); y(u; v); z(u; v))T , the unit
normal vector of a regular surface (3.3) in terms of components is given by

N(u; v) =
(yuzv � yvzu; xvzu � xuzv; xuyv � xvyu)Tp

(yuzv � yvzu)2 + (xvzu � xuzv)2 + (xuyv � xvyu)2

�
�
Nx(u; v)

S(u; v)
;
Ny(u; v)

S(u; v)
;
Nz(u; v)

S(u; v)

�T
; (11.78)

338 11. O�set Curves and Surfaces

(a) x

 y

 -0.67 -0.33 0.00 0.33 0.67
 -0.50

 -0.17

 0.17

 0.50

(b) x

 y

 -0.67 -0.33 0.00 0.33 0.67
 -0.50

 -0.17

 0.17

 0.50

(c) x

 y

 -0.67 -0.33 0.00 0.33 0.67
 -0.50

 -0.17

 0.17

 0.50

11.3 O�set surfaces 339

(d) x

 y

 -0.67 -0.33 0.00 0.33 0.67
 -0.50

 -0.17

 0.17

 0.50

(e) x

 y

 -0.67 -0.33 0.00 0.33 0.67
 -0.50

 -0.17

 0.17

 0.50

(f) x

 y

 -0.67 -0.33 0.00 0.33 0.67
 -0.50

 -0.17

 0.17

 0.50

Fig. 11.21. Pre-images of self-intersection curves and ridge curves of o�sets of
explicit quadratic surfaces (adapted from [247]). The solid lines correspond to pre-
images of the self-intersection curves for self-intersection in the y-direction. The
dashed lines correspond to �min(x; y) = � 1

d
. The dot dashed lines correspond to

pre-images of the self-intersection curves for self-intersection in the x-direction. The
dot dot dashed lines correspond to �max(x; y) = � 1

d
. Symbols � and � represent the

locations of generic lemon type umbilics and non-generic umbilics, respectively. (a)
Hyperbolic paraboloid (� = �2, � = 2, d = 0:6), (b) elliptic paraboloid (� = 1:75,
� = 2, d = 0:55), (c) elliptic paraboloid (� = 1:75, � = 2, d = 0:6), (d) elliptic
paraboloid (� = 1:75, � = 2, d = 0:65), (e) paraboloid of revolution (� = � = 2,
d = 0:6), (f) parabolic cylinder (� = 0, � = 2, d = 0:6)

340 11. O�set Curves and Surfaces

Fig. 11.22. Self-intersecting o�set surface (top), region bounded by self-
intersection curve (middle) and trimmed o�set surface (bottom) of a hyperbolic
paraboloid z = 1

2
(�2x2 + 2y2) with d = 0:6 (adapted from [247])

where Nx, Ny and Nz denote the x, y and z components of ru � rv and
S = jru � rv j. Consequently the vector equation for self-intersections (11.29)
becomes

x(�; t) +
Nx(�; t)

S(�; t)
d = x(u; v) +

Nx(u; v)

S(u; v)
d ; (11.79)

y(�; t) +
Ny(�; t)

S(�; t)
d = y(u; v) +

Ny(u; v)

S(u; v)
d ; (11.80)

z(�; t) +
Nz(�; t)

S(�; t)
d = z(u; v) +

Nz(u; v)

S(u; v)
d ; (11.81)

which is an underconstrained system with three equations with four un-
knowns �, t, u, v.

We can easily trace any self-intersection curve branch if the pre-image
of that branch in at least one of the parametric domains starts from the
parametric domain boundary as depicted in Fig. 11.26 (a). The same symbols
in �t and uv-parameter spaces are the corresponding pairs of points which
give the self-intersection. It is more di�cult to �nd starting points for tracing
self-intersection curves, when the self-intersections curves are closed in both
parametric domains as illustrated in Fig. 11.26 (b). This may occur due to
local di�erential geometry properties and global distance function properties

11.3 O�set surfaces 341

Fig. 11.23. Self-intersecting o�set surface (top), region bounded by self-
intersection curves (middle) and trimmed o�set surface (bottom) of elliptic
paraboloid z = 1

2
(1:75x2 + 2y2) with d = 0:6 (adapted from [247])

of the progenitor surface. The �rst case occurs in the vicinity of extrema of
principal curvatures in a concave region, when the o�set distance exceeds
the smallest radius of curvature [252]. The second case occurs in the vicinity
of a pair of collinear normal points whose distance is equal or smaller than
twice the o�set distance. If the surface is conceptually subdivided along an
iso-parametric line which contains the local extrema of principal curvature
in the concave region (whose radius of curvature is smaller than the absolute
o�set distance jdj) or the collinear normal points whose distance is equal or
smaller than twice the o�set distance, then each sub-patch will contain simple
self-intersection branches without loops.

Therefore after this subdivision process, we can �nd all the starting points
for tracing self-intersection curves of an o�set surface along iso-parametric
lines made up of the boundary of all subdomains. Since we can �x one of

342 11. O�set Curves and Surfaces

Fig. 11.24. Self-intersecting o�set surface (top), region bounded by self-
intersection curves (middle) and trimmed o�set surface (bottom) of elliptic
paraboloid z = 1

2
(1:75x2 + 2y2) with d = 0:65 (adapted from [247])

the four variables (�, t, u, v), the vector equation (11.29) reduces to three
equations with three unknowns.

Let us assume that the input curve is a B�ezier patch. Then the system
(11.79), (11.80), (11.81) reduces to three simultaneous trivariate irrational
equations involving polynomials and square root of polynomials. We can re-
place the square root of polynomials S(�; t) and S(u; v) by auxiliary variables
� and � such that �2 = S2(�; t) and �2 = S2(u; v). Consequently, the above
system can be reduced to a nonlinear polynomial system consisting of �ve
equations with �ve unknowns as follows:

��[x(�; t) � x(u; v)] + d[�Nx(�; t) � �Nx(u; v)] = 0 ; (11.82)

��[y(�; t) � y(u; v)] + d[�Ny(�; t) � �Ny(u; v)] = 0 ; (11.83)

��[z(�; t) � z(u; v)] + d[�Nz(�; t) � �Nz(u; v)] = 0 ; (11.84)

11.3 O�set surfaces 343

u

v

(a)

x

y

z

(b)

(c)

Fig. 11.25. Self-intersections curves of the o�set of a bicubic surface patch when
d=0.75 (adapted from [252]): (a) pre-images of the self-intersection curve in param-
eter domain, where the same bullet symbols are mapped to the same locations in
the o�set surface, (b) a set of footpoints of self-intersection curves on the progenitor
surface, (c) the o�set surface with self-intersections

344 11. O�set Curves and Surfaces

σ

t

u

v

σ

t

u

v

(a)

(b)

o

+

+

o

+ o

+

o

Fig. 11.26. Self-intersection curves in parameter space where the same symbols
are mapped to the same locations in the o�set surface (adapted from [252])

�2 �N2
x(�; t) �N2

y (�; t)�N2
z (�; t) = 0 ; (11.85)

�2 �N2
x(u; v)�N2

y (u; v)�N2
z (u; v) = 0 : (11.86)

This system can be solved by the IPP method introduced in Chap. 4. Since
� = u, t = v are trivial solutions, we must exclude them from the system,
otherwise a Bernstein subdivision-based IPP algorithm would attempt to
solve for an in�nite number of roots.

A similar problem for the self-intersections of a normal o�set of a planar
polynomial curve has been treated in [253] by dividing out the common factor.
However, for the surface case we cannot divide out these factors from the
system directly, since terms x(�; t) � x(u; v), y(�; t) � y(u; v) and z(�; t) �
z(u; v) do not necessarily exactly involve the factors � � u and t � v. Thus,
the polynomial system is �rst solved by the Bernstein subdivision-based IPP
solver with a coarse accuracy (e.g. 10�1 � 10�2). The two rectangular sub-
patches on the surface for each set of roots using the de Casteljau subdivision

11.3 O�set surfaces 345

algorithm are extracted. Then the normal rectangular pyramids [207, 208,
381], which bound normal vectors of B�ezier patches, are constructed [252] and
their apexes are translated to the origin. If the two pyramids intersect, the
associated parameter boxes are considered as representing trivial roots and
excluded from the list of roots. Figures 11.27 illustrate such non-intersecting
and intersecting normal pyramids. Finally we restart the IPP solver with
boxes that include the solutions but now requiring high accuracy (e.g. 10�8).

When the input surface is a B-spline surface patch, we can split it into
B�ezier surface patches by the knot insertion algorithm [34, 63, 313]. In such
cases we must check the intersections among the o�sets of di�erent split
patches, where we do not need to worry about trivial solutions. Wang [439]
computed intersection curves of o�sets of two parametric surface patches
using the orthogonal projection of the intersection curves onto the progenitor
surfaces.

x

y

z

x

y

z

(a) (b)

Fig. 11.27. Normal pyramids: (a) two non-intersecting normal pyramids, (b) two
intersecting normal pyramids (adapted from [252])

11.3.6 Tracing of self-intersection curves

Di�erential equations for tracing self-intersection curves of an o�set surface
were �rst derived by Aomura and Uehara [11]. They are formulated such
that the self-intersection curve is arc length parametrized in the parameter
domain of the progenitor surface. Here we derive a set of ordinary di�erential

346 11. O�set Curves and Surfaces

equations following the method we introduced in Sect. 5.8.2 for tracing the
surface to surface intersection curves. The tracing direction coincides with
the tangential direction of the self-intersection curve ĉ(s) of the o�set surface
which is perpendicular to the two normal vectors at the corresponding foot
points on the progenitor surfaces r(�; t) and r(u; v) where (�; t) 6= (u; v).
Therefore, the tracing direction can be obtained as follows:

ĉ0(s) =
S(�; t)� S(u; v)
jS(�; t)� S(u; v)j ; (11.87)

where S(�; t) and S(u; v) are the normal vectors

S(u; v) = ru � rv ; (11.88)

evaluated at r(�; t) and r(u; v) where (�; t) 6= (u; v) and jS(�; t) � S(u; v)j 6=
0. The normalization of the tangent vector forces ĉ(s) to be arc length
parametrized in R3.

The self-intersection curve of an o�set surface can be also viewed as a
curve on the o�set surface. If we denote the pair of the self-intersection curves
in the parameter domain of the progenitor surface as u = �(s), v = t(s) and
u = u(s), v = v(s), where s denotes the arc length on the o�set surface, then
the self-intersection curve on the o�set can be expressed as

r = ĉ(s) = r̂(�(s); t(s)) = r̂(u(s); v(s)) : (11.89)

We can derive the unit tangent vector of the self-intersection curve as a curve
on the o�set surface using the chain rule as:

ĉ0(s) = r̂u(�(s); t(s))�
0 + r̂v(�(s); t(s))t

0 ; (11.90)

ĉ0(s) = r̂u(u(s); v(s))u
0 + r̂v(u(s); v(s))v

0 : (11.91)

Since we know the unit tangent vector of the intersection curve from
(11.87), we can �nd �0 and t0 as well as u0 and v0 by taking the dot product
of both sides of (11.90) with r̂u(�(s); t(s)) and r̂v(�(s); t(s)) and of (11.91)
with r̂u(u(s); v(s)) and r̂v(u(s); v(s)), which leads to linear systems in �0,
t0 and u0, v0. The solutions to the two linear systems have the same form
except that they are evaluated at di�erent parameter values (�(s); t(s)) and

(u(s); v(s)). Using the relation between N and N̂ (11.19), the ordinary dif-
ferential equations for tracing the self-intersection curve of an o�set surface
are given by

�0 =
det(ĉ0; r̂v ;S)

S2(1 + 2Hd+Kd2) (�(s);t(s))
; (11.92)

t0 =
det(r̂u; ĉ

0;S)
S2(1 + 2Hd+Kd2) (�(s);t(s))

; (11.93)

11.3 O�set surfaces 347

u0 =
det(ĉ0; r̂v ;S)

S2(1 + 2Hd+Kd2) (u(s);v(s))
; (11.94)

v0 =
det(r̂u; ĉ

0;S)
S2(1 + 2Hd+Kd2) (u(s);v(s))

: (11.95)

Figure 11.28 illustrates the global self-intersection of an o�set without
loops. As depicted in Fig. 11.28 the surface has a global constriction between
two corner points and the o�set surface self-intersects globally without any
internal loops. The self-intersection curves can be traced by starting at the
surface boundary.

The next example, in Fig. 11.29, shows global self-intersection with loops.
The surface also has 4 pairs of collinear normal point with distances 0.3757,
0.3945, 0.1367, 0.3757. Therefore if the magnitude of the o�set distance ex-
ceeds 0:1367

2 , two self-intersection loops start to grow in the parameter domain
enclosing the pair of collinear normal points whose distance in R3 is 0.1367
[252].

11.3.7 Approximations

Farouki [94] studied the problem of computing approximate o�sets of general
parametric surfaces. His method involves �nding the unique bicubic Hermite
interpolant surface that has the exact position, slopes and cross-derivatives
as the exact o�set surface at the corners of some quadrilateral subdomain
of the surface being o�set. The accuracy of the o�set is then increased by
decreasing the size of the subdomain chosen. A uniform subdivision methods
is implemented, although a nonuniform subdivision can be formulated to
enhance the e�ciency.

Patrikalakis and Prakash [300] addressed the representation of plates
within the framework of the boundary representation method in a solid mod-
eling environment (see Figure 11.5). Plates are de�ned as the volume bounded
by a progenitor surface, its o�set surface and ruled surfaces for the sides.
O�set surfaces of rational B-spline/B�ezier surfaces cannot in general be rep-
resented exactly within the same class of functions describing the progenitor
surface. Therefore, if the o�set is to be represented in the same form as the
progenitor surface, approximation is required. Such approximation assists in
integrating o�sets in a NURBS-based modeler (at least in an approximate
sense).

The steps of the approximation algorithm in [300] are summarized below.

1. Let R be a progenitor rational B-spline surface with control vertices pij ,
weights wij >0 and two knot vectors U and V associated with each
parameter u and v.

2. O�set each vertex of the control polyhedron by a distance d along the
normal vector given by (see Fig. 11.30)

348 11. O�set Curves and Surfaces

v

u

(a)

x

y

z

(b)

x

y

z

(c)

Fig. 11.28. Self-intersection curves of the o�set of a bicubic surface patch when
d=0.09 (adapted from [252]): (a) pre-images of the self-intersection curves in pa-
rameter domain where the same symbols are mapped to the same points in the
o�set surface, (b) the mapping of the self-intersection curves in the parameter do-
main onto the progenitor surface, (c) the o�set surface and the self-intersection
curve

11.3 O�set surfaces 349

u

v

(a)

x
y

z

(b)

x

y

z

(c)

Fig. 11.29. Self-intersection curves of the o�set of a bisextic surface patch when
d=-0.08 (adapted from [252]): (a) pre-images of the self-intersection curves in pa-
rameter domain where the same symbols are mapped to the same points in the
o�set surface, (b) the mapping of the self-intersection curves in the parameter do-
main onto the progenitor surface, (c) the o�set surface and the self-intersection
curve

350 11. O�set Curves and Surfaces

Nij =
1

8

8X
k=1

nk ; (11.96)

so that the o�set control point is given by

p̂ij = pij + d
Nij

jNij j ; (11.97)

where nk are unit normal vectors on the triangular facets of the control
polyhedron around Pij as in Fig. 11.30. Then the approximated o�set R̂
is de�ned by p̂ij , wij , U and V.

3. Check deviation of the approximate o�set with the true o�set for every
(ui; vj) 2 U�V. If it is good at all points, the checking proceeds to the
next stage. If it is not good at some point, then new knots are added
at left and right midspans of both the u and v-directions. Knots are not
added at those points where a new knot has been currently added to avoid
unnecessary knots that could, possibly, lower the order of continuity. In
the second stage, the surface is further checked progressively at its u and
v midspans, one-third spans, etc., to some prespeci�ed level of interior
checking. A new u and v knot is added at places where the check fails. If
the check passes at all points, the approximate o�set is considered good
enough.

4. Evaluate a new control polyhedron corresponding to the �ner knot vector
using the Oslo algorithm [63] and go back to step 2.

Nij

n k

Nij = (1/8)Σ n
k=1

8

k Fig. 11.30. O�set surface ap-
proximation (adapted from [300])

An alternate way to compute o�sets of NURBS curves and surfaces was
addressed by Piegl and Tiller [315]. The approach consists of four steps: 1)
recognition of special curves such as a straight line or a circle, and special
surfaces such as a plane, a surface of revolution (sphere, torus, cone, cylinder)

11.4 Pythagorean hodograph 351

or a general surface of revolution, or a ruled surface which in special cases can
be an extrusion; 2) sampling of the o�set curve or surface based on bounds
on second derivatives; 3) interpolation of these points by B-spline curves and
surfaces; 4) removal of all extraneous knots so that the error does not exceed
the tolerance.

11.4 Pythagorean hodograph

11.4.1 Curves

Farouki and Sakkalis [108] introduced a class of special planar polynomial
curves called Pythagorean hodograph (PH) curves r(t) = (x(t); y(t))T , whose
hodograph (derivative) components _x(t), _y(t) and a polynomial �(t) form a
Pythagorean triple _x2(t)+ _y2(t) = �2(t). Thus, the PH curve has polynomial
parametric speed �(t); accordingly its o�set is a rational curve and its arc
length is a polynomial function s(t) of the parameter t. The Pythagorean
condition is satis�ed by

_x(t) = (a2(t)� b2(t))c(t); _y(t) = 2a(t)b(t)c(t); �(t) = (a2(t) + b2(t))c(t) ;

(11.98)

where a(t), b(t) and c(t) are polynomials satisfying GCD(a; b) = 1 and
max(deg(a); deg(b)) � 1 [108, 114] where GCD denotes greatest common
divisor. This condition is only a su�cient condition for a polynomial curve to
have rational o�set. For most applications c(t) is chosen to be 1. The lowest
degree PH curve occurs when the polynomials a(t) and b(t) are linear and
thus from (11.98) its degree is cubic. However, the resulting PH curve cannot
possess an inection point and hence is not practical. When a(t) and b(t) are
quadratic, the PH curve will be a quintic and is the lowest degree curve to
have enough exibility for practical use. The PH quintics can inect and can
interpolate arbitrary �rst-order Hermite data [103]. The degree of the o�set
is 2m� 1 for a degree m PH curve. Therefore, the lowest degree of the o�set
of a PH curve for practical use is nine.

Farouki and Shah [112] developed a real-time CNC interpolator for PH
curves using the fact that the arc length s(t) of a PH curve is a polynomial
function. As a consequence the generation of reference points along a PH
curve is reduced to a sequence of polynomial root�nding problems.

The planar PH curves can be easily generalized to space PH curves [110]
by setting the four real polynomials a(t), b(t), c(t), "(t) in the form

_x(t) = (a2(t)� b2(t)� c2(t))"(t); _y(t) = 2a(t)b(t)"(t); _z(t) = 2a(t)c(t)"(t) ;

(11.99)

which leads to a polynomial parametric speed �(t) = (a2(t)+b2(t)+c2(t))"(t).
A more thorough review of PH curves can be found in [114].

352 11. O�set Curves and Surfaces

Pottmann [323] generalized the concept of PH curves to the full class of
rational curves with rational o�sets, by utilizing the projective dual repre-
sentation. A rational planar curve is obtained as the envelope of its tangent
line which is described as

g(t) : nx(t)x+ ny(t)y = h(t) ; (11.100)

where h(t) is the signed distance of the tangent line g(t) from the origin and
is a rational function. The vector (nx(t); ny(t))

T is a rational unit normal of
the tangent line g(t) and is given by

nx(t) =
2a(t)b(t)

a2(t) + b2(t)
; ny(t) =

a2(t)� b2(t)
a2(t) + b2(t)

; (11.101)

where (11.98) is used so that the unit normal vector becomes rational. The
envelope of the one-parameter family of g(t) can be obtained by solving a
linear system consisting of (11.100) and its derivative _g(t) for x and y as a
function of t, resulting in:

(x(t); y(t)) =

�
X(t)

W (t)
;
Y (t)

W (t)

�
; (11.102)

where

X = 2ab(_ab� a_b)ef � 1

2
(a4 � b4)(_ef � e _f) ;

Y = (a2 � b2)(_ab� a_b)ef + ab(a2 + b2)(_ef � e _f) ;
W = (a2 + b2)(_ab� a_b)f2 : (11.103)

Here the rational function h(t) is replaced by e(t)
f(t) . The o�set to (11.102) is

obtained by simply replacing h(t) by h(t) + d or equivalently e(t) by e(t) +
f(t)d, and thus the degree of the o�set remains the same as that of (11.102),
which is an advantage over PH curves. The rational B�ezier representation
can be easily derived by prescribing the polynomials a(t), b(t), e(t) and f(t)
and expressing the resulting polynomials X , Y and W in Bernstein form.

The form of (11.102) and (11.103) becomes simpler if the dual B�ezier
representation is used [323]. A plane dual B�ezier curve is de�ned by a family
of tangent lines which has the form

U(t) = (uo(t);u1(t);u2(t))
T =

nX
i=0

UiBi;n(t) ; (11.104)

where Ui are the B�ezier lines (constant line vectors) and Bi;n(t) is the i-th
Bernstein polynomial of degree n. A line vector U = (uo;u1;u2)

T determines
a straight line uo + u1x+ u2y = 0. From the homogeneous representation of
(11.100) in the form, uoW +u1X+u2Y = 0, the dual representation in terms
of projective geometry is given by

11.4 Pythagorean hodograph 353

uo : u1 : u2 = �(a2 + b2)e : 2abf : (a2 � b2)f : (11.105)

When f has a factor a2 + b2, there exists a common divisor in the dual
representation, thus it is convenient to set f = (a2 + b2)p which leads to

uo : u1 : u2 = �e : 2abp : (a2 � b2)p : (11.106)

The control lines Ui in (11.104) are easily obtained by expressing (11.106) in
Bernstein form.

L�u [237] showed that the o�set to a parabola is rational; its singular point
at in�nity was studied by Farouki and Sederberg [111]. In [237] L�u proved
that although the o�set (to a parabola) is not rational in the parameter
t, it may be expressed as a rational form in a new parameter, say u, via a
parameter transformation. The reparametrizing function t = t(u) is a rational

function of the form t = f(u)
u where f(u) is a quadratic polynomial in u.

The transformed curve �x(u) = x(t(u)), �y(u) = y(t(u)) is not parametrized
properly, since there are two values of u, which are the roots of the quadratic
equation f(u) � tu = 0, for each corresponding point (x; y) = (x(t); y(t)).
While the curve �r(u) is traced twice in opposite directions as u increases
from �1 to 0 and from 0 to +1, �r(u)+ �n(u)d de�nes a two-sided o�set, i.e.
the inward o�set for u < 0 and the outward o�set for u > 0. The resulting
rational curve is of degree 6. L�u [238] further derives a necessary and su�cient
condition for a polynomial or more generally rational planar parametric curve
to have rational parametric speed.

11.4.2 Surfaces

Pottmann [323] applied the same principle of the rational curve with rational
o�sets to the rational surface with rational o�sets. While the tangent lines
are used in the curve case, a two-parametric set of tangent planes

g(u; v) : Nx(u; v)x+Ny(u; v)y +Nz(u; v)z = h(u; v) ; (11.107)

is used for the surface, where (Nx; Ny; Nz)
T is a rational unit normal of the

tangent plane and h(u; v) is a rational distance function from the origin. The
rest of the discussions are analogous to the curve case.

A developable surface has a constant tangent plane along a generator.
Therefore its tangent plane depends on only one parameter, say u. In other
words, a developable surface can be considered as the envelope of a one
parameter family of planes g(u). The cross product of the normal vectors of
the two planes g(u) and _g(u) provides a vector of the generator at parameter
u. An explicit representation of rational developable surfaces with rational
o�sets has also been given in [323].

L�u [239] studied the rationality of o�sets of quadrics. The key idea is to
transform the problem of rational o�sets of quadrics to a simple problem
on the rationality of a cubic algebraic surface and use existing results in

354 11. O�set Curves and Surfaces

algebraic geometry [361]. He showed that the o�sets of paraboloids, ellipsoids
and hyperboloids can be rationally parametrized, while cylinders and cones
except for parabolic cylinders, cylinders of revolution and cones of revolution
do not possess any rational o�set.

Pottmann et al. [326] proved that o�sets of a nondevelopable rational
ruled surface in the whole space always admit a rational parametrization.
Even though the o�sets to ruled surfaces are rational in the whole space where
they are de�ned, the o�set patch to a rational patch may not be expressible
as a rational patch. Therefore, further research is needed for applying this
technique to a �nite patch.

Peternell and Pottmann [307] construct PH surfaces from arbitrary ra-
tional surfaces with the aid of a geometric transformation which describes a
change between two models of Laguerre geometry. The two fundamental ele-
ments of Laguerre geometry are oriented planes and cycles. A cycle represents
an oriented sphere or a point which is a degenerate sphere with zero radius.
The orientation of the fundamental elements is determined by a unit normal
vector �eld or equivalently by a signed radius for spheres. An oriented sphere
and an oriented plane are said to be in oriented contact, if they are tangent to
each other and their unit normals coincide at the point of contact. Laguerre
geometry studies properties which are invariant under Laguerre transforma-
tions. If we consider a surface as an envelope of its oriented tangent planes, a
dilatation, which is a Laguerre transformation that adds a constant d 6= 0 to
the signed radius of each cycle without moving its center, maps the surface
onto its o�set at distance d.

11.5 General o�sets

In 3-axis NC machining, not only ball-end cutters but also cylindrical and
toroidal (�llet-end) cutters are used as shown in Fig. 11.31. While the center
of a ball-end cutter moves along an o�set surface, the reference point on cylin-
drical and toroidal cutters moves along the so-called general o�set. General
o�set surfaces were �rst introduced by Brechner [44] and have been extended
further, from the di�erential geometric as well as algebraic points of view,
by Pottmann [324]. If we denote by c(u; v) the parametric representation of
the cutter in the initial position, where the reference point on the axis of
the cutter is chosen to be at the origin of the Cartesian coordinate system,
then �c(u; v) represents a so-called reected cutter. Then the general o�set
is given by

r̂g(u; v) = r(u; v)� c(�; �) ; (11.108)

and u, v, �, � are chosen such that there are parallel tangent plane at r(u; v)
and c(�; �) [324]. As a consequence, the tangent planes at corresponding
points r and r̂g of the progenitor surface and its general o�set are parallel.

11.6 Pipe surfaces 355

Thus, the general o�set is the sum of the progenitor surface and the reected
cutter. If both surfaces are convex, the general o�set is the Minkowski sum
of the progenitor surface and the reected cutter. The general o�set surface
for a cylindrical cutter is given by [324]

r̂g(u; v) = r(u; v) + d
(e� n(u; v))� e
je� n(u; v)j ; (11.109)

where d is the radius of the cutter, e is a unit vector along the tool axis

and (e�n(u;v))�e
je�n(u;v)j is a unit vector parallel to the bottom silhouette line of the

cutter. The general o�set surface for a toroidal cutter it is given by [438, 354]

r̂g(u; v) = r(u; v) + cn(u; v) + (d� c) (e� n(u; v))� eje� n(u; v)j ; (11.110)

where d is the radius of the toroidal cutter, c is the corner radius of the cutter.
The �rst two terms construct the classical o�set with o�set distance c at the
cutter contact point and the third term is a vector parallel to the bottom
silhouette line of the cutter with magnitude d� c, which is the radius of the
spine circle of the torus.

Pottmann et al. [330] and Glaeser et al. [127] investigate collision-free 3-
axis milling of free-form surfaces based on general o�sets. They show that if
some conditions on the curvature of the surface are ful�lled locally, and in
certain cases also globally, there will be no unwanted collision of the cutting
tool with the surface.

11.6 Pipe surfaces

11.6.1 Introduction

Pipe surfaces were �rst introduced by Monge [270] and are de�ned as follows:
Given a space curve c(t) and a positive number r, the pipe surface with spine
curve c(t) is de�ned to be the envelope of the set of spheres with radius r
which are centered at c(t). Pipe surfaces can be considered as the natural
generalization of the o�set of a space curve in 3-D space. Pipe surfaces have
many practical applications, such as in shape reconstruction [382], construc-
tion of blending surfaces [303, 113], transition surfaces between pipes [303],
and in NC veri�cation [437, 25]. They also have theoretical applications as
well; for example, doCarmo uses them in the proof of two very important
theorems in Di�erential Geometry concerning the total curvature of simple
space curves, [76], pp. 399{402.

If we assume that the spine curve c(t) is regular, i.e. c(t) is simple and
j _c(t)j 6= 0, there exist two kinds of singularities on pipe surfaces: those that
arise from local di�erential geometry properties of the surface and those that

356 11. O�set Curves and Surfaces

n e

d

r̂g
r

d

rg
^

r

e
n c

(a) (b)

Fig. 11.31. General o�sets (adapted from [249]): (a) cylindrical cutter, (b) toroidal
cutter

come from global distance properties of the surface. The �rst type of sin-
gularity occurs when the radius of the pipe surface r exceeds the minimum
radius of curvature of the spine curve; we refer to this singularity as lo-
cal self-intersection. The second one happens, for example, when twice the
radius r of the pipe surface is larger than the minimum distance between
two interior points (excluding the two end points) on the spine curve; we
refer to this singularity as global self-intersection. Kreyszig [205], doCarmo
[76] and Rossignac [350] derive the condition for local self-intersection of a
pipe surface and Shani and Ballard [382] describe a method to prevent local
self-intersection of a generalized cylinder. So far the discussion was based
on \Given a spine curve and a radius, does the pipe surface self-intersect?
If so, where does it self-intersect?" However in some applications, we may
encounter the case \Given a spine curve, what is the maximum radius such
that the pipe surface does not self-intersect?" More precisely, given a regular
space curve c(t) we want to �nd the maximum R;R > 0, so that the pipe
surface p(r) is nonsingular, whenever r < R. In [255] it is discussed how to
�nd this maximum possible radius R.

One immediate application lies in the area of �nding a topologically reli-
able approximation of a space curve [58]. More precisely, suppose we are given
a regular space curve c(t), and would like to approximate c(t) with another
curve g(t){within a prescribed tolerance{ in a natural way; that is, there is
a space homeomorphism h : R3 ! R3 that carries c(t) onto g(t) [255]. One

11.6 Pipe surfaces 357

important consequence of such a homeomorphism is that c(t) and g(t) have
the same knot type. To do this, we �rst construct a nonsingular pipe surface
p(r). Then, we construct a curve g(t) that lies inside p(r), and \looks like"
c(t). By taking r to be the tolerance we have a reliable approximation of the
given curve. Sakkalis and Charitos [358] apply the concepts of pipe surfaces
and alpha shapes [84] to ambiently approximate a nonsingular space curve
with a piecewise linear curve.

11.6.2 Local self-intersection of pipe surfaces

The pipe surface p(r) can be parametrized using the Frenet-Serret trihedron
(t(t);n(t);b(t)) [76, 350] as follows:

p(t; �) = c(t) + r[cos �n(t) + sin �b(t)] ; (11.111)

where t 2 [0; 1] and � 2 [0; 2�]. Its partial derivative with respect to t is given
by

pt(t; �) = _c(t) + r[cos � _n(t) + sin � _b(t)] : (11.112)

Equation (11.112) can be rewritten using the Frenet-Serret formulae (2.57)
as

pt(t; �) = j _c(t)j(1��(t)r cos �)t(t)�rj _c(t)j�(t) sin �n(t)+rj _c(t)j�(t) cos �b(t) ;
(11.113)

where �(t) and �(t) are the curvature and torsion of the spine curve given by
(2.26) and (2.48), respectively. Similarly we can derive p� as

p�(t; �) = r[� sin �n(t) + cos �b(t)] : (11.114)

The surface normal of the pipe surface can be obtained by taking the cross
product of (11.113) and (11.114) yielding

pt � p� = �j _c(t)jr[1� �(t)r cos �][sin �b(t) + cos �n(t)] : (11.115)

It is easy to observe [205, 76, 350] that the pipe surface becomes singular
when 1��(t)r cos � = 0. Since cos � varies between -1 and 1, there will be no
local self-intersection if �(t)r < 1. Therefore, to avoid local self-intersection
we need to �nd the largest curvature �a of the spine curve and set the radius
of the pipe surface such that r < 1=�a.

The curvature �(t) of a space curve c(t) is given in (2.26). Thus, to �nd
the largest curvature �a we need to locate the critical points of �(t), i.e.
solve the equation _�(t) = 0 (8.20), and decide whether they are local maxima
(see Sect. 7.3.1). Then we compare these local maxima with the curvature
at the end points, i.e. �(0) and �(1), and obtain the largest curvature. This
problem can be solved by elementary calculus. If the spine curve is given
by a rational B�ezier curve, equation _�(t) = 0 reduces to a single univariate
nonlinear polynomial equation (8.21) for a planar spine curve and (8.22) for
a 3-D spine curve. In the case where the spine curve is a rational B-spline,
we can extract the rational B�ezier segments by knot insertion [175, 313].

358 11. O�set Curves and Surfaces

Example 11.6.1. The parabola y = x2 has its largest curvature � = 2 at
x = 0. Therefore in order to have no local self-intersection the radius should
be r < 1

2 . Figure 11.32 shows the local self-intersection of the pipe surface
with the above parabolic spine curve and with radius 0.8. Obviously, there is
a local self-intersection on the pipe surface corresponding to the point x = 0
at the spine curve.

-4
-2

0
2

4

0

2

4

6

8

10

12

14

16

-0.5

0

0.5

Fig. 11.32. Local self-intersection of a pipe surface (r = 0:8) (adapted from [255])

11.6.3 Global self-intersection of pipe surfaces

In this section we will consider how to �nd the maximum possible radius of
a pipe surface such that it will not self-intersect in a global manner. Global
self-intersection can be categorized into three types [255].

1. End circle to end circle: Two end circles of the pipe surface touch each
other.

2. Body to body: Two di�erent body portions of the pipe surface touch each
other.

3. End circle to body: One of the end circles touches the body.

End circle to end circle global self-intersection. Let us consider the
plane which contains the end point c(0) and is perpendicular to _c(0). If we
denote a point on the plane as x = (x; y; z)T , then the equation of that plane
becomes

11.6 Pipe surfaces 359

[x� c(0)] � _c(0) = 0 : (11.116)

Similarly the equation of the plane that contains the other end of the pipe is
given by

[x� c(1)] � _c(1) = 0 : (11.117)

The self-intersection occurs along the intersection of these two planes as
shown in Fig. 11.33. It also lies on the bisecting plane of the line segment
c(0)c(1). Thus if x is a self-intersection point, then

�
x� c(0) + c(1)

2

�
� (c(1)� c(0)) = 0 : (11.118)

Equations (11.116), (11.117), (11.118) form a system of three linear equations
with the three components of x as unknowns as follows:0

@ _cx(0) _cy(0) _cz(0)
_cx(1) _cy(1) _cz(1)

cx(1)� cx(0) cy(1)� cy(0) cz(1)� cz(0)

1
A
0
@x
y
z

1
A =

0
@ d1
d2
d3

1
A ;

(11.119)

where superscripts denote x, y, and z components, and

d1 = cx(0) _cx(0) + cy(0) _cy(0) + cz(0) _cz(0) ;

d2 = cx(1) _cx(1) + cy(1) _cy(1) + cz(1) _cz(1) ; (11.120)

d3 =
(cx(1))2 + (cy(1))2 + (cz(1))2 � (cx(0))2 � (cy(0))2 � (cz(0))2

2
:

The determinant of the matrix is readily computed as

D = _c(0)� _c(1) � (c(1)� c(0)) : (11.121)

We now consider the following cases:
Case 1. c(1) 6= c(0). In that case, if D 6= 0, then ree = jx � c(0)j, where x
is the unique solution of the above system. If D = 0, and the system has no
solution, we take ree =1. If the system has an in�nte number of solutions,
then we take ree = min jx � c(0)j. This minimum is always positive since
jc(1)� c(0)j > 0.
Case 2. c(1) = c(0). In that case, if _c(0)� _c(1) 6= 0, the pipe p(r) is always
singular for every r > 0, and thus ree = 0. If _c(0)� _c(1) = 0, we take ree =1.

Example 11.6.2. Figure 11.34 illustrates the case when end circles are touch-
ing each other. The control points of the spine curve, which is a cubic integral
B�ezier curve, are given by (2.9, 3.0, 4.1), (0.0, 1.0, 2.0), (5.0, -2.0, 1.0) and
(3.0, 3.1, 4.0). The linear system (11.116), (11.117), (11.118) gives us the
intersection point as (2.918, 3.055, 4.023) with radius r = 0:0963.

360 11. O�set Curves and Surfaces

C(0)

C(1)

x

Fig. 11.33. Two end circles globally self-intersecting at point x (adapted from
[255])

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0.5

1

1.5

2

2.5

3

2

2.5

3

3.5

4

Fig. 11.34. End circle to end circle global self-intersection (r=0.0963) (adapted
from [255])

11.6 Pipe surfaces 361

Body to body global self-intersection. The body to body global self-
intersection case can be reformulated in terms of two di�erent points on the
spine curve that have a minimum distance. This minimum distance should not
be understood as the distance between two points whose parameters (� and
t) are close enough, which amounts to a distance approaching zero, i.e. the
trivial solution. Rather, these two points should make the distance function
stationary. Therefore, the body to body global self-intersection problem is
equivalent to the minimum distance problem (see also [255]).

We assume the spine curve can be given by a rational B-spline curve,
which can be split into rational B�ezier curves by knot insertion [34, 313]. The
minimum distance problem can be decomposed into the minimum distance
between two points on di�erent B�ezier curves and the minimum distance
between two points on the same B�ezier curve. The �rst problem is discussed
in Sect. 7.2 as well as in Zhou et al. [460], so we focus on the second problem
here.

Let the spine curve be given by c(t) = [x(t); y(t); z(t)]T . Assume that
the curve is regular, and _c(t) is continuous. The squared distance function
between two points on the spine curve with parameters � and t is given by
[255]

D(�; t) = jc(�) � c(t)j2 = [x(�) � x(t)]2 + [y(�)� y(t)]2 + [z(�)� z(t)]2 :
(11.122)

The stationary points of D(�; t) satisfy the following equations

D�(�; t) = Dt(�; t) = 0 ; (11.123)

which can be rewritten as

[c(�) � c(t)] � _c(�) = 0 ; (11.124)

[c(�) � c(t)] � _c(t) = 0 : (11.125)

The geometrical interpretation of (11.124) and (11.125) is that the line con-
necting the two points c(�) and c(t) is orthogonal to the spine curve at both
points. We assume that c(t) is given as a rational B�ezier curve, that is

c(t) =

Pn
i=0 wibiBi;n(t)Pn
i=0 wiBi;n(t)

� R(t)

W (t)
: (11.126)

Substituting (11.126) into (11.124) gives�
R(�)

W (�)
� R(t)

W (t)

�
�
"
_R(�)W (�) �R(�) _W (�)

W 2(�)

#
= 0 : (11.127)

Multiplying by its own denominator we obtain

[R(�)W (t)�R(t)W (�)] �
h
_R(�)W (�) �R(�) _W (�)

i
= 0 : (11.128)

362 11. O�set Curves and Surfaces

Similarly (11.125) reduces to

[R(�)W (t) �R(t)W (�)] �
h
_R(t)W (t)�R(t) _W (t)

i
= 0 : (11.129)

The �rst brackets of (11.128) and (11.129) can be rewritten as

nX
i=0

nX
j=0

wiwjbi[Bi;n(�)Bj;n(t)�Bj;n(�)Bi;n(t)] : (11.130)

Since

Bi;n(�)Bj;n(t)�Bj;n(�)Bi;n(t)

� � t (11.131)

= Bj;n(t)
Bi;n(�) �Bi;n(t)

� � t �Bi;n(t)
Bj;n(�) �Bj;n(t)

� � t ;

we can easily factor out (��t) from the �rst brackets of (11.128) and (11.129).
Therefore the system of equations (11.124), (11.125) for the rational

B�ezier curve reduces to a system of coupled bivariate polynomial equations
with degree (3n � 2) in �, (2n � 1) in t and degree (2n � 1) in �, (3n � 2)
in t. The system can be robustly and e�ciently solved by the IPP algo-
rithm introduced in Chap. 4. If we substitute all the solutions computed by
the polynomial solver into (11.122) and choose the minimum squared dis-
tance, then the maximum possible upper limit of the radius rbb such that
body and body of the pipe surface will not globally self-intersect is given by
rbb =

p
minI D(�; t)=2, where I = [0; 1] � [0; 1] and D(�; t) is the squared

distance between two points which make the distance function stationary. If
there are no such points, then we set rbb = +1.

Example 11.6.3. Figures 11.35 show two di�erent views of the minimum
distance between points on a rational B�ezier curve of degree 4. The solid
squares indicate the �ve control points (�0:3; 0:8; 0:1); (0:3; 0:15;�0:45);
(0; 0; 0:2); (�0:2; 0:1; 0:8); (0:3; 0:8;�0:6) with weights 1, 2, 0.5, 3, 1. The
minimum distance between two points on the spine curve can be obtained
as 0.157556, which is between the points of the parameters (t = 0:102506)
and (� = 0:952132). The spine curve has a global maximum curvature at t=
0.70618 with curvature value � = 48:7601. Therefore the pipe surface starts
to self-intersect locally when r = 0:0205 and globally when r = 0:078778.
The situation when r = 0:078778 is shown in Fig. 11.36 where two di�erent
parts of the body of the pipe surface touch each other and the surface also
locally self-intersects.

End circle to body global self-intersection. Finally we consider the case
of end circle to body global self-intersection. This case can be considered as a
special case of body to body global self-intersection. We can substitute � = 1
into (11.125) which gives [255]

11.6 Pipe surfaces 363

x

y

z

x

y

z

Fig. 11.35. Two di�erent views of spine curve which has minimum distance be-
tween two interior points (adapted from [255])

364 11. O�set Curves and Surfaces

-0.2
0

0.2
0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Fig. 11.36. Body to body tangential intersection and local self-intersection (r =
0:078778) (adapted from [255])

[c(1)� c(t)] � _c(t) = 0 : (11.132)

If the spine curve is a rational B�ezier curve, (11.132) will become a univariate
polynomial equation. This equation contains the trivial solution t = 1 and
therefore t�1 should be factored out. Similarly, we can substitute � = 0 into
(11.125) and factor out t. Notice that the line connecting c(t) and the end
point c(1) is orthogonal to the spine curve at c(t) but not necessarily orthogo-
nal at c(1). Therefore, with the radius equal to half the distance between c(t)
and c(1), the pipe surface may not self-intersect. In the limiting case of tan-
gential self-intersection, at the intersection point, using the parametrization
of (11.111), the following equations hold:

p(1; �) = p(t; �) ; (11.133)

p�(1; �) � [pt(t; �) � p�(t; �)] = 0 : (11.134)

Equation (11.134) comes from the fact that the end circle tangentially self-
intersects to the body (see Fig. 11.37). This system consists of four scalar
equations with four unknowns, namely r, t, � and �. We can also form the four
scalar equations in terms of polynomials using the rational parametrization
of the pipe surface [255]. However we cannot factor out the trivial solution
from the system. Maekawa et al. [252] developed a method to handle such a

11.6 Pipe surfaces 365

case (see Sect. 11.3.5). But in this speci�c case we do not need to use this,
as we can easily solve the system using Newton's method, since there is only
one solution and we can provide a very accurate initial approximation as
follows: We consider a circle at t = tm, i.e. p(tm; �) using the solution of
(11.132) as tm. By considering this circle as one of the end circles, we can
use the end circle to end circle global self-intersection technique, that we just
introduced, to �nd the intersection point between the two end circles. From
this intersection point we can evaluate the radius r and the two angles � and
� for the initial values, using coordinate transformations. In case when the
spine curve is planar, we cannot solve the linear system, since it becomes
singular. In such case we will use the solution of (11.132) as t and half the
distance between c(t) and c(1) (or c(0)) as r, and � and � as 0 or � as
initial approximation. Let us now denote the resulting radius from Newton's
method by reb.

Example 11.6.4. The 3-D quartic spine curve with control points (-0.3, 0.8,
0.1), (0.24, 0.15, -0.45), (0,0,0.2), (-0.24, 0.12, 0.96) and (-2, 0.6, 0) and
weights 1, 2, 0.5, 2.5, 1 respectively, has minimum distance 0.0595918 be-
tween two points t = 0:0370295 and t = 1. However with r = 0:0595918=2 =
0:0297959, the pipe surface does not self-intersect, since the vector c(1) �
c(0:0370295) is not orthogonal to the spine curve at t = 1. Using Newton's
method we obtain the touching radius as r = 0:041829. The spine curve
also has a global maximum curvature at t = 0:761006 with �=31.272916.
Therefore the pipe surface starts to self-intersect locally when r=0.031977
and globally when r= 0.041829. Figure 11.37 shows the pipe surface with r=
0.041829.

A necessary and su�cient condition for nonsingularity. Using the
methods of the previous sections we now present a necessary and su�cient
condition, in terms of the radius r, for the nonsingularity of a pipe surface. We
assume that the spine curve is given by c(t) = [x(t); y(t); z(t)]T , 0 � t � 1,
and that the curve is regular, and _c(t) is continuous.

Let �a be the maximum curvature of the spine curve, and ree; rbb, reb be
the maximum possible upper limit radius of the pipe surface such that it does
not globally self-intersect between end circle to end circle, body to body and
end circle to body of the pipe surface, respectively. Then we have [255]:

Theorem 11.6.1. Let p(r) be the pipe surface with spine curve c(t) and
radius r. Then, p(r) is nonsingular if and only if r < � = minf1=�a, ree,
rbb, rebg.
Proof (if): It is apparent from the discussion in Sects. 11.6.2 and 11.6.3 that
if r < � then the pipe surface p(r) is nonsingular.

(only if): Suppose now that p(r) is nonsingular. It is enough to show that
for all r � �, p(r) is singular. But this is obvious since if r is as indicated,
the pipe surface will either have a singularity due to local self-intersection or
one due to global self-intersection, or both.

366 11. O�set Curves and Surfaces

-0.3
-0.2

-0.1
0

0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.2

0

0.2

0.4

0.6

Fig. 11.37. End circle tangentially intersecting the body and the local self-
intersection is occurring at t= 0.761 (r = 0:078778) (adapted from [255])

Remark 11.6.1. When the spine curve is planar, Theorem 11.6.1 can be used
to �nd the maximum o�set distance such that the o�set of the planar spine
curve will not self-intersect.

Example 11.6.5. (2-D spine curve) The quartic spine curve with control
points (-0.3, 0.8, 0), (0.6, 0.3, 0), (0,0,0), (-0.3, 0.2, 0) and (-0.15, 0.6, 0) and
weights 1, 1, 2, 3, 1 respectively, has minimum distance 0.0777421 between
two points t = 0:0658996 and t = 1. By using Newton's method we obtain
the touching radius as r = 0:055754. This distance is the maximum o�set
distance such that the o�set of the planar spine curve will not self-interset.
Figure 11.38 shows the o�set curves when r = 0:055754.

11.6 Pipe surfaces 367

Fig. 11.38. O�set curves of the planar spine curve (r = 0:055754) (adapted from
[255])

Problems

1. Consider an implicit surface f(x; y; z) = 0 where f is a polynomial in
x; y; z. Consider the cube [0; 1]3 and the part of the surface inside this
cube. The surface can be written in the Bernstein basis as

f(x; y; z) =

nX
i=0

mX
j=0

qX
k=0

wijkBi;n(x)Bj;m(y)Bk;q(z) = 0 :

Show the following properties.
a) The point (0; 0; 0) is on the surface if and only if w000 = 0. What

happens when w00k = 0 for all k?
b) Assuming the condition of question (a) is true, a necessary and suf-

�cient condition for the normal vector of surface f at (0; 0; 0) to be
parallel to axis z is that w100 = w010 = 0.

c) If wijk > 0 or if wijk < 0 for all i; j; k then there is no piece of the
surface in the cube under consideration.

d) Consider a cube [0; 1]2� [1; 2] adjacent to the cube [0; 1]3. Within the
new cube de�ne another implicit polynomial surface g(x; y; z) = 0 of
the same degrees in x; y; z as f(x; y; z). Determine the conditions for
the two surfaces to be position continuous at the common face of the
two cubes.

e) Following the condition of question (d), determine the conditions for
the two surfaces to be tangent plane continuous at the common face
of the two cubes.

2. Show that the derivative of a B�ezier curve (also called hodograph) of the
form:

r(t) =

nX
i=0

biBi;n(t); 0 � t � 1 ;

is given by:

_r(t) =
n�1X
i=0

n(bi+1 � bi)Bi;n�1(t); 0 � t � 1 :

Sketch a cubic B�ezier curve and its hodograph and their control polygons.

370 Problems

3. The degree elevation formula for B�ezier curves of degree n is given (1.54).
Describe a process for approximating a B�ezier curve of degree n with a
B�ezier curve of degree n� 1 using (1.54) reversely.

4. Show how an explicit polynomial curve y = y(x), where a � x � b can be
converted into a B�ezier curve. Provide the control points of the resulting
B�ezier curve. And show how an explicit polynomial surface z = f(x,y),
where a � x � b and c � y � d can be converted into a B�ezier patch and
provide its control points. Extend this to an explicit B-spline patch and
provide its control points.

5. Given a planar B-spline curve in the xy plane with a non-uniform knot
vector, the control polygon of which is symmetric with respect to the
y-axis, �nd if the curve is also symmetric about the y-axis.

6. What kind of curve is the result of a perspective projection of an integral
B-spline curve?

7. Consider the arc of the hyperbola y = 1
x for 1 � x � 2 and re-

volve it around the axis y = 0 by �
2 , to obtain the quadrant of a sur-

face of revolution, within the �rst octant of the xyz coordinate system
(x � 0; y � 0; z � 0). Express the resulting patch in terms of a rational
biquadratic parametric B�ezier surface patch.

8. Examine what happens to a cubic B-spline curve in which two, three, or
four consecutive vertices, of its control polygon are coincident.

9. Examine what might happen when a rational B-spline curve given by
(1.87) or a rational B�ezier curve given by (1.88) has weights some of
which are positive and some are negative. Examine the validity of the
properties of the rational B-spline or rational B�ezier curves in such cases.

10. Make plots of the B-spline basis functions of the following order n (degree
= n� 1) and knot vector T:
� n = 4, T = (0; 0; 0; 0; 1; 1; 1; 1)
� n = 4, T = (0; 0; 0; 0; 1; 3; 3; 3; 3)
� n = 4, T = (0; 0; 0; 0; 2; 2; 4; 4; 4; 4)
� n = 4, T = (0; 0; 0; 0; 1; 1; 1; 3; 3; 3; 3)
� n = 4, T = (0; 0; 0; 0; 1; 2; 3; 4; 6; 7; 7; 7; 7)
� n = 3, T = (0; 0; 0; 2; 4; 6; 6; 6)
� n = 2, T = (0; 0; 1; 2; 2)

11. Given a list of Cartesian points in 3-D space which represent a non-
periodic curve, construct a cubic B�ezier curve using least squares ap-
proximation of the points. Also, construct a cubic B-spline curve with
non-uniform knots using least squares approximation of these points. A
user should be able to access your program with an arbitrary number
of points and coordinates of points. Include a simple visualization of the
results.

12. A cubic planar B�ezier curve:

r(t) =

3X
i=0

biBi;3(t) 0 � t � 1 ;

Problems 371

has the following control points

r0 = (0; 0)T ; r1 = (1; 1)T ; r2 = (2; 1)T ; r3 = (2; 0)T :

A designer decides to subdivide (split) the curve at t0 =
1
2 and t1 =

3
4 in

order to be able to modify the curve in the interval [t0; t1] and generate
a particular shape feature required by his design.

a) Compute the coordinates of the control points of the three curve
segments generated by the above subdivision.

b) After the above subdivision, the middle segment of the three curve
segments created by subdivision is permitted to be modi�ed by
changing the coordinates of its control points. Determine the con-
ditions that the control points must obey so that this curve segment
maintains position continuity at its ends with the end and the begin-
ning of the other two curve segments.

c) Assuming position continuity is maintained as in (b), determine the
additional necessary conditions to maintain unit tangent vector con-
tinuity at the ends of the middle curve segment.

d) Assuming conditions (b) and (c) are satis�ed, determine the coordi-
nates of the vertices of the polygonal boundary of the convex hull
of the middle curve segment. You need to distinguish several special
cases.

13. Derive the monomial or power basis form of curve r(t) of Problem 12
prior to any subdivision.

14. Derive the (uniform) B-spline form of curve r(t) of Problem 12 prior to
any subdivision. Make a plot of the curve together with its B�ezier and
B-spline polygon illustrating the principal features of the curve (such
as tangencies at the ends etc.). Compare the convex hulls of the curve
in the B�ezier and the B-spline form in terms of the area they enclose
(i.e. determine the ratio of the two areas).

15. We are given a degree (2-1) integral B�ezier surface patch

r(u; v) =

2X
i=0

1X
j=0

bijBi;2(u)Bj;1(v); 0 � u; v � 1 ;

where the control points bij are

b00 = (0; 0; 0)T ; b01 = (�2; 0; 10)T ;
b10 = (5; 10; 5)T ; b11 = (4; 12; 16)T ;

b20 = (20; 0; 0)T ; b21 = (22; 0; 10)T :

a) Subdivide the surface patch into two patches by the iso-parametric
curve u = 0:5 and compute the resulting control points of the two
patches.

372 Problems

b) Consider the boundary curve of the patch q(u) = r(u; 0). Provide a
tight upper bound for the maximum deviation of the curve q(u) in
the interval k

n � u � k+1
n to the straight line passing via q(kn) and

q(k+1
n) for a �xed value of k(2 0; 1; � � � ; n � 1), where n is a �xed

positive integer.
c) i. Show that the given integral B�ezier surface is a developable sur-

face.
ii. Are there any umbilics on this patch?

16. Consider a curve u = t, v = t2 for 0 � t � 1 on a hyperbolic paraboloid
r(u; v) = (u; v; uv)T where 0 � u; v � 1.
a) Compute the arc length of the curve on the hyperbolic paraboloid

for 0 � t � 1.
b) Compute the area of a region of the hyperbolic paraboloid bounded

by positive v axis, v = 1 and a parabola v = u2.
17. Consider a torus parametrized as follows:

r(u; v) = ((R + a cos u)cos v; (R+ a cos u)sin v; a sin u)T ;

where 0 � u � 2�; 0 � v � 2� and R > a. Derive appropriate formu-
lae for the Gauss, mean and principal curvatures. Sketch the torus and
subdivide it into hyperbolic, parabolic and elliptic regions. In a follow-up
sketch illustrate the lines of curvature of the torus. Explain the above
subdivision and sketches.

18. Show that the curvature of a planar curve is independent of the parametriza-
tion. Namely, if

r(t) = (x(t); y(t))T ;

is the curve, then a change of variables

t = w(u) with _w(u) 6= 0 ;

does not a�ect the curvature.
19. Write a one-dimensional nonlinear polynomial solver based on Projected

Polyhedron algorithm. Use the solver to compute the roots of the degree
20 Wilkinson polynomial with di�erent tolerances and discuss robustness
issues.

20. Convert an explicit curve y = x3 (�a � x � a) into a cubic B�ezier curve.
21. Convert the following height function

z = h(x; y) = 7:2x3y3 � 25:2x3y2 + 18x3y � 10:8x2y3 + 37:8x2y2 � 27x2y

+ 3:6xy3 � 12:6xy2 + 9xy; 0 � x; y � 1 ;

into a bicubic B�ezier patch.
22. Compute the characteristic points of the following curve

f(u; v) = (x2 + y2 � 2x)2 � (x2 + y2) = 0; [x; y] 2 [�4; 4]2 ;
and trace it.

Problems 373

23. Consider the intersection curve of (11.135) with the plane 15x � 55z +
110 = 0.
a) Derive an implicit equation f(u; v) = 0 for this intersection curve

in the parameter space u; v. Find the characteristic points of this
curve, (border, turning, and singular points).

b) Express this intersection curve as an explicit curve in the u; v pa-
rameter space. Indicate the resulting type and degree of this curve.
Sketch this curve in the parameter space u; v.

c) Prove that the above intersection curve is a planar rational B�ezier
parametric curve of degree 4 in 3D space. Indicate how you would
compute its control points (but do not carry out the algebra).

24. Consider the following curves:

f(x; y) = � 64y4 + 128y3 � 96x2y2 + 140xy2 � 139y2 + 96x2y � 140xy

+ 75y � 96x4 + 276x3 � 313x2 + 165x� 36 = 0 ;

and

r(t) = (x(t); y(t))T =

3X
i=0

biBi;4(t) ;

where Bi;4(t) denotes the ith cubic Bernstein polynomial and r0 =
(0:5; 0:5)T , b1 = (0:7; 0:6)T , b2 = (0:95; 0:1)T , b3 = (0:55; 0:25)T .

a) Compute all turning and singular points of f(x; y) to the highest
possible accuracy, as well as the tangent lines at all these points.

b) Using the results of a as a guide, sketch f(x; y). Clearly indicate the
turning and singular points on your sketch.

c) Compute the intersections of the two curves given above to the high-
est possible accuracy. In addition to giving the Cartesian coordinates
of the intersection points, also include the parameter values of the
points and their multiplicity.

25. Write a program which determines all intersections of two integral planar
B�ezier curves of arbitrary degrees m and n as accurately as possible,
given the control points of the two curves. Your program should report
the parametric values of the intersection points as well as the Cartesian
coordinates. Give four examples to show how your program works.

26. The following three planar curves are given by:

1) Implicit curve, f(x; y) = x3 + y3 � 3xy = 0 ;

2) Cubic B�ezier curve r(t) = (x(t); y(t))T =
P3

i=0 riBi;4(t) where 0 �
t � 1 and with r0 = (0; 0)T , r1 = (0; 2)T , r2 = (2; 0)T , r3 = (0;�2)T ;

3) Cubic B�ezier curve q(u) = (x(t); y(t))T =
P3

i=0 qiBi;4(u) where 0 �
t � 1 and with q0 = (�2;�2)T , q1 = (�2; 1)T , q2 = (4; 1)T , q3 =
(0;�1)T :

374 Problems

a) Compute the characteristic points of the �rst curve in the rectangle
[-5,5]�[-5,5] and trace it within the same rectangle.

b) Compute the intersections of the �rst and second curves, and the
second the third curves to the highest possible accuracy, and identify
their multiplicity.

c) Obtain a parametrization of the �rst curve in terms of rational poly-
nomials using the transform y = xt. Illustrate x(t) and y(t) for all
real t. Is this a good parametrization for computer implementation
(e.g. tracing of the curve) near x = y = 0? Can you suggest better
parametrizations for the curve piece in the �rst quadrant.

27. Compute the intersection curve between the bicubic B�ezier patch of Prob-
lem 21 and a plane x�y+z = 0. Evaluate the curvature of the intersection
curve at u = v = 0:5.

28. Give the implicit polynomial equation of a torus whose section cir-
cle has radius 2, and whose center circle has radius 4 using the im-
plicitization of a surface of revolution. Assume the torus is situated
so that it is centered at the origin and the center circle lies entirely
in the (x; y)-plane. Using the implicit equation, compute all intersec-
tions of the torus with the cubic B�ezier curve having control points
r0 = (0; 6; 0)T ; r1 = (�5; 2;�0:5)T ; r2 = (2;�3; 0:5)T ; r3 = (6; 0; 0)T .
Give both the Cartesian coordinates of the intersection points and their
associated parameter values on the B�ezier curve. Indicate which method
you used to solve this problem, and give all answers to at least 5 signi�-
cant digits.

29. Compute the minimum distance between a point (0.8, 0.7, 0.2) and an
iso-parametric line v = 0:8 of the bicubic B�ezier patch of Problem 21.
Also compute the minimum distance between the point and the bicubic
patch.

30. Consider two planar B�ezier curves which are cubic and quadric with con-
trol points: (0,0), (1, 1), (2,1), (3,0) and (0,1), (34 , -1), (

6
4 , 5), (

9
4 , -1),

(3,0), respectively. Compute all stationary points of their squared dis-
tance function and classify them appropriately into extrema etc. Identify
the corresponding Euclidean distances, �nd the points of intersection of
the two curves and the angles between the tangents of the two curves at
the intersection points.

31. Consider an ellipsoid of revolution given by (3.81) with a=b=1, c=2 and
a cubic planar B�ezier curve with control points (0,1, -2), (0,0, -1), (0,0,1),
(0,1,2) on the x=0 plane. Compute the stationary points of the squared
distance function between the ellipsoid and the curve, classify them into
extrema etc. Identify the corresponding Euclidean distances, �nd the
points of intersection and the angles between the surface normals and
the B�ezier curve tangents at the intersection points.

32. Find the stationary points of the squared distance function between the
plane z=0 and the wave-like B�ezier surface patch of the example in Sect.

Problems 375

8.5.4 and Fig. 8.11. Classify the points into extrema etc., identify the
corresponding distances, and determine the intersections of the two sur-
faces. Compare the locations of the above extrema with the locations of
the various curvature extrema in Sect. 8.5.4.

33. Consider a torus generated by revolving the circle (x � 2)2 + y2 � 1 = 0
around the y axis by a full revolution. Determine the stationary points of
the squared distance function between this torus and a) a plane x = �3,
b) a plane y = 2, c) a plane y = 1, d) a sphere with center the origin and
radius r = 1

2 and e) a sphere with center the origin and radius r = 4.
34. Consider a biquadratic Bezier surface patch whose boundary eight control

points are coplanar so that the boundary curves form a square [0; 1]2 on
the xy plane. The boundary non-corner control points are in the middle
of the corresponding boundary edges. The central control point of the
patch has coordinates (12 ,

1
2 , h) where h = 0. Determine the surface unit

normal vector at the four corners, and at the center, and the extrema of
the Gauss, mean and principal curvatures and any umbilics as a function
of h and illustrate this for h = 1

10 , 1, 10, 100. Sketch the lines of curvature
of the surface patch for these four values of h.

35. Find the range of mean curvature of a hyperbolic paraboloid r(u; v) =
(u; v; uv)T , (u; v) 2 [0; 1]2 (bilinear surface), and plot four levels of con-
tour lines of mean curvature in the uv-parameter space.

36. Given an implicit surface f(x; y; z) = 0, formulate the problem of tracing
the lines of curvature and develop an algorithm to do this. Test the re-
sulting implementation for various standard algebraic surfaces (quadrics,
torii, cyclides).

37. Given an implicit algebraic surface f(x; y; z) = 0, formulate the problem
of locating the umbilics of the surface (within a given rectangular box
with faces parallel to the coordinate planes).

38. Consider an ellipsoid x2

a2 +
y2

b2 + z2

c2 = 1 where a � b � c.
a) Show that umbilics are located at

�
�a
q

b2�a2
c2�a2 ; 0; �c

q
c2�b2
c2�a2

�
.

b) Show that the patterns of the four umbilics are of the lemon type.
39. Consider a degree (3-1) integral B�ezier surface

r(u; v) =

3X
i=0

1X
j=0

bijBi;3(u)Bj;1(v); 0 � u; v � 1 ;

where

b00=(0; 0; 0)
T , b01=(0:5; 0; 2)

T ,
b10=(1:8; 3; 0)

T , b11=(1:895; 2:325; 2)
T ,

b20=(3:3;�2; 1:5)T , b21=(3:0575;�1:55; 3:1625)T ,
b30=(4; 0; 0)

T , b31=(3:6; 0; 2)
T .

a) Show that the B�ezier surface is a developable surface.

376 Problems

b) Is there an inection line? If so, �nd the u parameter which contains
the inection.

40. Derive di�erential equations for geodesics (10.17) - (10.20) on a paramet-
ric surface using Euler's equation (10.24).

41. Write a program which solves di�erential equations for geodesics (10.17)
- (10.20) as a boundary value problem using a shooting method on a
parametric surface.

42. For the surface patch of Problem 34 compute the geodesics between two
diagonally opposite corners for various values of h. How do these geodesics
change as h changes from 0 to large positive values, e.g. in the interval
[0,100]. What do you expect in the limit h tends to plus in�nity?

43. Let r(s) be a planar, closed and convex curve (e.g. a circle, an ellipse,
etc.) where the arc length s varies in the range [0; l] so that the length of
the curve is l. Let

r̂(s) = r(s) + dn(s) ;

be its o�set curve, where d is a positive distance and n(s) is the unit
normal vector of the curve r de�ned by t � ez (see convention (b) of
(2.24) in Table 3.2.)

a) Show that the total length of the curve r̂(s) exceeds the total length
of the curve r(s) by 2�d.

b) Show that the area enclosed between the two curves is given by A =
d(l + �d).

c) Show that the curvatures of the two curves are related by

�̂ =
�

1 + d�
;

where � is the curvature of r(s) and �̂ is the curvature of the o�set
curve r̂(s).

d) Verify your results for questions a to c for a circle of radius R.

44. This problem focuses on the identi�cation of cusps, extraordinary points
and self-intersections of o�sets of planar curves (use convention (b) of
(2.24) for the normal vector in Table 3.2.). Consider the ellipse x2+4y2 =
1 or x = cos�; y = 1

2sin� and its o�set at \distance" d, where d is any
real number.

a) Determine all the values of � for which there can be an extraordinary
point on some o�set of the ellipse and the values of d at such points.
Sketch the o�sets at all such values of d.

b) For what range of values of d, are o�sets of the ellipse regular curves?
Sketch a few such o�set curves.

c) Determine a speci�c o�set of the ellipse which includes several cusps
and self-intersections but no extraordinary points. In�nite such cases
exist. Give the parameter values and coordinates of these cusps and
self-intersections. (Hint: Notice that self-intersections are on the axes
of symmetry of the ellipse.)

Problems 377

45. Consider the planar cubic integral Bezier curve r(t) with control points
(0; 0); (0; 1); (2; 1), and (2;�1). The o�set r̂ of r at a distance d is given
by

r̂(t) = r(t) + dn(t) ;

where n(t) denotes the normal to r at the point r(t) de�ned by t � ez
(see convention (b) of (2.24) in Table 3.2). Here r is called the progenitor
of r̂.

a) For values of d between 0 and some critical value dc, the o�set curve
resembles its progenitor. At d = dc, however, the o�set exhibits a
cusp at a parameter value tc because _̂r(tc) = 0. Compute the values
of dc and tc.

b) Sketch the progenitor curve, and two o�set curves, one at a distance
of dc and one at a distance of around 2dc.

46. The evolute of a planar curve is the curve of its center of curvature.
Show that cusps and extraordinary points of the o�set lie on the evolute.
Illustrate the concept by examining the superbola x = t, y = t4, �2 �
t � 2. Draw the curve, its evolute, and several o�sets with o�set distance,
d = �0:25, d ' 0:4648, d = �0:8, d = �1, d = �1:25 (all on the concave
side).

47. Consider a pocket to be machined, bounded by the following four curves:
1) x = t, y = t4, �2 � t � 2,
2) y = 16,
3) Two circular blends of the �rst and second curves with radius, r = 0:25.
a) Construct an approximation of the medial axis (skeleton) of the

pocket in terms of a set of linear spline curves. The skeleton is the
set of points inside the shape with two or more nearest points on the
boundary of the shape. The skeleton branches potentially start at the
curvature centers corresponding to points of maximum curvature of
the boundary. Next, you may specify the skeleton by writing di�er-
ential equations relating the tangent vector of the skeleton to known
functions. For simplicity, write these equations for the speci�c ex-
ample. Integrate these di�erential equations using the Runge-Kutta
method.

b) Assuming you have cylindrical cutters with radii: 0.25, 0.5, 0.75, � � �,
2, describe an e�cient method to accurately machine the pocket.

48. Write a program which approximates an o�set curve of a planar rational
curve following the algorithm developed by Tiller and Hanson [420].

49. Give the implicit polynomial equation of a torus with axis in the direction
(0,0,1), center circle radius R and section circle radius a where R > a.
What is the equation of the o�set of this torus by �h, h > 0.

50. A pipe surface or canal surface of spheres of constant radius is de�ned
as the envelope of a family of spheres of constant radius r whose centers
describe a smooth curve, c(t) known as the spine. Let f(p; t) = jp �
c(t)j2 � r2, where p = (x; y; z)

378 Problems

a) Show that the canal surface has an implicit equation g(p) = 0 which
results from eliminating t from the two equations f = 0 and ft = 0.

b) Obtain the implicit equation of a torus by using the approach of part
a).

c) Show that canal surfaces can be obtained as generalized cylinders by
sweeping a circular cross-section along the spine.

51. In this problem we consider developing a blending surface between the
plane z = 0 and the right circular cylinder x2 + y2 = 1; 0 � z � 2.
Because the cylinder is a surface of revolution, we will, for simplicity,
consider the cross-section of the objects obtained by setting y = 0. Our
problem is to develop a smooth surface between the cylinder and the
plane by creating a cross-section curve starting at height 1 on the cylinder
and terminating on the plane 2 units away from the origin.

a) As a �rst e�ort, consider using a quadratic Bezier curve (i.e. a
parabola) as a blend cross-section. The curve should have the start-
ing and ending points as indicated above, and to ensure a smooth
blend, the tangent to the curve at the start (end) point should have
the same direction as the tangent to the cylinder (plane). Give the
control points of this curve.

b) Using the results of part a), express the blending surface (i.e. the
surface of revolution characterized by the cross section obtained in
a) as rational B-spline (NURBS) surface.

c) Now suppose we want a cubic Bezier curve as the cross-section of
our blending surface. Give the control points of a cubic Bezier curve
which generates a \good" blend. To be \good", the curve not only
has to satisfy the boundary conditions indicated in part a, but also
the area under the curve should be between 0:2 and 0:3.

d) Now suppose we want to maintain curvature continuity at the blend-
ing surface linkage curves in addition to position and tangent plane
continuity. Determine a su�ciently high degree Bezier curve cross
section to accomplish this.

A. Color Plates

Color Plate A.1. Isophotes for surface of Fig. 8.1

Color Plate A.2. Reection lines for surface of Fig. 8.1

380 A. Color Plates

Color Plate A.3. Gaussian curvature color map of surface in Fig. 8.11 (adapted
from [254])

Color Plate A.4. Mean curvature color map of surface in Fig. 8.11 (adapted from
[254])

A. Color Plates 381

Color Plate A.5. Maximum principal curvature color map of surface in Fig. 8.11
(adapted from [254])

Color Plate A.6. Minimum principal curvature color map of surface in Fig. 8.11
(adapted from [254])

382 A. Color Plates

(a) (b) (c)

Color Plate A.7. (a) Star pattern (extracted from lower left umbilic of Fig. 9.6),
(b) monstar pattern (extracted from center umbilic of Fig. 9.6). (c) lemon pattern
(extracted from lower umbilic of Fig. 9.1) (adapted from [256])

x

y

z

Color Plate A.8. Minimal geodesic paths on the generalized cylinder between two
points of two circular edges (adapted from [246])

References

1. K. Abdel-Malek and H.-J. Yeh. On the determination of starting points for
parametric surface intersections. Computer-Aided Design, 29(1):21{35, January
1997.

2. S. S. Abhyankar. Algebraic Geometry for Scientists and Engineers. American
Mathematical Society, Providence, RI, 1990.

3. S. L. Abrams, L. Bardis, C. Chryssostomidis, N. M. Patrikalakis, S. T. Tuohy,
F.-E. Wolter, and J. Zhou. The geometric modeling and interrogation system
Praxiteles. Journal of Ship Production, 11(2):117{132, May 1995.

4. S. L. Abrams, W. Cho, C.-Y. Hu, T. Maekawa, N. M. Patrikalakis, E. C. Sher-
brooke, and X. Ye. E�cient and reliable methods for rounded-interval arith-
metic. Computer-Aided Design, 30(8):657{665, July 1998.

5. P. G. Alourdas. Shape Creation, Interrogation and Fairing Using B-Splines.
Engineer's thesis, Massachusetts Institute of Technology, Department of Ocean
Engineering, Cambridge, Massachusetts, 1989.

6. L.-E. Andersson, T. J. Peters, and N. F. Stewart. Sel�ntersection of composite
curves and surfaces. Computer Aided Geometric Design, 15(5):507{527, May
1998.

7. R. K. E. Andersson. Surfaces with prescribed curvature I. Computer Aided
Geometric Design, 10(5):431{452, October 1993.

8. E. V. Anoshkina, A. G. Belyaev, and T. L. Kunii. Detection of ridges and
ravines based on caustic singularities. International Journal of Shape Modeling,
1(1):13{22, 1994.

9. E. V. Anoshkina, A. G. Belyaev, O. G. Okunev, and T. L. Kunii. Ridges
and ravines: A singularity approach. International Journal of Shape Modeling,
1(1):1{11, 1994.

10. ANSI/IEEE Std 754{1985. IEEE Standard for Binary Floating{Point Arith-
metic. IEEE, New York, 1985. Reprinted inACM SIGPLAN Notices, 22(2):9-25,
February 1987.

11. S. Aomura and T. Uehara. Self-intersection of an o�set surface. Computer-
Aided Design, 22(7):417{422, September 1990.

12. C. G. Armstrong, T. K. H. Tam, D. J. Robinson, R. M. McKeag, and M. A.
Price. Automatic generation of well structured meshes using medial axis and
surface subdivision. In G. A. Gabriele, editor, Proceedings of the 17th ASME
Design Automation Conference: Advances in Design Automation, Vol. 2, pages
139{146, Miami, FL, September 1991. New York: ASME.

13. G. Aumann. Interpolation with developable B�ezier patches. Computer Aided
Geometric Design, 8(5):409{420, November 1991.

14. F. Aurenhammer. Voronoi diagrams | a survey of fundamental geometric data
structure. ACM Computing Surveys, 23(3):345{405, September 1991.

15. W. Auzinger and H. J. Stetter. An elimination algorithm for the computation
of zeros of a system of multivariate polynomial equations. In R. P. Agarwal,

384 References

Y. M. Chow, and S. J. Wilson, editors, Numerical Mathematics, Singapore,
1988, International Series of Numerical Mathematics,Volume 86, pages 11{30.
Birkh�auser Verlag, Boston Basel Berlin, 1988.

16. C. Bajaj, J. Chen, and G. Xu. Modeling with cubic A-patches. ACM Trans-
actions on Graphics, 14(2):103{133, April 1995.

17. C. L. Bajaj, C. M. Ho�mann, J. E. Hopcroft, and R. E. Lynch. Tracing sur-
face intersections. Computer Aided Geometric Design, 5(4):285{307, November
1988.

18. R. E. Barnhill, G. Farin, L. Fayard, and H. Hagen. Twists, curvatures and
surface interrogation. Computer-Aided Design, 20(6):341{346, July 1988.

19. R. E. Barnhill, G. Farin, M. Jordan, and B. R. Piper. Surface/surface inter-
section. Computer Aided Geometric Design, 4(1-2):3{16, July 1987.

20. R. E. Barnhill and S. N. Kersey. A marching method for parametric surface /
surface intersection. Computer Aided Geometric Design, 7(1-4):257{280, June
1990.

21. R. C. Beach. An Introduction to the Curves and Surfaces of Computer-Aided
Design. Van Nostrand Reinhold, New York, 1991.

22. J. M. Beck, R. T. Farouki, and J. K. Hinds. Surface analysis methods. IEEE
Computer Graphics and Applications, 6(12):18{36, December 1986.

23. K.-P. Beier and Y. Chen. Highlight{line algorithm for realtime surface-quality
assessment. Computer-Aided Design, 26(4):268{277, April 1994.

24. M. V. Berry and J. H. Hannay. Umbilic points on Gaussian random surfaces.
Journal of Physics A., 10(11):1809{1821, 1977.

25. D. Blackmore, M. C. Leu, and L. P. Wang. Sweep-envelope di�erential equation
algorithm and its application to NC machining veri�cation. Computer-Aided
Design, 29(9):629{637, September 1997.

26. W. Blaschke. Kreis und Kugel. Walter de Gruyter and Co., Berlin, 1956.
27. C. Bliek. Computer Methods for Design Automation. PhD thesis, Massachusetts

Institute of Technology, Cambridge, MA, July 1992.
28. G. A. Bliss. The geodesic lines on the anchor ring. Annals of Mathematics,

4:1{21, October 1902.
29. H. Blum. Biological shape and visual science (part I). Journal of Theoretical

Biology, 38:205{287, 1973.
30. H. Blum. A transformation for extracting new descriptors of shape. Models for

the Perception of Speech and Visual Form, pages 362{381, ed: Weinant Wathen-
Dunn MIT Press, 1967.

31. H. Blum and R. N. Nagel. Shape description using weighted symmetric axis
features. Pattern Recognition, 10(3):167{180, 1978.

32. R. M. C. Bodduluri and B. Ravani. Design of developable surfaces using duality
between plane and point geometries. Computer-Aided Design, 25(10):621{632,
October 1993.

33. W. Boehm. Cubic b-spline curves and surfaces in computer aided geometric
design. Computing, 19:29{34, 1977.

34. W. Boehm. Inserting new knots into B-spline curves. Computer-Aided Design,
12(4):199{201, July 1980.

35. W. Boehm. Subdividing multivariate splines. Computer-Aided Design,
15(6):345{352, November 1983.

36. F. L. Bookstein. The line skeleton. Computer Graphics and Image Processing,
11:123{137, 1979.

37. M. Brady, J. Ponce, A. Yuille, and H. Asada. Describing surfaces. Computer
Vision, Graphics and Image Processing, 32(1):1{28, October 1985.

References 385

38. J. W. Brandt. Theory and Application of the Skeleton Representation of Con-
tinuous Shapes. PhD thesis, University of California, Davis, CA, December
1991.

39. J. W. Brandt. Describing a solid with the three-dimensional skeleton. In J. D.
Warren, editor, Proceedings of The International Society for Optical Engineer-
ing, Volume 1830, Curves and Surfaces in Computer Vision and Graphics III,
pages 258{269. SPIE, Boston, Massachusetts, 1992.

40. J. W. Brandt. Convergence and continuity criteria for discrete approximations
of the continuous planar skeleton. CVGIP: Image Understanding, 59(1):116{
124, January 1994.

41. J. W. Brandt and V. R. Algazi. Continuous skeleton computation by Voronoi
diagram. CVGIP: Image Understanding, 55(3):329{338, May 1992.

42. J. W. Brandt and V. R. Algazi. Lossy encoding of document images with the
continuous skeleton. In P. Maragos, editor, Visual Communications and Image
Processing '92, SPIE 1818, pages 663{673, 1992.

43. J. W. Brandt, A. K. Jain, and V. R. Algazi. Medial axis representation and
encoding of scanned documents. Journal of Visual Communication and Image
Representation, 2(2):151{165, June 1991.

44. E. L. Brechner. General tool o�set curves and surfaces. In R. E. Barnhill, edi-
tor, Geometry Processing for Design and Manufacturing, pages 101{121. SIAM,
1992.

45. P. Brunet, A. Vinacua, M. Vivo, N. Pla, and A. Rodriguez. Surface fairing for
ship hull design application. Mathematical Engineering in Industry, 7(2):179{
193, 1998.

46. B. Buchberger. Ein Algorithmus zum Au�nden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Univer-
sity of Innsbruck, Innsbruck, Austria, 1965.

47. B. Buchberger. Gr�obner bases: An algorithmic method in polynomial ideal
theory. In N. K. Bose, editor, Multidimensional Systems Theory: Progress,
Directions and Open Problems in Multidimensional Systems, pages 184{232.
Dordrecht, Holland: D. Reidel Publishing Company, 1985.

48. J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge,
MA, 1988.

49. J. F. Canny and I. Z. Emiris. An e�cient algorithm for the sparse mixed re-
sultant. In G. Cohen, T. Mora, and O. Moreno, editors, Proceedings of 10th
International Symposium, Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, pages 89{104. Springer-Verlag, 1993.

50. J. S. Chalfant. Analysis and Design of Developable Surfaces for Shipbuilding.
Master's thesis, Massachusetts Institute of Technology, Department of Ocean
Engineering, Cambridge, Massachusetts, 1997.

51. B. W. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and
S. M. Watt. First Leaves: A Tutorial Introduction to Maple V. Springer-Verlag,
1992.

52. Y. J. Chen and B. Ravani. O�set surface generation and contouring in
computer-aided design. Journal of Mechanisms, Transmissions, and Automa-
tion in Design, Transactions of the ASME, 109(3):133{142, March 1987.

53. K.-P. Cheng. Using plane vector �elds to obtain all the intersection curves of
two general surfaces. In W. Strasser and H. Seidel, editors, Theory and Practice
of Geometric Modeling, pages 187{204. Springer-Verlag, New York, 1989.

54. C.-S. Chiang. The Euclidean Distance Transform. PhD thesis, Purdue Univer-
sity, West Lafayette, IN, August 1992.

55. C. S. Chiang, C. M. Ho�mann, and R. E. Lynch. How to compute o�sets with-
out self-intersection. In M. J. Silbermann and D. Tagare, editors, Proceedings of

386 References

The SPIE Conference on Curves and Surfaces in Computer Vision and Graph-
ics II, Volume 1610, pages 76{87, Boston, Massachusetts, 1991. International
Society for Optical Engineering.

56. H. Chiyokura. Solid Modelling with DesignBase. Addison-Wesley, Reading,
MA, 1988.

57. W. Cho, T. Maekawa, N. M. Patrikalakis and J. Peraire, Topologically Reliable
Approximation of Trimmed Polynomial Surface Patches. Graphical Models and
Image Processing, 61(2):84{109, March 1999.

58. W. Cho, T. Maekawa, and N. M. Patrikalakis. Topologically reliable approxima-
tion of composite B�ezier curves. Computer Aided Geometric Design, 13(6):497{
520, August 1996.

59. B. K. Choi and R. Jerard. Sculptured Surface Machining - Theory and Appli-
cations. Kluwer Academic Publishers, 1998.

60. B. K. Choi, C. S. Lee, and C. S. Jun. Compound surface modelling and ma-
chining. Computer-Aided Design, 20(3):127{136, April 1988.

61. I. Choi and K. Lee. E�cient generation of reection lines to evaluate car body
surfaces. Mathematical Engineering in Industry, 7(2):233{250, 1998.

62. B. Cobb. Design of Sculptured Surfaces Using the B-spline Representation.
PhD thesis, Computer Science Department, University of Utah, Salt Lake City,
Utah, 1984.

63. E. Cohen, T. Lyche, and R. Riesenfeld. Discrete B-splines and subdivision tech-
niques in computer-aided geometric design and computer graphics. Computer
Graphics and Image Processing, 14(2):87{111, October 1980.

64. G. E. Collins and R. Loos. Real zeros of polynomials. In B. Buchberger,
G. E. Collins, and R. Loos, editors, Computer Algebra: Symbolic and Algebraic
Computation, pages 83{94. Springer-Verlag, Vienna, 1982.

65. S. Coquillart. Computing o�sets of B-spline curves. Computer-Aided Design,
19(6):305{309, July/August 1987.

66. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

67. M. G. Cox. The numerical evaluation of B-splines. Journal of the Institute for
Mathematics Applications, 10:134{149, 1972.

68. T. Culver, J. Keyser, and D. Manocha. Accurate computation of the medial
axis of a polyhedron. In W. F. Bronsvoort and D. C. Anderson, editors, In
Proceedings of Fifth Symposium on Solid Modeling and Applications, Ann Arbor,
Michigan, pages 179{190. NY: ACM, June 1999.

69. G. Dahlquist and �A. Bj�orck. Numerical Methods. Prentice-Hall, Inc., Engle-
wood Cli�s, NJ, 1974.

70. P.-E. Danielsson. Euclidean distance mapping. Computer Graphics and Image
Processing, 14:227{248, 1980.

71. G. Darboux. Le�cons sur la Th�eorie G�en�erale des Surfaces, Vol.4. Gauthier-
Villars, Paris, 1896.

72. C. De Boor. On calculating with B-splines. Journal of Approximation Theory,
6:50{62, 1972.

73. C. De Boor. A Practical Guide to Splines. Springer, New York, 1978.
74. J. C. Dill. An application of color graphics to the display of surface curvature.

ACM Computer Graphics, 15(3):153{161, August 1981.
75. Q. Ding and B. J. Davies. Surface Engineering Geometry for Computer-Aided

Design and Manufacture. Ellis Horwood, Chichester, UK, 1987.
76. P. M. do Carmo. Di�erential Geometry of Curves and Surfaces. Prentice-Hall,

Inc., Englewood Cli�s, NJ, 1976.

References 387

77. T. Dokken. Finding intersections of B-spline represented geometries using re-
cursive subdivision techniques. Computer Aided Geometric Design, 2(1-3):189{
195, September 1985.

78. D. Dragomatz and S. Mann. A classi�ed bibliography of literature on NC
milling path generation. Computer-Aided Design, 29(3):239{247, 1997.

79. A. Dresden. A Solid Analytical Geometry and Determinants. Dover, New York,
1964.

80. T. Du�. Interval arithmetic and recursive subdivision for implicit functions
and constructive solid geometry. ACM Computer Graphics, 26(2):131{138, July
1992.

81. D. Dutta and C. M. Ho�mann. A geometric investigation of the skeleton of
CSG objects. In B. Ravani, editor, Proceedings of the 16th ASME Design Au-
tomation Conference: Advances in Design Automation, Computer Aided and
Computational Design, volume I, pages 67{75, Chicago, IL, September 1990.
New York: ASME, 1990.

82. D. Dutta and C. M. Ho�mann. On the skeleton of simple CSG objects. Journal
of Mechanical Design, ASME Transactions, 115(1):87{94, March 1993.

83. D. Dutta, R. R. Martin, and M. J. Pratt. Cyclides in surface and solid modeling.
IEEE Computer Graphics and Applications, 13(1):53{59, January 1993.

84. H. Edelsbrunner and E. P. M�ucke. Three-dimensional alpha shapes. ACM
Transactions on Graphics, 13(1):43{72, 1994.

85. G. Elber and E. Cohen. Error bounded variable distance o�set operator for
free form curves and surfaces. International Journal of Computational Geometry
and Applications, 1(1):67{78, March 1991.

86. G. Elber and E. Cohen. O�set approximation improvement by control points
perturbation. In T. Lyche and L. L. Schumaker, editors, Mathematical Meth-
ods in Computer Aided Geometric Design II, pages 229{237. Academic Press,
Boston, 1992.

87. G. Elber and E. Cohen. Second-order surface analysis using hybrid symbolic
and numeric operators. ACM Transactions on Graphics, 12(2):160{178, April
1993.

88. G. Elber, I.-K. Lee, and M. S. Kim. Comparing o�set curve approximation
methods. IEEE Computer Graphics and Applications, 17(3):62{71, May/June
1997.

89. I. Z. Emiris. Sparse Elimination and Applications in Kinematics. PhD thesis,
University of California at Berkeley, Berkeley, CA, 1994.

90. W. Enger. Interval Ray Tracing - A divide and conquer strategy for realistic
computer graphics. The Visual Computer, 9(2):91{104, November 1992.

91. M. Etzion and A. Rappoport. Computing the Voronoi diagram of a 3-d poly-
hedron by separate computation of its symbolic and geometric parts. In W. F.
Bronsvoort and D. C. Anderson, editors, In Proceedings of Fifth Symposium
on Solid Modeling and Applications, Ann Arbor, Michigan, pages 167{178, NY:
ACM, June 1999.

92. G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Prac-
tical Guide. Academic Press, Boston, MA, 3rd edition, 1993.

93. R. T. Farouki. Exact o�set procedures for simple solids. Computer Aided
Geometric Design, 2(4):257{279, 1985.

94. R. T. Farouki. The approximation of non-degenerate o�set surfaces. Computer
Aided Geometric Design, 3(1):15{43, May 1986.

95. R. T. Farouki. The characterization of parametric surface sections. Computer
Vision, Graphics and Image Processing, 33(2):209{236, February 1986.

388 References

96. R. T. Farouki. Graphical methods for surface di�erential geometry. In R. R.
Martin, editor, The Mathematics of Surfaces II, pages 363{385. Clarendon
Press, 1987.

97. R. T. Farouki. Hierarchical segmentations of algebraic curves and some ap-
plications. In T. Lyche and L. L. Schumaker, editors, Mathematical Methods
in Computer Aided Geometric Design, pages 239{248. Academic Press, Boston,
1989.

98. R. T. Farouki. On integrating lines of curvature. Computer Aided Geometric
Design, 15(2):187{192, February 1998.

99. R. T. Farouki and J. K. Johnstone. The bisector of a point and a plane para-
metric curve. Computer Aided Geometric Design, 11(2):117{151, April 1994.

100. R. T. Farouki and J. K. Johnstone. Computing point/curve and curve/curve
bisectors. In R. B. Fisher, editor, The Mathematics of Surfaces V, pages 327{
354. Oxford University, Oxford, 1994.

101. R. T. Farouki and C. A. Ne�. Algebraic properties of plane o�set curves.
Computer Aided Geometric Design, 7(1 - 4):101{127, 1990.

102. R. T. Farouki and C. A. Ne�. Analytic properties of plane o�set curves.
Computer Aided Geometric Design, 7(1 - 4):83{99, 1990.

103. R. T. Farouki and C. A. Ne�. Hermite interpolation by Pythagorean hodo-
graph quintics. Mathematics of Computation, 64(212):1589{1609, October 1995.

104. R. T. Farouki, C. A. Ne�, and M. A. O'Connor. Automatic parsing of degener-
ate quadric-surface intersections. ACM Transactions on Graphics, 8(3):174{203,
1989.

105. R. T. Farouki and V. T. Rajan. On the numerical condition of polynomials in
Bernstein form. Computer Aided Geometric Design, 4(3):191{216, November
1987.

106. R. T. Farouki and V. T. Rajan. Algorithms for polynomials in Bernstein form.
Computer Aided Geometric Design, 5(1):1{26, June 1988.

107. R. T. Farouki and V. T. Rajan. On the numerical condition of algebraic
curves and surfaces 1. implicit equations. Computer Aided Geometric Design,
5:215{252, 1988.

108. R. T. Farouki and T. Sakkalis. Pythagorean hodographs. IBM Journal of
Research and Development, 34(5):736{752, September 1990.

109. R. T. Farouki and T. Sakkalis. Real rational curves are not `unit speed'.
Computer Aided Geometric Design, 8(2):151{157, May 1991.

110. R. T. Farouki and T. Sakkalis. Pythagorean-hodograph space curves. Ad-
vances in Computational Mathematics, 2:41{46, 1994.

111. R. T. Farouki and T. W. Sederberg. Analysis of the o�set to a parabola.
Computer Aided Geometric Design, 12(6):639{645, September 1995.

112. R. T. Farouki and S. Shah. Real-time CNC interpolators for Pythagorean-
hodograph curves. Computer Aided Geometric Design, 13(7):583{600, October
1996.

113. R. T. Farouki and R. Sverrisson. Approximation of rolling-ball blends for free-
form parametric surfaces. Computer-Aided Design, 28(11):871{878, November
1996.

114. R. T. Farouki, K. Tarabanis, J. U. Korein, J. S. Batchelder, and S. R. Abrams.
O�set curves in layered manufacturing. Journal of Manufacturing Science and
Engineering, Transactions of the ASME, 68(2):557{568, 1994.

115. J. C. Faugere, P. Gianni, D. Lazard, and T. Mora. E�cient computation of
zero-dimensional Gr�obner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329{344, 1993.

116. I. D. Faux and M. J. Pratt. Computational Geometry for Design and Manu-
facture. Ellis Horwood, Chichester, England, 1981.

References 389

117. J. H. Ferziger. Numerical Methods for Engineering Applications. Wiley, 1981.
118. J. D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:

Principles and Practice. Addison-Wesley, Reading, MA, 2nd edition, 1996.
119. A. R. Forrest. Computational geometry. Proceedings of the Royal Society of

London A, 321:187{195, 1971.
120. W. H. Frey and D. Bindschadler. Computer-aided design of a class of de-

velopable B�ezier surfaces. R&D Publication 8057, General Motors, September
1993.

121. J. Gallier. Curves and Surfaces in Geometric Modeling: Theory and Algo-
rithms. Morgan Kaufmann, San Francisco, CA, 1999.

122. J. Gallier. Geometric Methods and Applications: For Computer Science and
Engineering. Springer-Verlag, New York, 2001.

123. C. B. Garcia and W. I. Zangwill. Global continuation methods for �nding all
solutions to polynomial systems of equations in n variables. In A. V. Fiacco
and K. O. Kortanek, editors, Extremal Methods and Systems Analysis, pages
481{497. Springer-Verlag, New York, NY, 1980.

124. A. Geisow. Surface Interrogations. PhD thesis, School of Computing Studies
and Accountancy, University of East Anglia, Norwich NR47TJ, U. K., July
1983.

125. S. M. Gelston and D. Dutta. Boundary surface recovery from skeleton curves
and surfaces. Computer Aided Geometric Design, 12(1):27{51, February 1995.

126. C. F. Gerald and P. O. Wheatley. Applied Numerical Analysis. Addison-
Wesley, Reading, MA, 4th edition, 1990.

127. G. Glaeser, J. Wallner, and H. Pottmann. Collision-free 3-axis milling and
selection of cutting tools. Computer-Aided Design, 31(3):225{232, March 1999.

128. D. Goldberg. What every computer scientist should know about oating{point
arithmetic. ACM Computing Surveys, 23(1):5{48, March 1991.

129. M. Golubitsky and V. Guillemin. Stable Mappings and their Singularities.
Springer-Verlag, New York, 1973.

130. W. J. Gordon and R. F. Riesenfeld. B-spline curves and surfaces. In R. E.
Barnhill and R. F. Riesenfeld, editors, Computer Aided Geometric Design, pages
95{126. Academic Press, Inc., 1974.

131. T. A. Grandine. Computing zeroes of spline functions. Computer Aided Geo-
metric Design, 6(2):129{136, May 1989.

132. T. A. Grandine. Geometry processing and numerical stability. In G. Farin,
J. Hoschek, M. S. Kim, and D. Abma, editors, The Handbook of Computer Aided
Design. Elsevier, 2001.

133. T. A. Grandine and F. W. Klein. A new approach to the surface intersection
problem. Computer Aided Geometric Design, 14(2):111{134, 1997.

134. J. A. Grant and G. D. Hitchins. An always convergent minimization technique
for the solution of polynomial equations. Journal of Industrial and Mathematical
Applications, 8:122{129, 1971.

135. J. A. Grant and G. D. Hitchins. Two algorithms for the solution of polynomial
equations to limiting machine precision. The Computer Journal, 18(3), 1973.

136. A. Gray. Modern Di�erential Geometry of Curves and Surfaces. CRC Press,
Boca Raton, 1993.

137. L. Guibas and J. Stol�. Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams. ACM Transactions on Graphics,
4(2):74{123, April 1985.

138. A. Z. Gurbuz and I. Zeid. O�setting operations via closed ball approximation.
Computer-Aided Design, 27(11):805{810, November 1995.

390 References

139. H. N. Gursoy. Shape Interrogation by Medial Axis Transform for Automated
Analysis. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
November 1989.

140. H. N. Gursoy and N. M. Patrikalakis. Automated interrogation and adaptive
subdivision of shape using medial axis transform. Advances in Engineering
Software and Workstations, 13(5/6):287{302, September/November 1991.

141. H. N. Gursoy and N. M. Patrikalakis. An automated coarse and �ne surface
mesh generation scheme based on medial axis transform, part I: Algorithms.
Engineering with Computers, 8(3):121{137, 1992.

142. H. N. Gursoy and N. M. Patrikalakis. An automated coarse and �ne surface
mesh generation scheme based on medial axis transform, part II: Implementa-
tion. Engineering with Computers, 8(4):179{196, 1992.

143. C. Gutierrez and J. Sotomayor. Lines of curvature, umbilic points and
Carath�eodory conjecture. Resenhas IME-UPS, 3(3):291{322, 1998.

144. J. Hadenfeld. Local energy fairing of B-spline surfaces. In M. D�hlen, T. Ly-
che, and L. L. Schumaker, editors, Mathematical Methods for Curves and Sur-
faces, pages 203{212. Vanderbilt University Press, 1995.

145. H. Hagen, S. Hahmann, and T. Schreiber. Visualization and computation of
curvature behaviour of freeform curves and surfaces. Computer-Aided Design,
27(7):545{552, July 1995.

146. H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima, B. W�ordenweber, and
P. Hollemann-Grundstedt. Surface interrogation algorithms. IEEE Computer
Graphics and Applications, 12(5):53{60, September 1992.

147. G. D. Hager. Constraint solving methods and sensor-based decision mak-
ing. In Proceedings of the 1992 IEEE International Conference on Robotics and
Automation, pages 1662{1667. IEEE, 1992.

148. S. Hahmann and S. Konz. Knot-removal surface fairing using search strategies.
Computer-Aided Design, 30(12):923{930, February 1998.

149. D. G. Hakala, R. C. Hillyard, B. E. Nourse, and P. J. Malraison. Natural
quadrics in mechanical design. In Proceedings of the Autofact West 1, Anaheim,
CA in November, 1980, pages 363{378, 1980.

150. B. Hamann and J. L. Chen. Data point selection for piecewise trilinear ap-
proximation. Computer Aided Geometric Design, 11(5):477{489, October 1994.

151. R. W. Hamming. Numerical Methods for Scientists and Engineers. McGraw-
Hill, New York, 1962.

152. H. Hancock. Theory of Maxima and Minima. Dover, New York, 1960.
153. A. Hansen and F. Arbab. An algorithm for generating NC tool paths for arbi-

trarily shaped pockets with islands. ACM Transactions on Graphics, 11(2):152{
182, 1992.

154. E. Hartmann. G2 interpolation and blending on surfaces. The Visual Com-
puter, 12(4):181{192, 1996.

155. E. Hartmann. Numerical implicitization for intersection and Gn-continuous
blending of surfaces. Computer Aided Geometric Design, 15(4):377{397, April
1998.

156. R. N. Hawat and L. A. Piegl. Genetic algorithm approach to curve-curve
intersection. Mathematical Engineering in Industry, 7(2):269{282, 1998.

157. M. Held. On the Computational Geometry of Pocket Machining. Springer-
Verlag, Berlin, Germany, 1991.

158. P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial systems
using a branch and prune approach. SIAM Journal on Numerical Analysis,
34(2):797{827, April 1997.

159. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language
for Global Optimization. MIT Press, Cambride, MA, 1997.

References 391

160. H.-S. Heo, M.-S. Kim, and G. Elber. The intersection of two ruled surfaces.
Computer-Aided Design, 31(1):33{50, January 1999.

161. T. Hermann. Geometrical criteria on the higher order smoothness of composite
surfaces. Computer Aided Geometric Design, 16(9):907{911, October 1999.

162. M. Higashi and K. Kaneko. Generation of high-quality curve and surface with
smoothly varying curvature. In D. A. Duce and P. Jancene, editors, Eurographics
'88, pages 79{92, Nice, France, September 1988. North-Holland.

163. M. Higashi, T. Saitoh, Y. Watanabe, and Y. Watanabe. Analysis of aesthetic
free-form surfaces by surface edges. In S. Y. Shin and T. L. Kunii, editors,
Proceedings of the Third Paci�c Conference on Computer Graphics and Appli-
cations, Paci�c Graphics '95, pages 294{305, Seoul, Korea, August 1995. World
Scienti�c.

164. M. Higashi, H. Tsutamori, and M. Hosaka. Generation of smooth surfaces
by controlling curvature variation. Computer Graphics Forum, 15(3):187{196,
September 1996.

165. D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea, New
York, 1952.

166. F. B. Hildebrand. Advanced Calculus for Applications. Prentice-Hall, Inc.,
Englewood Cli�s, New Jersey, 1976.

167. C. M. Ho�mann. Geometric and Solid Modeling: An Introduction. Morgan
Kaufmann Publishers, Inc., San Mateo, California, 1989.

168. C. M. Ho�mann. The problems of accuracy and robustness in geometric
computation. Computer, 22(3):31{41, March 1989.

169. C. M. Ho�mann. A dimensionality paradigm for surface interrogations. Com-
puter Aided Geometric Design, 7(6):517{532, November 1990.

170. C. M. Ho�mann. How to construct the skeleton of CSG objects. In A. Bowyer
and J. Davenport, editors, Proceedings of the Fourth IMA Conference, The
Mathematics of Surfaces, University of Bath, UK, September 1990, pages 421{
438, New York, 1994. Oxford University Press.

171. C. M. Ho�mann and G. Vanecek. On alternate solid representations and
their uses. Technical Report CSD-TR-91-019, Computer Sciences Department,
Purdue University, March 1991.

172. D. H. Hoitsma. Surface curvature analysis. In M. J. Wozny et al., editors,
IFIP TC5/WG5.2 Second Workshop on Geometric Modeling, pages 21{38, New
York, 1988. IFIP, North Holland.

173. M. Hosaka. Modeling of Curves and Surfaces in CAD/CAM. Springer-Verlag,
New York, 1991.

174. J. Hoschek. Spline approximation of o�set curves. Computer Aided Geometric
Design, 5(1):33{40, June 1988.

175. J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric De-
sign. A. K. Peters, Wellesley, MA, 1993. Translated by L. L. Schumaker.

176. J. Hoschek and N. Wissel. Optimal approximate conversion of spline curves
and spline approximation of o�set curves. Computer-Aided Design, 20(8):475{
483, October 1988.

177. E. G. Houghton, R. F. Emnett, J. D. Factor, and C. L. Sabharwal. Implemen-
tation of a divide-and-conquer method for intersection of parametric surfaces.
Computer Aided Geometric Design, 2:173{183, 1985.

178. C. Y. Hu, T. Maekawa, N. M. Patrikalakis, and X. Ye. Robust interval algo-
rithm for surface intersections. Computer-Aided Design, 29(9):617{627, Septem-
ber 1997.

179. C. Y. Hu, T. Maekawa, E. C. Sherbrooke, and N. M. Patrikalakis. Robust
interval algorithm for curve intersections. Computer-Aided Design, 28(6/7):495{
506, June/July 1996.

392 References

180. C. Y. Hu, N. M. Patrikalakis, and X. Ye. Robust interval solid modeling: Part
I, Representations. Computer-Aided Design, 28(10):807{817, October 1996.

181. C. Y. Hu, N. M. Patrikalakis, and X. Ye. Robust interval solid modeling:
Part II, Boundary evaluation. Computer-Aided Design, 28(10):819{830, October
1996.

182. IGES/PDES Organization, U.S. Product Data Association, Fairfax, VA.
Digital Representation for Communication of Product De�nition Data, US
PRO/IPO-100, Initial Graphics Exchange Speci�cation (IGES) 5.2, November
1993.

183. C. G. Jensen and D. C. Anderson. A review of numerically controled methods
for �nish-sculptured-surface machining. IEE Transactions, 28:30{39, 1996.

184. R. B. Jerard, R. L. Drysdale, B. Schaudt, K. Hauck, and J. Magewick. Meth-
ods for detecting errors in numerically controlled machining of sculptured sur-
faces. IEEE Computer Graphics and Applications, 9(1):26{39, January 1989.

185. H. T. Jessop and F. C. Harris. Photoelasticity, Principles and Methods. New
York: Dover Publications, 1950.

186. J. P. Jouanolou. Le formalisme du resultant. Advances in Mathematics,
90(2):117{263, 1991.

187. J. T. Kajiya. Ray tracing parametric patches. ACM Computer Graphics,
16(3):245{254, July 1982.

188. K. Kase, A. Makinouchi, T. Nakagawa, H. Suzuki, and F. Kimura. Shape error
evaluation method of free-form surfaces. Computer-Aided Design, 31(8):495{
505, July 1999.

189. E. Kaufmann and R. Klass. Smoothing surfaces using reection lines for
families of splines. Computer-Aided Design, 20(6):312{316, July 1988.

190. R. B. Kearfott. Interval Newton/generalized bisection when there are singu-
larities near roots. Annals of Operations Research, 25:181{196, 1990.

191. R. B. Kearfott. Decomposition of arithmetic expressions to improve the be-
havior of interval iteration for nonlinear systems. Computing, 47:169{191, 1991.

192. N. Kehtarnavaz and R. J. P. de Figueiredo. A 3-D contour segmentation
scheme based on curvature and torsion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 10(5):707{713, September 1988.

193. H. B. Keller. Numerical Methods for Two-Point Boundary Value Problems.
Blaisdell, Waltham, MA, 1968.

194. B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-
Hall, Englewood Cli�s, NJ, 2nd edition, 1988.

195. J. Keyser, T. Culver, D. Manocha, and S. Krishnan. E�cient and exact manip-
ulation of algebraic points and curves. Computer-Aided Design, 32(11):649{662,
September 2000.

196. K. I. Kim and K. Kim. A new machine strategy for sculptured surfaces using
o�set surface. International Journal of Production Research, 33(6):1683{1697,
1995.

197. M.-S. Kim, E.-J. Park, and S.-B. Lim. Approximation of variable-radius o�-
set curves and its application to B�ezier brush-stroke design. Computer-Aided
Design, 25(11):684{698, November 1993.

198. T. Kim and S. E. Sarma. Time-optimal paths covering a surface. In R. Cipolla
and R. Martin, editors, The Mathematics of Surfaces IX, pages 126{143, Uni-
versity of Cambridge, UK., September 2000. London: Springer.

199. R. Kimmel, A. Amir, and A. M. Bruckstein. Finding shortest paths on sur-
faces using level sets propagation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(6):635{640, June 1995.

200. R. Kimmel and A. M. Bruckstein. Shape o�sets via level sets. Computer-Aided
Design, 25(3):154{162, March 1993.

References 393

201. R. Klass. Correction of local surface irregularities using reection lines.
Computer-Aided Design, 12(2):73{76, March 1980.

202. R. Klass. An o�set spline approximation for plane cubic splines. Computer-
Aided Design, 15(4):297{299, September 1983.

203. D. E. Knuth. The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms. Addison-Wesley, Reading, Massachusetts, 1981. 2nd Edition.

204. J. J. Koenderink. Solid Shape. MIT Press, Cambridge, MA, 1990.
205. E. Kreyszig. Di�erential Geometry. University of Toronto Press, Toronto,

1959.
206. E. Kreyszig. Introduction to Di�erential Geometry and Riemannian Geome-

try. University of Toronto Press, 1968.
207. G. A. Kriezis. Algorithms for Rational Spline Surface Intersections. PhD the-

sis, Massachusetts Institute of Technology, Cambridge, Massachusetts, March
1990.

208. G. A. Kriezis and N. M. Patrikalakis. Rational polynomial surface intersec-
tions. In G. A. Gabriele, editor, Proceedings of the 17th ASME Design Automa-
tion Conference, Vol. II, pages 43{53, Miami, September 1991. ASME, New
York, 1991.

209. G. A. Kriezis, N. M. Patrikalakis, and F.-E. Wolter. Topological and
di�erential-equation methods for surface intersections. Computer-Aided Design,
24(1):41{55, January 1992.

210. G. A. Kriezis, P. V. Prakash, and N. M. Patrikalakis. Method for intersecting
algebraic surfaces with rational polynomial patches. Computer-Aided Design,
22(10):645{654, December 1990.

211. S. Krishnan and D. Manocha. E�cient surface intersection algorithm based on
lower-dimensional formulation. ACM Transactions on Graphics, 16(1):74{106,
January 1997.

212. E. Kruppa. Analytische und Konstruktive Di�erentialgeometrie. Springer-
Verlag, Wien, 1957.

213. R. Kunze, F.-E. Wolter, and T. Rausch. Geodesic Voronoi diagrams on para-
metric surfaces. In Proceedings of Computer Graphics International, CGI '97,
June 1997, pages 230{237. IEEE Computer Society Press, 1997.

214. T. Kuragano. FRESDAM system for design of aesthetically pleasing free-form
objects and generation of collision-free tool paths. Computer-Aided Design,
24(11):573{581, November 1992.

215. T. Kuragano, N. Sasaki, and A. Kikuchi. The FRESDAM system for designing
and manufacturing freeform objects. In R. Martin, editor, USA-Japan Cross
Bridge. Flexible Automation Volume 2, pages 931{938, 1988.

216. A. Kurosh. Higher Algebra. Mir Publishers, Moscow, 1980. Translated by G.
Yankovsky.

217. Y. N. Lakshman. On the complexity of computing Gr�obner bases for zero
dimensional ideals. PhD thesis, Rennselaer Polytechnic Institute, Troy, NY,
1992.

218. H. Lamure and D. Michelucci. Solving geometric constraints by homotopy.
IEEE Transactions on Visualization and Computer Graphics, 2:22{34, 1996.

219. J. M. Lane and R. F. Riesenfeld. A theoretical development for the computer
display and generation of piecewise polynomial surfaces. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2(1):35{46, January 1980.

220. J. M. Lane and R. F. Riesenfeld. Bounds on a polynomial. BIT: Nordisk
Tidskrift for Informations-Behandling, 21(1):112{117, 1981.

221. J. Lang and O. R�oschel. Developable (1,n) B�ezier surfaces. Computer Aided
Geometric Design, 9:291{298, 1992.

394 References

222. C. Lartigue, F. Thiebaut, and T. Maekawa. CNC tool path in terms of B-spline
curves. Computer-Aided Design, 33(4):307{319, April 2001.

223. D. Lasser. Self-intersections of parametric surfaces. In Proceedings of Third
International Conference on Engineering Graphics and Descriptive Geometry:
Volume 1, pages 322{331, Vienna, 1988.

224. D. Lasser. Calculating the self-intersections of B�ezier curves. Computers in
Industry, 12:259{268, 1989.

225. D. Lavender, A. Bowyer, J. Davenport, A. Wallis, and J. Woodwark. Voronoi
diagrams of set-theoretic solid models. IEEE Computer Graphics and Applica-
tions, 12(5):69{77, 1992.

226. J. D. Lawrence. A Catalogue of Special Plane Curves. Dover Publications,
Inc., New York, 1972.

227. D. Lazard. Solving zero-dimensional algebraic systems. Journal of Symbolic
Computation, 13(2):117{131, 1992.

228. D. T. Lee. Medial axis transformation of a planar shape. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-4(4):363{369, July 1982.

229. I.-K. Lee, M.-S. Kim, and G. Elber. Planar curve o�set based on circle ap-
proximation. Computer-Aided Design, 28(8):617{630, 1996.

230. K. Lee. Principles of CAD/CAM/CAE Systems. Addison-Wesley, 1999.
231. Y. Lee and T. Chang. CASCAM - an automated system for sculptured surface

cavity machining. Computers in Industry, 16:321{342, 1991.
232. J. Z. Levin. A parametric algorithm for drawing pictures of solid objects com-

posed of quadric surfaces. Communications of the Association for Computing
Machinery, 19(10):555{563, October 1976.

233. J. Z. Levin. Mathematical models for determining the intersections of quadric
surfaces. Computer Vision, Graphics and Image Processing, 11:73{87, 1979.

234. M. M. Lipschutz. Theory and Problems of Di�erential Geometry. Schaum's
Outline Series: McGraw-Hill, 1969.

235. N. G. Lloyd. Degree Theory. Cambridge University Press, Cambridge, 1978.
236. T. Lozano-Perez and M. A. Wesley. An algorithm for planning collision-free

paths amongst polyhedral obstacles. Communications of the ACM, 25(9):560{
570, October 1979.

237. W. L�u. Rational o�sets by reparametrization. Technical report, Zhejiang
University, December 1992.

238. W. L�u. O�set-rational parametric plane curves. Computer Aided Geometric
Design, 12(6):601{616, September 1995.

239. W. L�u. Rational parameterization of quadrics and their o�sets. Computing,
57(2):135{147, 1996.

240. W. L�u and H. Pottmann. Pipe surfaces with rational spine curve are rational.
Computer Aided Geometric Design, 13(7):621{628, October 1996.

241. R. C. Luo, Y. Ma, and D. F. McAllister. Tracing tangential surface-surface
intersections. In C. Ho�mann and J. Rossignac, editors, Proceedings of the
Third ACM Solid Modeling Symposium, pages 255{262, Salt Lake City, Utah,
May 1995. ACM, NY.

242. T. Lyche and K. M�rken. Knot removal for parametric B-spline curves and
surfaces. Computer Aided Geometric Design, 4:217{230, 1987.

243. Y. Ma and Y.-S. Lee. Detection of loops and singularities of surface intersec-
tions. Computer-Aided Design, 30(14):1059{1067, December 1998.

244. Y. Ma and R. C. Luo. Topological method for loop detection of surface inter-
section problems. Computer-Aided Design, 27(11):811{820, November 1995.

245. T. Maekawa. Robust Computational Methods for Shape Interrogation. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1993.

References 395

246. T. Maekawa. Computation of shortest paths on free-form parametric surfaces.
Journal of Mechanical Design, Transactions of the ASME, 118(4):499{508, De-
cember 1996.

247. T. Maekawa. Self-intersections of o�sets of quadratic surfaces: Part I, explicit
surfaces. Engineering with Computers, 14:1{13, 1998.

248. T. Maekawa. Self-intersections of o�sets of quadratic surfaces: Part II, implicit
surfaces. Engineering with Computers, 14:14{22, 1998.

249. T. Maekawa. An overview of o�set curves and surfaces. Computer-Aided
Design, 31(3):165{173, March 1999.

250. T. Maekawa and J. S. Chalfant. Computation of inection lines and geodesics
on developable surfaces. Mathematical Engineering in Industry, 7(2):251{267,
1998.

251. T. Maekawa and J. S. Chalfant. Design and tessellation of B-spline developable
surfaces. Journal of Mechanical Design, Transactions of the ASME, 120(3):453{
461, September 1998.

252. T. Maekawa, W. Cho, and N. M. Patrikalakis. Computation of self-
intersections of o�sets of B�ezier surface patches. Journal of Mechanical Design,
Transactions of the ASME, 119(2):275{283, June 1997.

253. T. Maekawa and N. M. Patrikalakis. Computation of singularities and intersec-
tions of o�sets of planar curves. Computer Aided Geometric Design, 10(5):407{
429, October 1993.

254. T. Maekawa and N. M. Patrikalakis. Interrogation of di�erential geometry
properties for design and manufacture. The Visual Computer, 10(4):216{237,
March 1994.

255. T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu. Analysis and ap-
plications of pipe surfaces. Computer Aided Geometric Design, 15(5):437{458,
May 1998.

256. T. Maekawa, F.-E. Wolter, and N. M. Patrikalakis. Umbilics and lines of curva-
ture for shape interrogation. Computer Aided Geometric Design, 13(2):133{161,
March 1996.

257. D. Manocha. Solving polynomial systems for curve, surface and solid mod-
eling. In J. Rossignac, J. Turner, and G. Allen, editors, Proceedings of 2nd
ACM/IEEE Symposium on Solid Modeling and Applications, pages 169{178,
Montreal, May 1993. New York: ACM Press, 1993.

258. D. Manocha. Numerical methods for solving polynomial equations. In D. A.
Cox and B. Sturmfels, editors, Proceedings of Symposia in Applied Mathemat-
ics Volume 53, Applications of Computational Algebraic Geometry: American
Mathematical Society short course, January 6-7, 1997, San Diego, California,
pages 41{66. American Mathematical Society, 1998.

259. D. Manocha and S. Krishnan. Solving algebraic systems using matrix com-
putations. Sigsam Bulletin: Communications in Computer Algebra, 30(4):4{21,
December 1996.

260. M. M�antyl�a. An Introduction to Solid Modeling. Computer Science Press,
Rockville, Maryland, 1988.

261. K. Marciniak. Geometric modeling for numerically controlled machining. Ox-
ford University Press, New York, 1991.

262. R. Markot and R. Magedson. Procedural method for evaluating the intersec-
tion curves of two parametric surfaces. Computer-Aided Design, 23(6):395{404,
July/August 1991.

263. R. P. Markot and R. L. Magedson. Solutions of tangential surface and curve
intersections. Computer-Aided Design, 21(7):421{429, September 1989.

264. R. R. Martin. Principal patches - a new class of surface patch based on di�er-
ential geometry. In P. J. W. Ten Hagen, editor, Eurographics '83, Proceedings

396 References

of the 4th Annual European Association for Computer Graphics Conference
and Exhibition, Zagreb, Yugoslavia, pages 47{55. Amsterdam: North-Holland,
September 1983.

265. J. H. McKay and S. S. Wang. An inversion formula for two polynomials in
two variables. Journal of Pure and Applied Algebra, 40(3):245{257, May 1986.

266. Z. Michalewicz. Genetic algorithms + data structures = evolution programs.
Springer-Verlag, Berlin, 1992.

267. J. R. Miller and R. N. Goldman. Geometric algorithms for detecting and
calculating all conic sections in the intersection of any two natural quadratic
surfaces. Graphical Models and Image Processing, 57(1):55{66, January 1995.

268. J. S. B. Mitchell. An algorithmic approach to some problems in terrain navi-
gation. Arti�cial Intelligence, 37:171{201, 1988.

269. K. M�rken. Some identities for products and degree raising of splines. Con-
structive Approximation, 7:195{208, 1991.

270. G. Monge. Application de l'Analyse �a la G�eom�etrie. Bachelier, Paris, 1850.
271. U. Montanari. Continuous skeletons from digitized images. Journal of the

Association for Computing Machinery, 16(4):534{549, October 1969.
272. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cli�s, NJ, 1966.
273. R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadel-

phia, 1979.
274. H. P. Moreton. Simpli�ed curve and surface interrogation via mathemat-

ical packages and graphics libraries and hardware. Computer-Aided Design,
27(7):523{543, July 1995.

275. M. E. Mortenson. Geometric Modeling. John Wiley and Sons, New York,
1985.

276. S. P. Mudur and P. A. Koparkar. Interval methods for processing geometric
objects. IEEE Computer Graphics and Applications, 4(2):7{17, February 1984.

277. G. M�ullenheim. On determining start points for a surface/surface intersection
algorithm. Computer Aided Geometric Design, 8:401{408, 1991.

278. F. C. Munchmeyer. On surface imperfections. In R. Martin, editor, Mathe-
matics of Surfaces II, pages 459{474. Oxford University Press, 1987.

279. F. C. Munchmeyer. Shape interrogation: A case study. In G. Farin, editor,
Geometric Modeling, pages 291{301. SIAM, Philadelphia, PA, 1987.

280. F. C. Munchmeyer and R. Haw. Applications of di�erential geometry to
ship design. In D. F. Rogers, B. C. Nehring, and C. Kuo, editors, Proceedings
of Computer Applications in the Automation of Shipyard Operation and Ship
Design IV, volume 9, pages 183{196, Annapolis, Maryland, USA, June 1982.

281. L. R. Nackman. Curvature relations in three-dimensional symmetric axes.
Computer Graphics and Image Processing, 20:43{57, 1982.

282. L. R. Nackman and S. M. Pizer. Three-dimensional shape description using
the symmetric axis transform I: Theory. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-7(2):187{202, March 1985.

283. A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univer-
sity Press, Cambridge, 1990.

284. M. Niizeki and F. Yamaguchi. Projectively invariant intersection detections
for solid modeling. ACM Transactions on Graphics, 13(3):277{299, July 1994.

285. T. Nishita, T. W. Sederberg, and M. Kakimoto. Ray tracing trimmed rational
surface patches. ACM Computer Graphics, 24(4):337{345, August 1990.

286. M. F. Nittel. Numerically controlled machining of propeller blades. Marine
Technology, 26(3):202{209, July 1989.

287. M. Noro, T. Takeshima, and K. Yokoyama. Solution of systems of algebraic
equations and linear maps on residue class ring. Journal of Symbolic Compu-
tation, 14:399{417, 1992.

References 397

288. H. Nowacki, J. Michalski, B. Oleksiewicz, M. I. G. Bloor, C. W. Dekaski, and
M. J. Wilson. In H. Nowacki, M. I. G. Bloor, and B. Oleksiewicz, editors,
Computational Geometry for Ships. World Scienti�c, 1995.

289. A. W. Nutbourne and R. R. Martin. Di�erenential Geometry Applied to Curve
and Surface Design Vol. 1: Foundations. Ellis Horwood, Chichester, UK, 1988.

290. N. O. Olesten. Numerical Control. Wiley-Interscience, 1970.
291. J. O'Rourke. Computational Geometry in C. Cambridge University Press,

Cambridge, UK, 1994.
292. J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations

in Several Variables. Academic Press, New York, 1970.
293. N. M. Patrikalakis. Shape interrogation. In C. Chryssostomidis, editor, Pro-

ceedings of the 16th Annual MIT Sea Grant College Program Lecture and Sem-
inar, Automation in the Design and Manufacture of Large Marine Systems,
pages 83{104, Cambridge, MA, October 1988. New York: Hemisphere Publish-
ing, 1990.

294. N. M. Patrikalakis. Surface-to-surface intersections. IEEE Computer Graphics
and Applications, 13(1):89{95, January 1993.

295. N. M. Patrikalakis and L. Bardis. O�sets of curves on rational B-spline sur-
faces. Engineering with Computers, 5:39{46, 1989.

296. N. M. Patrikalakis and L. Bardis. Localization of rational B-spline surfaces.
Engineering with Computers, 7(4):237{252, 1991.

297. N. M. Patrikalakis and H. N. Gursoy. Shape interrogation by medial axis
transform. In B. Ravani, editor, Proceedings of the 16th ASME Design Au-
tomation Conference: Advances in Design Automation, Computer Aided and
Computational Design, Vol. I, pages 77{88, Chicago, IL, September 1990. New
York: ASME.

298. N. M. Patrikalakis and G. A. Kriezis. Representation of piecewise continuous
algebraic surfaces in terms of B-splines. The Visual Computer, 5(6):360{374,
1989.

299. N. M. Patrikalakis and T. Maekawa. Intersection problems. In G. Farin,
J. Hoschek, M. S. Kim, and D. Abma, editors, The Handbook of Computer
Aided Design. Elsevier, 2001.

300. N. M. Patrikalakis and P. V. Prakash. Free-form plate modeling using o�set
surfaces. Journal of OMAE, Transactions of the ASME., 110(3):287{294, 1988.

301. N. M. Patrikalakis and P. V. Prakash. Surface intersections for geometric mod-
eling. Journal of Mechanical Design, Transactions of the ASME, 112(1):100{
107, March 1990.

302. N. M. Patrikalakis, T. Sakkalis, and G. Shen. Boundary representation models:
Validity and recti�cation. In R. Cipolla and R. Martin, editors, The Mathemat-
ics of Surfaces IX, pages 389{409, University of Cambridge, UK., September
2000. London: Springer.

303. J. Pegna and D. J. Wilde. Spherical and circular blending of functional sur-
faces. Journal of OMAE, Transactions of the ASME, 112(2):134{142, May
1990.

304. J. Pegna and F. E. Wolter. Geometrical criteria to guarantee curvature con-
tinuity of blend surfaces. Journal of Mechanical Design, Transactions of the
ASME, 114(1):201{210, March 1992.

305. J. Pegna and F.-E. Wolter. Surface curve design by orthogonal projection
of space curves onto free-form surfaces. Journal of Mechanical Design, ASME
Transactions, 118(1):45{52, March 1996.

306. H. Persson. NC machining of arbitrarily shaped pockets. Computer-Aided
Design, 10(3):169{174, May 1978.

398 References

307. M. Peternell and H. Pottmann. A Laguerre geometric approach to rational
o�sets. Computer Aided Geometric Design, 15(3):223{249, March 1998.

308. T. J. Peters, N. F. Stewart, D. R. Ferguson, and P. S. Fussell. Algorithmic
tolerances and semantics in data exchange. In Computational Geometry '97,
Nice, France, 1997.

309. S. Petitjean. Algebraic geometry and computer vision: Polynomial sys-
tems, real and complex roots. Journal of Mathematical Imaging and Vision,
10(3):191{220, 1999.

310. F. Pettinati. Private Communication, October 10, 1997.
311. B. Pham. O�set approximation of uniform B-splines. Computer-Aided Design,

20(8):471{474, October 1988.
312. B. Pham. O�set curves and surfaces: a brief survey. Computer-Aided Design,

24(4):223{229, April 1992.
313. L. A. Piegl and W. Tiller. The NURBS Book. Springer, New York, 1995.
314. L. A. Piegl and W. Tiller. Symbolic operators for NURBS. Computer-Aided

Design, 29(5):361{368, May 1997.
315. L. A. Piegl and W. Tiller. Computing o�sets of NURBS curves and surfaces.

Computer-Aided Design, 31(2):147{156, February 1999.
316. K. G. Pigounakis and P. D. Kaklis. Fairing of 2D B-splines under design

constraints. Mathematical Engineering in Industry, 7(2):165{178, 1998.
317. K. G. Pigounakis, N. Sapidis, and P. D. Kaklis. Fairing spatial B-spline curves.

Journal of Ship Research, 40(4):351{367, 1996.
318. T. Poeschl. Detecting surface irregularities using isophotes. Computer Aided

Geometric Design, 1:163{168, 1984.
319. I. R. Porteous. Ridges and umbilics of surfaces. In R. Martin, editor, The

Mathematics of Surfaces II, pages 447{458. Oxford University Press, 1987.
320. I. R. Porteous. The circles of a surface. In R. Martin, editor, The Mathematics

of Surfaces III, pages 135{143. Oxford University Press, 1988.
321. I. R. Porteous. Geometric Di�erentiation for the intelligence of curves and

surfaces. Cambridge University Press, Cambridge, 1994.
322. T. Poston and I. Stewart. Catastrophe Theory and its Applications. Pitman,

San Francisco, CA, 1978.
323. H. Pottmann. Rational curves and surfaces with rational o�sets. Computer

Aided Geometric Design, 12(2):175{192, March 1995.
324. H. Pottmann. General o�set surfaces. Neural, Parallel and Scienti�c Compu-

tations, 5:55{80, 1997.
325. H. Pottmann and G. Farin. Developable rational B�ezier and B-spline surfaces.

Computer Aided Geometric Design, 12(5):513{531, 1995.
326. H. Pottmann, W. L�u, and B. Ravani. Rational ruled surfaces and their o�sets.

Graphical Models and Image Processing, 58(6):544{552, November 1996.
327. H. Pottmann and K. Opitz. Curvature analysis and visualization for functions

de�ned on Euclidean spaces or surfaces. Computer Aided Geometric Design,
11:655{674, 1994.

328. H. Pottmann and J. Wallner. Approximation algorithms for developable sur-
faces. Computer Aided Geometric Design, 16(6):539{556, June 1999.

329. H. Pottmann and J. Wallner. Computational Line Geometry. Springer-Verlag,
Berlin, 2001.

330. H. Pottmann, J. Wallner, G. Glaeser, and B. Ravani. Geometric criteria
for gouge-free three-axis milling of sculptured surfaces. Journal of Mechanical
Design, Transactions of the ASME., 31(1):17{32, 1999.

331. M. J. Pratt. Cyclides in computer aided geometric design. Computer Aided
Geometric Design, 7(1 - 4):221{242, 1990.

References 399

332. M. J. Pratt and A. D. Geisow. Surface/surface intersection problems. In J. A.
Gregory, editor, The Mathematics of Surfaces, pages 117{142. Clarendon Press,
1986.

333. F. P. Preparata. The medial axis of a simple polygon. In G. Goos and J. Hart-
manis, editors, Lecture Notes in Computer Science: Mathematical Foundations
of Computer Science, pages 443{450. Springer-Verlag, 1977.

334. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985.

335. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, 1988.

336. A. Preusser. Computing area �lling contours for surface de�ned by piecewise
polynomials. Computer Aided Geometric Design, 3:267{279, 1986.

337. M. A. Price, C. G. Armstrong, and M. A. Sabin. Hexahedral mesh generation
by medial surface subdivision: I. Solids with convex edges. International Journal
of Numerical Methods in Engineering, 38(19):3335{3359, 1995.

338. T. Rando and J. A. Roulier. Knot-removal surface fairing using search strate-
gies. Computer-Aided Design, 23(7):492{497, September 1991.

339. T. Rausch, F.-E. Wolter, and O. Sniehotta. Computation of medial curves on
surfaces. In T. Goodman and R. Martin, editors, The Mathematics of Surfaces
VII, pages 43{68. Information Geometers, 1997.

340. J. M. Reddy and G. M. Turkiyyah. Computation of 3d skeletons using a gen-
eralized Delaunay triangulation technique. Computer{Aided Design, 27(9):677{
694, September 1995.

341. A. A. G. Requicha. Representations for rigid solids: Theory, methods, and
systems. Computing Surveys, 12(4), December 1990.

342. A. A. G. Requicha and H. B. Voelcker. Constructive Solid Geometry. Tech-
nical Report TM 25, Production Automation Project, University of Rochester,
Rochester, NY, November 1977.

343. A. A.G. Requicha and J. R. Rossignac. Solid modeling and beyond. IEEE
Computer Graphics and Applications, 12(5):31{44, September 1992.

344. R. F. Riesenfeld. Applications of B-spline Approximation to Geometric Prob-
lems of Computer-Aided Design. PhD thesis, Syracuse University, Syracuse,
New York, 1973.

345. J. J. Risler. Mathematical Methods for CAD. Cambridge University Press,
Cambridge, UK, 1992.

346. D. J. Robinson and C. G. Armstrong. Geodesic paths for general surfaces
by solid modellers. In G. Mullineux, editor, The Mathematics of Surfaces VI,
Proceedings of the 6th IMA Conference on Mathematics of Surfaces VI, pages
103{117, Oxford, UK, 1996. Clarendon Press.

347. D. F. Rogers and J. A. Adams. Mathematical Elements for Computer Graph-
ics. McGraw-Hill Inc., 1990. Second Edition.

348. R. F. Rohmfeld. IGB-o�set curves - loop removal by scanning of interval
sequences. Computer Aided Geometric Design, 15(4):339{375, April 1998.

349. A. Rosenfeld. Axial representations of shape. Computer Vision, Graphics and
Image Processing, 33:156{173, 1986.

350. J. R. Rossignac. Blending and O�seting Solid Models. PhD thesis, University
of Rochester, July 1985. Production Automation Project Technical Memoran-
dum No. 54.

351. J. R. Rossignac and A. A. G. Requicha. Piecewise-circular curves for geometric
modeling. IBM Journal of Research and Development, 31(3):296{313, 1987.

352. J. R. Rossignac and A. G. Requicha. O�setting operations in solid modelling.
Computer Aided Geometric Design, 3(2):129{148, 1986.

400 References

353. M. Sabin. Subdivision surfaces. In G. Farin, J. Hoschek, M. S. Kim, and
D. Abma, editors, The Handbook of Computer Aided Design. Elsevier, 2001.

354. M. A. Sabin. Recursive division interrogation of o�set surfaces. In J. D.
Warren, editor, Curves and Surfaces in Computer Vision and Graphics III,
Proceedings of SPIE, volume 1830, pages 152{161, Boston, MA, November 1992.
SPIE.

355. T. Sakkalis. On the zeros of a polynomial vector �eld. Research Report
RC-13303, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1987.

356. T. Sakkalis. The Euclidean algorithm and the degree of the Gauss map. SIAM
Journal on Computing, 19(3):538{543, June 1990.

357. T. Sakkalis. The topological con�guration of a real algebraic curve. Bulletin
of the Australian Mathematical Society, 43:37{50, 1991.

358. T. Sakkalis and C. Charitos. Approximating curves via alpha shapes. Graph-
ical Models and Image Processing, 61(3):165{176, 1999.

359. T. Sakkalis, G. Shen, and N. M. Patrikalakis. Topological and geometric
properties of interval solid models. Graphical Models, 63, 2001. In press.

360. T. Sakuta, M. Kawai, and Y. Amano. Development of an NC machining
system for stamping dies by o�set surface method. In Autofact 87 Conference
Proceedings, pages 2.13{2.27, Dearborn, Michigan, 1987. SME.

361. G. Salmon. A Treatise on the Analytic Geometry of Three Dimensions, Vol.
1. Chelsea, New York, seventh edition, 1927.

362. N. M. Samuel, A. A. G. Requicha, and S. A. Elkind. Methodology and results
of an industrial part survey. Technical Report Tech. Momo. No. 21, Production
Automation Project, University of Rochester, Rochester, NY, 1976.

363. P. T. Sander and S. W. Zucker. Singularities of principal direction �elds from
3-D images. In IEEE Second International Conference on Computer Vision,
Tampa Florida, pages 666{670, 1988.

364. N. Sapidis and G. Farin. An automatic fairing algorithm for B-spline curves.
Computer-Aided Design, 22:2:121{129, 1990.

365. R. Sarma and D. Dutta. The geometry and generation of NC tool paths.
Journal of Mechanical Design, Transactions of the ASME, 119:253{258, June
1997.

366. R. F. Sarraga. Algebraic methods for intersections of quadric surfaces in
GMSOLID. Computer Vision, Graphics and Image Processing, 22(2):222{238,
May 1983.

367. I. Schoenberg. Contributions to the problem of approximation of equidistant
data by analytic functions. Quarterly of Applied Mathematics, 4:45{99, 1946.

368. L. L. Schumaker. Spline Functions: Basic Theory. Pure and Applied Math-
ematics: a Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley,
New York, 1981.

369. G. L. Scott, S. C. Turner, and A. Zisserman. Using a mixed wave/di�usion
process to elicit the symmetry set. Image and Vision Computing, 7:63{70, 1989.

370. T. W. Sederberg. Implicit and Parametric Curves and Surfaces for Computer
Aided Geometric Design. PhD thesis, Purdue University, August 1983.

371. T. W. Sederberg. Planar piecewise algebraic curves. Computer Aided Geo-
metric Design, 1:241{255, 1984.

372. T. W. Sederberg. Piecewise algebraic surface patches. Computer Aided Geo-
metric Design, 2:53{59, 1985.

373. T. W. Sederberg, D. C. Anderson, and R. N. Goldman. Implicit representa-
tion of parametric curves and surfaces. Computer Vision, Graphics and Image
Processing, 28(1):72{84, October 1984.

References 401

374. T. W. Sederberg and D. B. Buehler. O�sets of polynomial B�ezier curves:
Hermite approximation with error bounds. In T. Lyche and L. L. Schumaker,
editors,Mathematical Methods in Computer Aided Geometric Design, volume II,
pages 549{558. Academic Press, 1992.

375. T. W. Sederberg, H. N. Christiansen, and S. Katz. Improved test for closed
loops in surface intersections. Computer-Aided Design, 21(8):505{508, October
1989.

376. T. W. Sederberg and R. T. Farouki. Approximation by interval B�ezier curves.
IEEE Computer Graphics and Applications, 12(5):87{95, September 1992.

377. T. W. Sederberg and R. N. Goldman. Algebraic geometry for computer-aided
geometric design. IEEE Computer Graphics and Applications, 6(6):52{59, June
1986.

378. T. W. Sederberg and R. J. Meyers. Loop detection in surface patch intersec-
tions. Computer Aided Geometric Design, 5(2):161{171, July 1988.

379. T. W. Sederberg and T. Saito. Rational-ruled surfaces: implicitization and
section curves. Graphical Models and Image Processing, 57(4):334{342, 1995.

380. T. W. Sederberg and J. Zheng. Algebraic methods for CAGD. In G. Farin,
J. Hoschek, M. S. Kim, and D. Abma, editors, The Handbook of Computer Aided
Design. Elsevier, 2001.

381. T. W. Sederberg and A. K. Zundel. Pyramids that bound surface patches.
Graphical Models and Image Processing, 58(1):75{81, January 1996.

382. U. Shani and D. H. Ballard. Splines as embeddings for generalized cylinders.
Computer Vision, Graphics and Image Processing, 27:129{156, 1984.

383. D. J. Sheehy, C. G. Armstrong, and D. J. Robinson. Computing the medial
surface of a solid from a domain Delaunay triangulation. In C. Ho�mann and
J. Rossignac, editors, Proceedings of the Third Symposium on Solid Modeling
and Applications, May 1995, Salt Lake City, Utah, pages 201{212, New York,
1995. ACM.

384. D. J. Sheehy, C. G. Armstrong, and D. J. Robinson. Numerical computation
of medial surface vertices. In G. Mullineux, editor, The Mathematics of Surfaces
VI, Oxford, UK, 1996. IMA, Oxford University Press.

385. G. Shen. Analysis of Boundary Representation Model Recti�cation. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, February 2000.

386. G. Shen and N. M. Patrikalakis. Numerical and geometric properties of in-
terval B-splines. International Journal of Shape Modeling, 4(1 and 2):35{62,
March and June 1998.

387. G. Shen, T. Sakkalis, and N. M. Patrikalakis. Manifold boundary represen-
tation model recti�cation (La recti�cation des mod�eles des variet�es b-rep). In
C. Mascle, C. Fortin, and J. Pegna, editors, Proceedings of the 3rd International
Conference on Integrated Design and Manufacturing in Mechanical Engineering,
page 199 and CDROM, Montreal, Canada, May 2000. Presses internationales
Polytechnique.

388. G. Shen, T. Sakkalis, and N. M. Patrikalakis. Boundary representation model
recti�cation. Graphical Models, 63, 2001. In press. Also in: Proceedings of the
Sixth ACM Solid Modeling Symposium. D. Anderson and K. Lee, editors. Ann
Arbor, Michigan, June 2001. NY: ACM, 2001.

389. C.-K. Shene and J. K. Johnstone. On the lower degree intersections of two
natural quadrics. ACM Transactions on Graphics, 13(4):400{424, October 1994.

390. E. C. Sherbrooke. 3-D Shape Interrogation by Medial Axis Transform. PhD
thesis, Massachusetts Institute of Technology, Cambridge, MA, April 1995.

391. E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutions of
nonlinear polynomial systems. Computer Aided Geometric Design, 10(5):379{
405, October 1993.

402 References

392. E. C. Sherbrooke, N. M. Patrikalakis, and E. Brisson. Computation of medial
axis transforms of 3-D polyhedra. In C. Ho�mann and J. Rossignac, editors,
Proceedings of the Third Symposium on Solid Modeling and Applications, May
1995, Salt Lake City, Utah, pages 187{199, New York, 1995. ACM.

393. E. C. Sherbrooke, N. M. Patrikalakis, and E. Brisson. An algorithm for the
medial axis transform of 3-D polyhedral solids. IEEE Transactions on Visual-
ization and Computer Graphics, 2(1):44{61, March 1996.

394. E. C. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Di�erential and
topological properties of medial axis transforms. Graphical Models and Image
Processing, 58(6):574{592, November 1996.

395. P. Sinha, E. Klassen, and K. K. Wang. Exploiting topological and geometric
properties for selective subdivision. In Proceedings of the ACM Symposium on
Computational Geometry, pages 39{45. New York: ACM, 1985.

396. S. S. Sinha and P. J. Besl. Principal patches: A viewpoint-invariant surface
description. In IEEE International Robotics and Automation, Cincinnati, Ohio,
pages 226{231, May 1990.

397. J. Sneyd and C. S. Peskin. Computation of geodesic trajectories on tubu-
lar surfaces. SIAM Journal of Scienti�c Statistical Computing, 11(2):230{241,
March 1990.

398. J. M. Snyder. Generative Modeling for Computer Graphics and CAD : Sym-
bolic Shape Design Using Interval Analysis. Academic Press, Boston, MA, 1992.

399. J. M. Snyder. Interval analysis for computer graphics. ACM Computer Graph-
ics, 26(2):121{130, July 1992.

400. J. Sone and H. Chiyokura. Surface highlight control using quartic blending
NURBS boundary Gregory patch. Journal of Information Processing Society
of Japan, 37(12):2212{2222, 1996. In Japanese.

401. M. R. Spencer. Polynomial Real Root Finding in Bernstein Form. PhD thesis,
Department of Civil Engineering, Brigham Young University, August 1994.

402. M. Spivak. Calculus. New York: W. A. Benjamin, Inc., 1967.
403. Y. L. Srinivas and D. Dutta. Cyclides in geometric modeling: computational

tools for an algorithmic infrastructure. Journal of Mechanical Design, Trans-
actions of the ASME, 117(3):363{373, September 1995.

404. V. Srinivasan and L. R. Nackman. Voronoi diagram for multiply connect
polygonal domains, I: Algorithm. IBM Journal of Research and Development,
31(3):361{372, May 1987.

405. V. Srinivasan, L. R. Nackman, J.-M. Tang, and S. N. Meshkat. Automatic
mesh generation using the symmetric axis transformation of polygonal domains.
Proceedings of the IEEE, Special Issue on Computational Geometry, 80(9):1485{
1501, 1992.

406. S. Stifter. A Medley of Solutions to the Robot Collision Problem in Two and
Three Dimensions. PhD thesis, Johannes Kepler Universit�at, Linz, Austria,
1989.

407. S. Stifter. An axiomatic approach to Voronoi-diagrams in 3D. Journal of
Computers and System Sciences, 43(2):361{379, October 1991.

408. P. Stiller. Sparse resultants. Technical Report ISC-96-01-MATH, Texas A &
M University, Institute for Scienti�c Computation, 1996.

409. G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich,
San Diego, CA, 1988.

410. D. J. Struik. Outline of a history of di�erential geometry. Isis, 19:92{120,
1933.

411. D. J. Struik. Lectures on Classical Di�erential Geometry. Addison-Wesley,
Cambridge, MA, 1950.

References 403

412. B. Sturmfels. Introduction to resultants. In D. A. Cox and B. Sturmfels,
editors, Proceedings of Symposia in Applied Mathematics Volume 53, Applica-
tions of Computational Algebraic Geometry: American Mathematical Society
short course, January 6-7, 1997, San Diego, California, pages 25{39. American
Mathematical Society, 1998.

413. B. Sturmfels and A. Zelevinsky. Multigraded resultants of Sylvester type.
Journal of Algebra, 163(1):115{127, January 1994.

414. A. Sudhalkar, L. G�urs�oz, and F. Prinz. Continuous skeletons of discrete ob-
jects. In J. Rossignac, J. Turner, and G. Allen, editors, Proceedings of the Sec-
ond Symposium on Solid Modeling and Applications, Montreal, Canada, pages
85{94, New York, 1993. ACM.

415. K. Sugihara. Approximation of generalized Voronoi diagrams by ordinary
Voronoi diagrams. Computer Vision, Graphics and Image Processing: Graphical
Models and Image Processing, 55(6):522{531, November 1993.

416. K. Suresh and D. C. H. Yang. Constant scallop-height machining of free-
form surfaces. Journal of Engineering for Industry, Transactions of the ASME,
116:253{259, May 1994.

417. T. K. H. Tam and C. G. Armstrong. 2d �nite element mesh generation by
medial axis subdivision. Advances in Engineering Software and Workstations,
13(5/6):313{324, September/November 1991.

418. H. Theisel and G. Farin. The curvature of characteristic surfaces. IEEE
Computer Graphics and Applications, 17(6):88{96, November/December 1997.

419. W. Tiller. Knot-removal algorithms for NURBS curves and surfaces.
Computer-Aided Design, 24(8):445{453, August 1992.

420. W. Tiller and E. G. Hanson. O�sets of two-dimensional pro�les. IEEE Com-
puter Graphics and Applications, 4(9):36{46, September 1984.

421. D. Toth. On ray tracing parametric surfaces. ACM Computer Graphics,
19(3):171{179, July 1985.

422. S. T. Tuohy. A visual tool for demonstrating surface curvature. Computer
Applications in Engineering Education, 5(1):21{27, 1997.

423. S. T. Tuohy, T. Maekawa, and N. M. Patrikalakis. Interrogation of geophysical
maps with uncertainty for AUV micro-navigation. In Engineering in Harmony
with the Ocean, Proceedings of Oceans '93, Victoria, Canada. IEEE Oceanic
Engineering Society, October 1993.

424. S. T. Tuohy, T. Maekawa, G. Shen, and N. M. Patrikalakis. Approximation
of measured data with interval B-splines. Computer-Aided Design, 29(11):791{
799, November 1997.

425. S. T. Tuohy and N. M. Patrikalakis. Representation of geophysical maps with
uncertainty. In N. M. Thalmann and D. Thalmann, editors, Communicating
with Virtual Worlds, Proceedings of CG International '93, Lausanne, Switzer-
land, pages 179{192. Springer, Tokyo, June 1993.

426. S. T. Tuohy, J. W. Yoon, and N. M. Patrikalakis. Reliable interrogation of 3-D
non-linear geophysical databases. In J. A. Vince and R. A. Earnshaw, editors,
Computer Graphics: Developments in Virtual Environments, Proceedings of CG
International '95, Leeds, UK, June 1995, pages 327{341. London, Academic
Press, 1995.

427. G. M. Turkiyyah, D. W. Storti, M. Ganter, H. Chen, and M. Vimawala. An
accelerated triangulation method for computing the skeletons of free-form solid
models. Computer-Aided Design, 29(1):5{19, January 1997.

428. U. S. Product Data Association. ANS US PRO/IPO-200-042-1994: Part 42
{ Integrated Geometric Resources: Geometric and Topological Representation,
1994.

404 References

429. M. E. Va�adou and N. M. Patrikalakis. Interrogation of o�sets of polyno-
mial surface patches. In F. H. Post and W. Barth, editors, Eurographics '91,
Proceedings of the 12th Annual European Association for Computer Graphics
Conference and Exhibition, pages 247{259 and 538, Vienna, Austria, September
1991. Amsterdam: North-Holland.

430. P. J. Vermeer. Medial Axis Transform to Boundary Representation Conver-
sion. PhD thesis, Purdue University, May 1994.

431. A. Verroust and F. Lazarus. Extracting skeletal curves from 3D scattered
data. The Visual Computer, 16(1):15{25, 2000.

432. K. J. Versprille. Computer Aided Design Applications of the Rational B-Spline
Approximation Form. PhD thesis, Syracuse University, Syracuse, New York,
February 1975.

433. H. B. Voelcker et al. An introduction to PADL: Characteristics, status, and ra-
tionale. Technical Report Tech. Momo. No. 22, Production Automation Project,
University of Rochester, Rochester, NY, December 1974.

434. M. N. Vrahatis. CHABIS: A mathematical software package for locating and
evaluating roots of systems of nonlinear equations. ACM Transactions on Math-
ematical Software, 14(4):330{336, December 1988.

435. M. N. Vrahatis. Solving systems of nonlinear equations using the nonzero
value of the topological degree. ACM Transactions on Mathematical Software,
14(4):312{329, December 1988.

436. R. J. Walker. Algebraic Curves. Princeton University Press, Princeton, New
Jersey, 1950.

437. L. Wang, M. C. Leu, and D. Blackmore. Generating sweep solids for NC
veri�cation using the SEDE method. In Proceedings of the Fourth Symposium
on Solid Modeling and Applications, pages 364{375, Atlanta, Georgia, May 14-
16 1997.

438. W. P. Wang. Integration of solid geometric modeling for computerized process
planning. In C. R. Liu, T. C. Chang, and R. Komanduri, editors, Computer-
Aided/Intelligent Process Planning, ASME, Winter Annual Meeting, pages 177{
187, 1985.

439. Y. Wang. Intersection of o�sets of parametric surfaces. Computer Aided
Geometric Design, 13(5):453{465, 1996.

440. C. E. Weatherburn. Di�erential Geometry of Three Dimensions, Vol. 1. The
University Press, Cambridge, 1939.

441. H. S. Wilf. A global bisection algorithm for computing the zeros of polynomials
in the complex plane. Journal of the Association for Computing Machinery,
25(3):415{420, July 1978.

442. I. Wilf and Y. Manor. Quadric-surface intersection curves: shape and struc-
ture. Computer-Aided Design, 25(10):633{643, October 1993.

443. T. J. Willmore. An Introduction to Di�erential Geometry. Clarendon Press,
Oxford, 1959.

444. F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-Verlag,
New York, 1996.

445. S. Wolfram. The Mathematica Book. Wolfram Media, Champaign, IL, 3rd
edition, 1996.

446. F.-E. Wolter. Distance function and cut loci on a complete Riemannian man-
ifold. Archiv der Mathematik, 32:92{96, 1979.

447. F.-E. Wolter. Interior metric, shortest paths and loops in riemannian mani-
folds with not necessarily smooth boundary. Master's thesis, Free University of
Berlin, Berlin, Germany, 1979.

References 405

448. F.-E. Wolter. Cut Loci in Bordered and Unbordered Riemannian Manifolds.
PhD thesis, Technical University of Berlin, Department of Mathematics, De-
cember 1985.

449. F.-E. Wolter. Cut locus and medial axis in global shape interrogation and
representation. Memorandum 92-2, Cambridge MA: MIT Ocean Engineering
Design Laboratory, January 1992.

450. F.-E. Wolter and K.-I. Friese. Local and global geometric methods for analysis
interrogation, reconstruction, modi�cation and design of shape. In Computer
Graphics International, GCI 2000. (Invited paper), pages 137{151, Geneva,
Switzerland, June 2000. IEEE Computer Society Press. Los Alamitos, CA:
IEEE, 2000.

451. F. E. Wolter and S. T. Tuohy. Approximation of high degree and procedural
curves. Engineering with Computers, 8(2):61{80, 1992.

452. F.-E. Wolter and S. T. Tuohy. Curvature computations for degenerate surface
patches. Computer Aided Geometric Design, 9(4):241{270, September 1992.

453. S.-T. Wu and L. N. Andrade. Marching along a regular surface/surface inter-
section with circular steps. Computer Aided Geometric Design, 16(4):249{268,
May 1999.

454. F. Yamaguchi. Curves and Surfaces in Computer Aided Geometric Design.
Springer-Verlag, NY, 1988.

455. F. Yamaguchi. A shift of playground for geometric processing from Euclidean
to homogeneous. The Visual Computer, 14(7):315{327, 1998.

456. Y. Yamaguchi. Di�erential properties at singular points of parametric sur-
faces. In P. Brunet, C. M. Ho�mann, and D. Roller, editors, CAD-Tools and
Algorithms for Product Design, pages 211{221. Springer, 2000.

457. X. Ye and T. Maekawa. Di�erential geometry of intersection curves of two
surfaces. Computer Aided Geometric Design, 16(8):767{788, September 1999.

458. W. I. Zangwill and C. B. Garcia. Pathways to solutions, �xed points, and
equilibria. Prentice-Hall, Englewood Cli�s, NJ, 1981.

459. C. Zhang and F. Cheng. Removing local irregularities of NURBS surfaces
by modifying highlight lines. Computer-Aided Design, 30(12):923{930, October
1998.

460. J. Zhou, E. C. Sherbrooke, and N. M. Patrikalakis. Computation of stationary
points of distance functions. Engineering with Computers, 9(4):231{246, Winter
1993.

406 References

Index

absolute curvature, 203
a�ne parameter transformation, 79
algebraic curve, 117
algebraic distance, 118
algebraic numbers, 116
arbitrary speed, 40
arc length, 35
arc length parametrization, 37
arti�cial singularity, 51
auxiliary variable method, 89

B-spline basis function, 20
{ derivative, 21
B-spline curve
{ algorithms, 24
{ derivative, 22
{ properties, 21
B-spline surface, 29
B�ezier curve
{ algorithms, 13
{ derivative, 12
{ properties, 12
B�ezier point, 12
B�ezier surface, 18
basis conversion
{ B-spline to B�ezier, 24
{ monomial to Bernstein
{ { one variable, 79
{ { two variables, 81
Bernstein polynomial
{ derivative, 7
{ arithmetic operation, 7
{ properties, 7
binormal vector, 43
Boehm's algorithm, 26
border point, 144
Boundary Representation, 111
boundary value problem
{ �nite di�erence method, 276
{ relaxation method, 276
{ shooting method, 275
bounding box, 120

bounding wedge, 133

calculus of variations, 271
Christo�el symbols, 270
clamped curves, 22
clamped knots, 22
class of function, 1, 4
collinear normal point, 151, 186
condition number of root, 10
conic sections, 1
conjugate point, 268
Constructive Solid Geometry, 111
continuity
{ geometric, 15
{ parametric, 17
contouring, 199, 227
control net, 18
control polygon, 12
convex hull, 13
convex hull property, 12, 23
curvature, 40
{ tangential intersection point, 175
{ transversal intersection curve, 169
curvature map, 204
curvature plots, 202
curvature vector, 40
cusp, 217
cyclide, 234, 295

Darboux vector, 211
de Boor algorithm, 24
de Boor points, 21
de Casteljau algorithm, 13, 87
degenerate patch, 19
denormalized number, 96
developable surface, 197, 259, 353
development, 291
directrix, 258
distance function, 183
{ stationary points, 187
Dupin's cyclide patch, 234
Dupin's indicatrix, 70, 174

408 Index

ellipsoid, 4
elliptic cone, 4, 51
elliptic cylinder, 4
elliptic paraboloid, 4
{ umbilic, 221
elliptic point, 59
end point geometric property, 12, 21
essential singularity, 51
Euler's equation, 272
Euler's theorem, 69, 261
evolute, 205
explicit curve, 2
explicit quadratic surface, 219
exponent, 90

�rst fundamental form, 53
{ coe�cients, 53
at point, 59, 61
oating point arithmetic, 90, 95
focal curve, 205
focal surface, 205
Folium of Descartes, 2
Frenet-Serret formulae, 47, 164, 309

Gaussian curvature, 61, 64
{ ellipsoid, 68
{ elliptic cone, 68
{ explicit surface, 64
{ hyperbolic cylinder, 68
{ implicit surface, 66
generator, 258
geodesic, 207, 267, 268
{ curvature, 207, 268, 269
{ curvature vector, 56, 269
{ equation of, 270, 273
{ o�set, 286
{ on developable surface, 289
geometry invariance property, 12, 21
Gr�obner bases, 77
Greville abscissa, 21

helix, 46
highlight line, 201
hodograph, 12, 132
hyperbolic cylinder, 4
hyperbolic paraboloid, 4, 55, 65, 272
hyperbolic point, 59
hyperboloid of one sheet, 4
hyperboloid of revolution, 4
hyperboloid of two sheets, 4

IGES, 30
implicit curve, 1
implicit surface, 4

implicitization, 120, 121
incidence intransitivity, 116
inection line, 261
inection point, 41, 202, 205, 206
initial value problem, 274
interrogation, 197
{ �rst-order, 199
{ fourth-order, 210
{ second-order, 202
{ third-order, 207
{ zeroth-order, 198
intersection
{ curve to curve, 128
{ curve to surface, 136
{ lattice method, 150
{ marching method, 150
{ point to curve, 116
{ point to point, 116
{ point to surface, 123
{ subdivision method, 150
{ surface to surface, 139
interval arithmetic, 91, 92
{ algebraic properties, 94
{ rounded interval arithmetic, 95
interval Newton's method, 92
Interval Projected Polyhedron (IPP)
algorithm, 105

intrinsic equation, 47
inverse function theorem, 242
inversion, 122
isophotes, 200

knot insertion, 26
knot removal, 27
knot vector, 21
{ clamped, 22

Lagrange multiplier, 223
line of curvature, 62, 207, 233
linear precision, 7, 79
linkage curve theorem, 205
local support property, 24

mantissa, 90, 95
marching method, 192
maximum principal curvature, 61
{ ellipsoid, 68
{ elliptic cone, 68
{ hyperbolic cylinder, 68
mean curvature, 61, 64
{ ellipsoid, 68
{ elliptic cone, 68
{ explicit surface, 64

Index 409

{ hyperbolic cylinder, 68
{ implicit surface, 66
medial axis, 301
meridians, 63
Meusnier's theorem, 57
minimum principal curvature, 61
{ ellipsoid, 68
{ elliptic cone, 68
{ hyperbolic cylinder, 68
Monge form, 64, 235

NC machining, 295
Newton's method
{ modi�ed, 74
{ n variables, 277
{ one variable, 74
node, 21
non-algebraic distance, 118
non-arc-length parametrization, 40
Non-Uniform Rational B-Spline
(NURBS), 30

{ curve, 30
{ surface, 31
nonparametric form, 1
normal curvature vector, 56
normal plane, 171
normal pyramid, 345
normal vector
{ curve, 40
{ surface, 50
normalized number, 96

o�set curve, 309
{ approximation, 314
{ cusp, 313
{ extraordinary point, 310
{ irregular point, 310
{ isolated point, 313
{ ordinary cusp, 310
{ self-intersection, 311, 313
{ singularity, 310
o�set surface, 318
{ approximation, 347
{ Gaussian curvature, 319
{ implicit surface, 322
{ irregular point, 320
{ mean curvature, 319
{ principal curvature, 319
{ self-intersection, 320
{ { explicit quadratic surface, 330
{ { implicit quadratic surface, 321
{ { parametric surface, 337
{ { tracing, 345

{ singularity, 320
ordinary point, 37, 50
orthotomics, 206
osculating plane, 40
Oslo algorithm, 26
overlapping, 157

parabolic cylinder, 4
parabolic point, 59
paraboloid of revolution, 4
parallels, 63
parametric curve, 1
parametric speed, 37
parametric surface, 4
pick feed, 301
pipe surface, 355
planar point, 59, 61
polynomial solver
{ algebraic technique, 76
{ balanced system, 83
{ homotopy method, 78
{ hybrid technique, 77
{ overconstrained system, 84
{ subdivision method, 78
{ underconstrained system, 84
principal direction, 61
principal normal vector, 40
principal patch, 233
procedural curve, 112
procedural surface, 112
Projected Polyhedron (PP) algorithm,
78

Pythagorean hodograph, 351

quadric, 4, 66

radial curve, 203
radius of curvature, 40
rational arithmetic, 90
rational number, 116
ray tracing, 200
rectifying plane, 43
reection line, 200
regular point
{ on curve, 37
{ on surface, 50
resultant, 76, 122
root mean square curvature, 204
rotation matrix, 240
ruled surface, 258
{ conical, 126
{ cylindrical, 125
ruling, 258

410 Index

secant method, 282
second fundamental form, 57
{ coe�cients, 57
self-intersection, 159, 160
semi-cubical parabola, 39
shaded image, 199
shooting method, 275
signi�cant digits, 90
singly curved surface, 259
singular point, 37, 50, 145
span, 21
STEP, 30
surface inection, 260
surface of revolution, 63, 124

tangent plane, 49
tensor product surface, 18, 29
tolerance region, 308
tool driving plane, 301
torsion, 44, 165, 207
{ transversal intersection curve, 170
torus, 32, 125
total curvature, 211

trip algorithm, 228
triple scalar product, 44
turning point, 144

umbilic, 61, 217, 233
{ criterion, 251
{ generic, 235
{ index, 238
{ lemon pattern, 235
{ lemon type, 221
{ monstar pattern, 235
{ non-generic, 235
{ star pattern, 235
unit in the last place (ulp), 95
unit speed, 37
unit tangent vector, 36
{ tangential intersection points, 172
{ transversal intersection curve, 166

variation diminishing property, 13, 24

wireframe, 198

